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With the rapid development of deep convolutional neural networks, the results of image semantic segmentation are remarkable,
and the segmentation effect is greatly improved. The pooling layer of the convolutional neural network will reduce the resolution
of the feature map, which makes the convolutional neural network lose a lot of spatial information while extracting semantic
features. How to integrate semantic features with semantic information and spatial information will become an important
factor to improve the performance of semantic segmentation. Firstly, this paper improves the global attention upsampling
module and uses the improved global attention upsampling module to form a multiscale global attention up-mining module in
a new connection way. The upsampling module of multiscale attention establishes the relationship between high-level features
and lower-level features at a longer distance. Compared with PANet, the method proposed in this paper deepens the close
relationship between semantic information and spatial information. Experiments show that the segmentation effect of the
feature fusion method based on cascade is better than that of the feature fusion method based on weight. The segmentation
effect of the two fusion methods is improved by 8.3% and 5.7% compared with the PANet on the PASCAL VOC 2012 dataset
and by 4.5% and 3.6% on the Cityscapes dataset, respectively. The research results of this paper make the high-level semantic
information and shallow feature information cooperate to improve the segmentation effect.

1. Introduction

Since the development of the semantic segmentation model
based on deep learning, how to make the segmentation model
achieve higher accuracy has been paid more attention. Image
semantic segmentation is a semantic level segmentation, that
is, each image is composed of numerous pixels, and semantic
segmentation is to accurately determine which category each
pixel belongs to, to classify it into different categories [1]. Before
the development of deep learning, the early image semantic
segmentationmethods mainly include threshold segmentation,
region segmentation, and edge detection. However, because
these segmentation methods are manually designed to extract
features, they are time-consuming and labor-intensive and
can only segment the category of the object, and even some
methods cannot distinguish the category of the segmentation
[2]. In the machine learning era, texton forest and random

forest are mainly used as classifiers in semantic segmenta-
tion. Later, it was found that the convolutional neural net-
work (CNN) had a good effect on image classification and
segmentation, so on this basis, the improved convolutional
neural network FCN (fully convolutional networks) became
a hot research topic [3].

After multiple convolutions and pooling operations, the
low-resolution feature map loses a lot of spatial information
but gets some rich semantic information. On the contrary,
the low-resolution feature map can retain more spatial infor-
mation and less semantic information which is conducive to
classification after only a few convolutions and pooling oper-
ations. The UNet adds a long skip connection in each layer
of encoder and decoder to realize information complemen-
tation, but the UNet realizes information complementation
between decoder and encoder in the same layer and the
same resolution feature map. UNet + + uses nested and
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dense skip connections to capture fine-grained information
from multiple different high-resolution feature maps at the
encoder to recover the lost spatial location feature informa-
tion at the decoder [4].

In 2014, Long et al. proposed FCN (fully convolutional
networks) [5]. Before FCN was proposed, the working princi-
ple of the semantic segmentation model constructed by the
convolutional neural network was mainly to generate feature
maps of different depths through the convolution layer and
then to map them into corresponding feature vectors by using
the fully connected layer. To limit the size of input data, the
model constructed by the FCN network removes the fully
connected layer in some feature networks such as VGG16
and GoogLeNet so that the network structure only has a con-
volution layer. Thus, many feature maps with different depths
and sizes can be generated. However, the semantic segmenta-
tion model requires the input data size to be consistent with
the output data size to recover the size. FCN also uses decon-
volution to upsample the deepest feature map to facilitate seg-
mentation [6].

Because of the convolution operation, the resolution of the
image is reduced, which is not conducive to dense prediction.
To solve this problem, this paper proposes a multiscale global
attention upsampling block (MGAU). The MGAU is formed
by connecting GAU modules in a new connection mode. This
method constructs a new semantic segmentation model with
MGAU module and asymmetric convolution block (ACB).
An indirect guidance is proposed, that is, the higher level
features weight the lower level features at a longer distance
through the channel weights. PANet does not consider whether
indirect guidance can improve semantic information and spa-
tial information. Experiments show that the use of spatial atten-
tion can greatly improve the effect of semantic segmentation.

The main innovations of this paper are the following:

(1) An image semantic segmentation method based on
asymmetric convolution and multiscale global atten-
tion upsampling is proposed

(2) Use asymmetric convolution to improve the expres-
sion ability of the backbone network, and use high-
level semantic features to directly and indirectly guide
low-level feature maps at the decoder to strengthen the

relationship between semantic information and spatial
information

(3) Two fusion methods are used in this paper: one is to
give different weights to different feature maps, and
the other is the cascade feature fusion method

2. Related Work

2.1. Asymmetric Convolution Module. In 2019, Ding et al. pro-
posed an asymmetric convolution module in ACNet. ACB
uses one-dimensional asymmetric convolution to enhance
the expressive power of square convolution to replace the
square convolution layer. At the same time, the ACB module
can also enhance the robustness of the model [7]. In 2020, Li
et al. [8] improved the ACBmodule inMACU-Net as an inde-
pendent module so that the ACB can be combined with any
structure without adjustment. The structure of ACB is simple
and does not require a lot of additional computation. Because
the ACB