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Traffic flow prediction is the key problem of intelligent transportation system. Accurate prediction results are indispensable for
traffic management and road planning. However, due to the complex spatial-temporal correlation of traffic flow data, including
the spatial correlation and temporal correlation of adjacency, periodicity, and trend that exist between different roads. The
existing forecasting methods consider the spatial-temporal correlation but lack the dynamic modeling of spatial-temporal
correlation. To deal with this dynamic feature, this paper proposes a multi-dimensional attention-based spatial-temporal
network (MA-STN). It mainly contains three parts, the spatial-temporal attention unit, the spatial-temporal feature extraction
unit based on Graph Convolutional Network (GCN) and the fusion prediction unit, and the residual connection is also added
to the model to avoid the gradient disappearance problem. Meanwhile, this paper divides the dataset into three subsets to deal
with the three features in the temporal dimension separately. To verify the effectiveness of the proposed model, two real-world
road traffic flow data collected by PeMS system are used for validation. By comparing six different models, the proposed
network in this paper has a 7% accuracy improvement compared to the baseline model. To verify the effectiveness of the
attention mechanism, ablation experiments are used in this paper for validation, and the results show that the attention
mechanism can achieve a 5% accuracy improvement.

1. Introduction

With the progress of urbanization in recent years, traffic
problems have become increasingly serious. The intelligent
transportation system is a feasible solution for real-time traf-
fic control, real-time scheduling, and abnormal monitoring
[1], but its core cannot be separated from the real-time pre-
diction of traffic flow [2–5]. Traffic flow data mainly contain
three parameters, flow, density and speed [6], which are
important indicators of traffic operation characteristics,
and if traffic flow condition of the road can be accurately
predicted in advance, traffic management departments can
be guided in a timely and reasonable manner.

The road flow prediction problem is a typical spatial-
temporal data prediction problem [7], and the difficulty lies
in how to extract the spatial features of roads with features in

the temporal dimension. Spatial characteristics specifically,
i.e., road flows are correlated between upstream and down-
stream flows of the same road and correlation exists between
adjacent roads. And temporal features react in proximity,
trend and periodicity [8], as shown in Figure 1. In the flow
variation within a day, the flow at adjacent times usually
shows a trend, and in the graph of the two-day flow varia-
tion, it can be seen that in the flow variation has a cyclical
character, and in the graph of the flow variation of a week
and a month, there is also a cyclical character. It is also clear
from the graph that the pattern of flow variation is not iden-
tical between weekdays and rest days [9].

With the in-depth research in the field of traffic facilities
and traffic engineering, as well as the rapid growth of traffic
flow data due to economic development, there is data sup-
port to analyse the change pattern of traffic flow data. These
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data are usually transmitted by fixed collectors out and
therefore have a strong spatial correlation. Early researchers
mainly used semiotic methods to model traffic problems by
mining using time series analysis models, ARIMA models
[10], etc. These models are difficult to do a good fit for time
series that are nonlinear and non-stationary. With the devel-
opment of machine learning, researchers started to use
machine learning algorithms for modeling traffic data, which
have better performance on some data but rely on experi-
enced people for feature engineering of the data and have
poor portability [11]. In recent years, with the superior per-
formance of representation learning methods in the image
domain and natural language domain, researchers have
turned their attention to representation learning methods.
This approach learns representations in spatial-temporal
data, using deep recurrent networks to obtain temporal rep-
resentations and convolutional networks to obtain spatial
representations. It significantly improves the prediction
results, while eliminating the need for complex feature engi-
neering since it relies only on the data itself.

After years of research and practice, traffic forecasting
has experienced development from statistical-based models,
traditional machine learning-based to deep learning. Tradi-
tional methods based on statistical models, including HA,

ARIMA [10], VAR [12], etc., while ARIMA maintains better
results after operations such as differencing and taking loga-
rithms, and has been developed to produce seasonal ARIMA
models, which are good at extracting temporal characteris-
tics. However, these models have a large dependence on data
and require complex processing to ensure the accuracy of
the prediction effect, which cannot be guaranteed for the
complex traffic conditions in real situations. Subsequently,
with the development of machine learning, the models are
able to handle more complex data, and the commonly used
methods include KNN [13] and SVR [14]. SVR, as an exten-
sion of SVM for regression problems, is able to ensure better
prediction results by adjusting its kernel function. However,
the machine learning approach relies on feature engineering
for data processing, which requires the researcher to have a
good understanding of the model inputs and the features
needed for the model.

Deep learning started with the gradual development of
stacking multi-layer perceptron, and then became a research
method with wide interest due to the excellent performance
of convolutional neural networks in the field of image recog-
nition and with the increasing computing power of com-
puters. For spatial-temporal data, the use of RNN and its
variant GRU [15] or LSTM [16] became reliable, and in
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Figure 1: Temporal characteristics on traffic data.
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[16] LSTM was used for cab demand prediction, which cap-
tures the dynamics in the time dimension. This is mainly
due to the ability of LSTM to model the time dimension
and extract the effective features from it to discard the fea-
tures that interfere with the prediction results, but this
approach ignores the features in the spatial dimension. Sub-
sequently, [17] proposed to use CNN to extract features in
spatial dimension and LSTM to extract features in temporal
dimension for prediction after feature fusion, this method
captures features in spatial dimension and prediction has
better results. [18] obtained excellent performance on Bei-
jing cab data by introducing a residual mechanism while
using convolutional layers to obtain spatial dependencies
and mining and model temporal correlations of proximity,
trend and periodicity. However, these researchers used
network-based traffic flow data, which cannot extract the
spatial correlation in traffic maps well.

Convolution operation is the basis of convolutional
neural network, and traditional convolutional operations
are all for data in natural Euclidean space like images,
which have translation invariance, that is, when window
sliding is performed during convolutional operation, it
can ensure that the dot product between convolution ker-
nel and data is a fixed size tensor. However, the traffic
network is a non-Euclidean structure, and it needs to
transform the data into a raster type before convolution,
which results in the situation that there are no roads with
null values in the raster, resulting in a spatial structure of
the traffic network that is not easily extracted by the deep
learning framework for features. Therefore, X. Geng et al.
proposed the operation of graph convolution [19], which
transforms the traffic network into a matrix that can be
easily learned by borrowing the ordinary convolution
operation while introducing the spectral transform, and
this method proposes a feasible solution for non-
Euclidean spatial data. Thereafter, the introduction of Che-
byshev polynomials in [20] reduces the time complexity of
graph convolution substantially and avoids the problems
of training time and memory occupation. Y, Li et al. will
propose a diffusion graph convolution operation by bor-
rowing the concept of random walk in propagation [21],
this way convolution filters the graph nodes and their
neighboring nodes and controls the learning by setting
the number of hops between neighboring nodes depth of
spatial features, this approach avoids the problem of con-
structing Laplace matrices when the spectrum changes
and also enables learning the spatial structure in the net-
work. A graph convolutional network for traffic prediction
based on this method was proposed in [22], but the model
did not consider the dynamic spatial-temporal correlation
of traffic data.

In recent years, attention mechanisms have been widely
used in various tasks such as natural language processing,
image captioning, and speech recognition. The goal of atten-
tion mechanisms is to select the information that is relatively
critical to the current task from all inputs. xu, K et al. pro-
posed two attention mechanisms in an image description
task [23] and used visualization to visualize the effect of
the attention mechanisms. In the traffic flow prediction task,

J. Wang et al. used multiple attention mechanisms with
graph convolutional networks to process traffic flow data
[24] and obtain spatial-temporal features, and experiments
showed that this approach could significantly improve
model prediction. In order to predict time series, S. Guo
et al. proposed a multilevel attention network that adaptively
adjusts the correlation of time series from multiple geo-
graphic sensors [25]. However, this is time-consuming in
practice because separate models need to be trained for each
time series.

Motivated by the aforementioned research, we use both
graph convolution and attention mechanisms to model
network-structured traffic data, considering the graph struc-
ture of traffic networks and the dynamic spatial-temporal
patterns of traffic data.

The proposed graph convolutional neural network has
led to a significant improvement in traffic prediction, which
can learn spatial features from the natural graph structure of
traffic road networks. However, it is still worth exploring
how to capture the dynamic spatial-temporal correlation of
traffic flow data in a deep network architecture with predic-
tion models that are adaptable to different time periods. In
this paper, we propose a new deep learning framework, the
multidimensional attentional spatial-temporal network
MA-STN, for capturing spatial-temporal dependencies in
different time dimensions separately. The model can be
processed directly on graph-based traffic data and can effec-
tively capture spatial-temporal features. The main contribu-
tions of this paper are summarized as follows:

(i) In this paper, a multidimensional attentional
spatial-temporal network is designed to learn
dynamic spatial-temporal features in traffic data.
Specifically, the spatial features between different
roads are captured using graph convolution, and
the dynamic temporal features between different
times are captured using spatial-temporal attention
mechanism with long-short term memory neural
network

(ii) A module that captures spatial-temporal features is
designed for obtaining spatial-temporal correlations
on traffic data in certain dimensions. It consists of a
graph convolution based on the structure of the
traffic network capturing spatial features and a con-
volution to obtain adjacent time slices with periodic
time slice dependence

(iii) By conducting a large number of experiments on
real data, it has been shown that the model pro-
posed in this paper has better prediction results
compared with existing research methods

2. Proposed MA-STN Deep
Learning Framework

2.1. Transportation Networks. In the field of transportation,
the traffic road network is usually abstracted as an undi-
rected graph G = ðV , E, AÞ, Where V represents the set of
nodes usually sensors or road intersections, and N = jVj
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represents the number of nodes. E represents relationships
between nodes, for traffic networks it means the road path
or the relationship between sensors. A ∈ℝN×N represents
adjacency matrix.

Ai,j =

1 , i ≠ j and dij ≥ ε

0, i = j or dij < ε

8>><
>>: ð1Þ

2.2. Traffic Forecasting Tasks. Since sensors usually use the
same frequency for data acquisition. The amount of data is
denoted by F. For node ith in time cth the features represent
xc,tt ∈ℝ, and all the features are including Xt =
ðx1t , x2t ,⋯, xNt ÞT ∈ℝN×F . For traffic forecasting tasks, the fea-
tures tensor represents by X t = ðX1

t , X2
t ,⋯, XN

t Þ ∈ℝN×F×τ.
To obtain future traffic flow conditions is the main goal of
traffic forecasting, which means using historical traffic data
to predict future traffic conditions, as shown in Figure 2.

Given the measured historical data X on τ time slices, to

predict the traffic sequence Y = ðy1, y2,⋯, yNÞT ∈ℝN×Tp for
all nodes on Tp time slices in the future, where yi = ðyiτ+1,
yiτ+2,⋯, yiτ+Tp

Þ ∈ℝTp represents the traffic sequence of nodes

starting from the moment τ.
Figure 3 illustrates the overall framework of the MASTN

proposed in this paper, which consists of three main compo-
nents, namely, modules for handling recent, daily-period
and weekly-period dependencies in historical data, which
are formed using similar and independent compositions.
All of them are eventually imported into the fusion unit
and the loss function is used to adjust the model parameters
to achieve better prediction results.

We divide the time as three periodic, it is necessary to
determine the size of the forecast time series as Tp. In order
to obtain the time series input of the latest, daily period and
weekly period, the historical traffic data is divided. Among
them, Th, Td , and Tw are set to represent the time series of
the most recent, daily period, and weekly period, respec-
tively, and they are set as integer multiples of the forecast

time series Tp. Specifically, the criteria for classification are
as follows:

Recent time series: This part is directly connected to the
expected time series. According to Figure 1, it can be seen
that the traffic flow is gradually increasing and decreasing.
Therefore, the traffic flow just past will inevitably have an
impact on the future traffic flow, so the input features of
the recent time series can be expressed as χh = ðXt0−Th+1,
Xt0−Th+2,⋯, Xt0

Þ ∈ℝN×F×Th .
Daily-periodic time series: It can be seen from Figure 1

that the past few days and the forecast period have similar
fluctuations, and due to the regularity of people’s daily life.
Traffic data may show similar fluctuations, and morning
and evening peaks are a more prominent feature. The daily
cycle time series is to simulate the daily cycle characteristics
of traffic data and obtain these characteristics. It can be
expressed as χd = ðXt0−ðTd/TpÞ∗q+1,⋯, Xt0−ðTd/Tp−1Þ∗q+Tp

,⋯,
Xt0−ðTd/Tp−1Þ∗q+1,⋯, Xt0−q+Tp

Þ ∈ℝN×F×Td .

Weekly-periodic time series: It can be seen from Figure 1
that the traffic patterns in the past few weeks are similar.
Generally speaking, working days will show similar ups
and downs, but there is a big difference between working
days and rest days. Therefore, it is necessary to capture these
characteristics through the weekly cycle time series, which
can be expressed as χw = Xt0−7∗ðTw/TpÞ∗q+1,⋯,
Xt0−7∗ðTw/TpÞ∗q+Tp

, Xt0−7∗ðTw/Tp−1Þ∗q+1 ⋯ , Xt0−7∗ðTw/Tp−1Þ∗q+Tp
,

⋯, Xt0−7∗q+1,⋯, Xt0−7∗q+Tp
∈ℝN×F×Tw .

These three parts are used for the same components,
which contain units for dealing with time dependence and
space dependence. And each spatial-temporal dependency
processing unit includes a spatiotemporal attention module
and a spatiotemporal convolution module. In order to avoid
the problem of the disappearance of the gradient during the
training process, a jump connection mechanism is intro-
duced, that is, the residual connection, and related papers
also prove the effect of the residual connection on the traffic
prediction task. Finally, the outputs of the three components
are fused, and the final prediction result is obtained. The
entire model models the temporal and spatial dependence

Xt
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n
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……
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Figure 2: Traffic Forecasting Tasks.
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of traffic flow forecasting, and can handle the complex vari-
ability in historical flow data.

2.3. Spatial-Temporal Attention Mechanism. In this paper,
the attention mechanism is used to capture the features in
the temporal and spatial dimensions of traffic flow data,
which consists of two attention mechanisms, namely, tem-
poral attention and spatial attention.

Temporal attention: Traffic flow conditions are affected
by various aspects due to their temporal dimension, includ-
ing historical traffic data, special holidays such as holidays,
and seasonal changes, and the features that can be obtained
from the traffic data should be different for different situa-
tions. For this reason, an attention mechanism is needed to
process the features, and the approach in [26] is used:

E =Ve · σ χr−1
h

� �T
U1

� �
U2 U3χ

γ−1
h

� �
+ be

� �

Ei,j′ =
exp Ei,j

� �
∑Tr−1

j=1 exp Ei,j
� � ð2Þ

where the parameters include Ve, be ∈ℝTr−1×Tr−1 ,U1 ∈ℝN,
U2 ∈ℝCr−1×N ,U3 ∈ℝCr−1 , all of parameters are trainable.
And χr−1

h = ðX1, X2,⋯, XTr−1
Þ ∈ℝN×Cr−1×Tr−1 is the input of

the rth layer, Cr−1 represents the number of channels of the
input data, when r = 1, C0 = F, i.e., the number of nodes,
Tr−1 is the input of the time dimension size, when r = 1, T0

= Th. (here the proximity module is used as an example,
for different inputs T0 represents different, in the daily cycle
module T0 = Td , in the weekly cycle module T0 = TW). The
training results are output as a matrix, and as input features
those are assigned larger weights. Each element of the matrix
Ei,j represents the strength of the dependency between node
i and node j. Finally, the elements in the matrix are guaran-
teed to be between [0,1] by the sigmoid function, i.e., σ. Ei,j′ is
the result of processing by the softmax function, and the fea-
ture vector is processed directly using E′ as the weight
matrix, and the values of the matrix are updated in training
to ensure that the temporal features in the historical data can
be obtained, i.e., bχ r−1

h = ðX̂1, X̂2,⋯, X̂Tr−1
Þ = ðX1, X2,⋯,

XTr−1
ÞE′ ∈ℝN×Cr−1×Tr−1 .
Spatial attention: Traffic conditions at different locations

are subject to mutual influence, especially on adjacent roads,
and this relationship is usually highly dynamically corre-
lated, as can be seen in Figure 4, where the influence between
roads is dynamic and proximity. Therefore, to obtain these
features a spatial attention mechanism is used, which can
be expressed as:

S =Vs · σ χr−1
h W1

� �
W2 W3χ

γ−1
h

� �T
+ bs

� �

Si,j′ =
exp Si,j

� �
∑Tr−1

j=1 exp Si,j
� �

ð3Þ
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which contains parameters Vs, bs ∈ℝN×N ,W1 ∈ℝTr−1 ,W2 ∈
ℝCr−1×Tr−1 ,W3 ∈ℝCr−1 , which are learnable parameters and
σ is the Sigmoid activation function. And χr−1

h = ðX1, X2,
⋯, XTr−1

Þ ∈ℝN×Cr−1×Tr−1 is the input of the rth layer, Cr−1 rep-
resents the number of channels of the input data, when r = 1
, C0 = F, i.e., the number of nodes, Tr−1 is the input of time
dimension size, when r = 1, T0 = Th (in the recent module).
Similarly, the spatial attention mechanism generates a
parameter matrix for assigning different weights. Si,j denotes
the strength of spatial correlation between nodes i and j, and
the result is guaranteed to be between [0,1] by sof tmax. The
spatial attention matrix S updates the internal parameters as
the network is trained, and when model training is per-
formed, the weights of node messaging are dynamically
adjusted with the temporal attention matrix E as well as
the proximity matrix A.

2.4. Spatial-Temporal Feature Extract. For the input data, a
spatial-temporal convolution module is used to extract
spatial-temporal features. Two types of convolution modules
are included, convolution in spatial dimension and convolu-
tion in temporal dimension, spatial dimension is used to
capture spatial features by graph convolutional neural net-
work and temporal dimension is used to extract temporal
features by ConvLSTM.

Spatial feature extract: In this paper, traffic networks are
considered as graph structures, and convolutional neural
networks are powerful tools used in the image domain to
deal with spatial dependencies, but it is difficult to perform
convolution on the graph so as to perform feature aggrega-
tion and processing, and the difficulty is that the graph does
not have translation invariance, so it is impossible to per-
form convolutional operations using the same convolutional
kernel. Shuman et al. proposed that the convolutional oper-
ation on the graph process [27], which can be seen as the
process of information transfer of node signals on the graph,
so the theory of spectral domain transformation is used to
convert the features of grid data to graph structure data.
Therefore, in order to make full use of the topological fea-
tures of the traffic network, for each traffic flow data col-
lected is considered as a graph with node features, and the
spectral method is used to convert the feature graph into
algebraic form to obtain the spatial features on the graph.

In the spectral change-based approach, the graph is
transformed into a Laplace matrix defined as L =D − A,
where A represents the adjacency matrix and D ∈ℝN×N is
the degree matrix as well as a diagonal matrix, where Dii =
∑ jAij, which represents the spatial structural features of
the graph. To avoid the effect of the magnitude, after nor-
malizing it L = IN −D−1/2AD−1/2 ∈ℝN×N , where IN is the
unit array. The Laplace matrix is a symmetric matrix for
which the matrix decomposition can be expressed as L =U
ΛUT , where U is an orthogonal matrix or called Fourier
basis and Λ = diag ð½λ0,⋯, λN−1�Þ ∈ℝN×N is a diagonal
matrix. For the traffic flow at moment t, the signal on the

traffic graph can be expressed as x = xft ∈ℝN and the graph
Fourier transform can be defined as x̂ =UTx, whose inverse
variation can be expressed as x =Ux̂. The graph convolution
is a linear algorithm that uses the Fourier change to diago-
nalize the convolution operator instead of the convolution
operator [28], and according to these derivations, the signal
on the graph G can be represented by the convolution kernel
gθ as:

gθ∗Gx = gθ Lð Þx = Ugθ Λð ÞUTx ð4Þ

Where ∗G stands for convolution operation, for the con-
volution operation of the signal on the graph that is for the
Fourier change of the graph, the essence is the convergence
and product of the graph signal, so the above formula can
be understood as using the convolution operation to trans-
form the convolution kernel gθ and the signal x on the graph
into the spectral domain, respectively, and multiply the
results and perform the Fourier inverse transform to get
the final result. However, when the graph is more complex,
the time complexity of the eigen decomposition of the Lapla-
cian matrix is exponential. Therefore, M. Simonovsky, et al.
proposed that Chebyshev polynomials can solve this prob-
lem by approximation [20].

gθ∗Gx = gθ Lð Þx = 〠
K−1

K=0
θkTk

~L
� �

x ð5Þ

where the parameter θk represents the coefficients of the
polynomial, and the Chebyshev polynomial is defined as

Time

9:00 AM 9:30 AM
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Figure 4: Spatial influence of traffic flow at different times.
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TkðxÞ = 2xTk−1ðxÞ − Tk−2ðxÞ, where T0ðxÞ = 1, T1ðxÞ = x,
and ~L = ð2/λmaxÞL − IN , and λmax is the maximum eigen-
value of the Laplace matrix. Chebyshev polynomials for
approximation calculations are able to fit the convolution
kernel gθ and perform the process of convolution operations
and obtain information from the center of each node to the
surrounding 0 to K-1 hop neighbor nodes. After the graph
convolution module using the Relu function as the activa-
tion function, the graph convolution can be expressed as R
eluðgθ∗GxÞ.

In order to obtain the dynamic changes of the traffic
graph, such as the occurrence of traffic accidents, traffic con-
struction, etc., the attention mechanism is also used to focus
on the dynamic changes of node traffic when performing
graph convolution, i.e., for each convolution operation the
attention matrix S′ is added, and the graph convolution for-
mula is defined as gθ∗Gx =∑K−1

K=0θkTkð~L⨀S′Þx, where ⨀
represents the Hadamard product.

Temporal feature extraction module: After the graph
convolution each node on the time slice acquires its own fea-
tures with the neighboring nodes, and then these features are
converged in time dimension by convolution operation, the
temporal feature extraction module can be expressed as:

it = Sigmoid Conv xt ; wxið Þ + Conv ht−1 ; whið Þ + bið Þ
f t = Sigmoid Conv xt ; wxfð Þ + Conv ht−1 ; whfð Þ + bfð Þ
ot = Sigmoid Conv xt ; wxoð Þ + Conv ht−1 ; whoð Þ + boð Þ
gt = Tanh Conv xt ; wxg

� �
+ Conv ht−1 ; whg

� �
+ bg

� �
ct = f t ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ Tanh ctð Þ

ð6Þ

Where ∗ denotes the standard convolution operation, Φ
is the convolution kernel in the time dimension, and the
activation function also adopts the ReLU function.

After the spatial-temporal convolution module, both
temporal and spatial features in the traffic data can be
extracted effectively, and long-range spatial-temporal corre-
lation can be obtained in a larger scale by stacking multiple
spatial-temporal convolution modules. Full connection layer
is used to ensure that the output have the same dimension
and shape as the target. And we use ReLU function as the
activation function.

2.5. Multi-Dimensional Fusion Unit. After feature extraction
in the three modules, feature fusion is needed for these out-
puts. For traffic flows at different moments may have differ-
ent characteristics, for example, for traffic flows in the traffic
network at 5 pm on Monday, the impact of the nearest
moment time series will be less than the output of the weekly
cycle time series versus the weekly cycle time series. How-
ever, the traffic flow at certain moments does not have this
traffic cycle pattern, so the output of daily cycle and weekly
cycle has less impact. Therefore, different weights need to
be applied to the features of different modules for fusion.

Ŷ =Wh⨀Ŷh +Wd⨀Ŷd +Ww⨀Ŷw ð7Þ

Where ⨀ is the Hadamard product, Wh,Wd ,Ww are
learning parameters that reflect the degree of influence of
the three modules on the prediction results.

3. Results and Discussion

In order to evaluate the performance of the model, two real
traffic datasets are used for comparison.

Speed (mph) as of 31 Jul 2019 16:14 PDT
60+ 55–59 50–54 45–49 40–44 35–39 ≤ 35

Figure 5: Road Route Map.
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3.1. Datasets. The datasets come from two California high-
way traffic datasets, PeMSD4 and PeMSD8, representing
two different areas as in Figure 5, collected from the Perfor-
mance Measurement System PeMS [29], which is collected
at a frequency of once every 30 seconds. The system
deployed 39,000 detectors on California freeways, with geo-
graphic information between sensors in the raw data set.
Three main types of traffic measurements were used in the
laboratory, namely road flow, average speed and average
occupancy.

PeMS4 refers to traffic data for the San Francisco Bay
Area, which contains 29 roadways with 3,848 detectors.
The data were collected over a period of time spanning from
January to February 2019. Fifty days of these data were
selected as the test set and the others as the validation set.

PeMS8 refers to traffic data for the San Bernardino area,
which contains 8 roads with 1,979 detectors. The data collec-
tion spans from July 2019 to August 2019, with the first 50
days of data as the validation set and the others as the test
set.

To avoid data redundancy, the nodes with excessive
node distances are removed and the missing values are filled
by linear interpolation. Also to avoid the effect of magnitude
normalization is used to transform the feature vector to a
form with mean zero.

3.2. Model Settings and Baselines. The model is built by
Pytorch, and the K value of Chebyshev polynomial is set to
3 according to [30], and 64 convolution kernels are set for
the graph convolution layer, and 64 convolution kernels
are also set for the time convolution layer, and the time
length of the input is adjusted by controlling the step size
of the time convolution. For the three modules, Th = 12, Td
= 6, Tw = 3, and the time window of prediction is set to Tp

= 12, which means the traffic flow condition in one hour is
predicted. The mean square error between the true value
and the predicted value is used as the loss function, and
the parameters in the model are optimized by back propaga-
tion. For the training phase, the batch block size is set to 64,
and to avoid the effect of small data values, the Adam opti-
mizer is used and the learning rate is set to 0.0001. In order
to verify the effect of the attention mechanism on the
dynamics of the graphs in the paper, a comparison model
is also set, the multidimensional convolutional residual net-
work MSTN, which only eliminates the attention mecha-
nism other than no difference with this model.

This model compares the following models: HA, Histor-
ical average model. The model is based on a statistical
approach that uses the traffic flow of the first 12 time slices
of the forecast to predict the traffic flow of the next time
slice; ARIMA [10], Autoregressive Integrated Moving Aver-
age model. This model is mainly used for time series fore-
casting, by using difference operations to transform the
time series into a smooth time series and forecasting by
autoregression, where the moving average method can effec-
tively eliminate the effect of noise in forecasting on the
results; GRU [15], Gated Recurrent Unit neural network.
This model is used to avoid gradient disappearance and gra-
dient explosion of recurrent neural networks by adding gat-

ing units; LSTM [16], Long-Short Term memory neural
network, a variant of convolutional neural network, capable
of obtaining temporal features in long time sequences;
Graph-WaveNet [31], A Spatio-Temporal Graph model
constructed by introducing adaptive matrices with extended
convolution, capable of handling long time series; STGCN
[5], A Graph Convolutional neural network model for pro-
cessing spatial-temporal features, with modules for process-
ing temporal and spatial features.

The comparison uses root mean square error and mean
absolute error as evaluation indexes, where:

(1) Root Mean Squared Error (RMSE)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
yi − ŷið Þ2

vuut ð8Þ

(2) Mean Absolute Error (MAE)

MAE =
1
N

ð9Þ

3.3. Experimental Results and Analysis. By comparing the
experiments of the model proposed in this paper with the
five baseline methods on the PeMSD4 and PeMSD8 datasets,
Table 1 can be derived, representing the prediction results
for up to one hour in the future. From Table 1, it can be seen
that the method proposed in this paper obtains the best
results on both datasets. The traditional method, on the
other hand, is less effective for the predicted results, which
indicates the difficulty of the traditional method to deal with
the complex dependencies in a large amount of data.

In contrast, the deep learning-based methods perform
better than the traditional methods with machine learning.
Among them, STGCN, as a model that considers both
spatial-temporal correlation, will perform better than a deep
learning model like LSTM that considers only temporal cor-
relation. For the proposed two models, the model with the

Table 1: Average Performance Of Difference Methods On
PeMSD4 And PeMSD8 Datasets.

Model
PeMSD4 PeMSD8

RMSE MAE RMSE MAE

HA 46.08 31.53 38.00 26.05

ARIMA 47.56 29.94 35.53 28.66

GRU 39.69 28.58 29.67 23.59

LSTM 39.3 27.83 27.83 22.31

Graph-WaveNet 37.79 26.52 26.34 21.39

STGCN 38.29 25.62 27.87 20.31

MASTN(propose) 35.01 22.53 22.43 19.33

MSTN(propose) 35.77 23.72 26.76 19.78
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attention mechanism performs better, indicating that the
attention mechanism is able to capture the dynamic changes
of the traffic network. The model that does not use the atten-
tion mechanism also has better results than the previous
model, showing the superiority of the proposed model in
extracting spatial-temporal features in traffic flow prediction
and can combine with the spatial-temporal attention mech-
anism to improve the model effectiveness.

The prediction results of different models are compared
by increasing the prediction time. From the overall view, as
the prediction time keeps increasing, the possibility of dis-

turbance becomes greater and the prediction becomes more
difficult, so the prediction error also increases. It can be seen
from the Figures 6 and 7 that if only temporal features are
considered, such as HA, ARIMA and LSTMmodels, the pre-
diction can still achieve good results in the short term, but as
time grows, the prediction effect decreases sharply. In con-
trast, forecasting methods based on temporal features tend
to maintain a stable effect. The model proposed in this paper
achieves the best performance after introducing the atten-
tion mechanism, and also ensures excellent results in the
long-term prediction process.

30

5 10 15 20 25 30 35 40 45 50 55 60
Predict length

RM
SE

35

40

45

50

55

60

HA
ARIMA
GRU
LSTM

Graph–WaveNet
STGCN
MASTN
MAST

(a)

5 10 15 20 25 30 35 40 45 50 55 60

M
A

E

Predict length

HA
ARIMA
GRU
LSTM

Graph–wave net
STGCN
MASTN
MAST

20

25

30

35

40

45

(b)

Figure 6: The prediction results of different methods on PEMSD4.
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Figure 7: The prediction results of different methods on PEMSD8.
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3.4. Forecast Result. In order to verify the validity of the
model, the data in the test set is used for verification, and
the result is shown in Figure 8. They, respectively, represent
the overall prediction effect on the test data set and the one-
day prediction effect. It can be seen that the prediction effect
of the model proposed in this article on the test set is rela-
tively ideal, and it can basically fit the real data, which proves
the performance of the model proposed in this article.
Effectiveness.

3.5. Ablation Experiment. Many studies have proved that
ablation experiments can analyze the effectiveness of each
module [32, 33], so we make the following changes to the
model, let -A and -C represent the removal of the attention
mechanism and the use of LSTM as the temporal feature
extraction module, respectively. The variants of the model
are, respectively, for:

(1) MASTN(-A/-C): LSTM is used to extract temporal
features without the attention mechanism

(2) MASTN(-A): does not use the attention mechanism

(3) MASTN(-C): Replace ConvLSTM with LSTM

As shown in Table 2, after removing the attention mech-
anism, the prediction effect of the model drops significantly.
At the same time, in order to further analyze the role of the
attention mechanism in the model, a subgraph containing
10 nodes is selected, and the spatial attention matrix between
nodes on the PeMSD8 dataset is displayed. Figure 9 is the
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Figure 8: Predicted traffic flow vs. real traffic flow.

Table 2: Ablation experiment results.

Model RMSE MAE

MA-STN 22.43 19.33

MASTN(−A) 28.91 21.99

MASTN(−C) 28.31 20.41

MASTN(−A/−C) 30.78 22.2
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attention matrix of the subgraph Compared with the actual
road node position, Figure 9(a) represents the geographic
location and label of the selected node, and Figure 9(b) rep-
resents the weight status of the node in the attention matrix,
which represents the correlation strength between different
nodes, It can be seen that the traffic flow on the 9th node
on the subgraph is closely related to the 3rd and 8th nodes,
which is determined by the spatial proximity on the road.
Therefore, the model proposed in this paper can reflect the
spatial characteristics of real roads and is interpretable.

As shown in Table 2, when the ConvLSTM module in
the MASTN model is replaced by the LSTM model, or the
attention mechanism and ConvLSTM are replaced by the
LSTM model, the performance of the model will be
degraded. ConvLSTM is a convolution operation that adds
spatial feature extraction to the model in the time dimen-
sion, so it is necessary to effectively consider the spatial fea-
tures in the time dimension for the task of traffic flow
prediction, which can effectively improve the prediction
effect of the model.

4. Conclusions

In this paper, we propose a multidimensional spatial-
temporal attention graph model MA-STN and successfully
deal with the traffic flow prediction problem. The model
combines the spatial-temporal attention mechanism with

the spatial-temporal convolution module to process the
recent time series, the daily cycle time series and the weekly
cycle time series separately, and use the fusion unit to fuse
the output features to predict the traffic flow data. Experi-
ments on two real datasets show that the model has better
prediction accuracy than existing models and is interpret-
able. For a real road traffic situation, the traffic condition is
affected by various external factors, and the road condition
is not constant, for example, the construction of a critical
path can have a great impact on the traffic condition of the
whole road network. Therefore, in the future, we will con-
sider adding the dynamic changes of the traffic map into
consideration. Since the model proposed in this paper can
be generalized to spatial-temporal prediction tasks, it can
also be applied to other practical applications, such as pre-
dicting arrival times, predicting pedestrian flow, etc.

Data Availability

The datasets used are public. PeMSD4 and PeMSD8 can be
downloaded from https://drive.google.com/drive/folders/
17fwxGyQ3Qb0TLOalI-Y9wfgTPuXSYgiI.
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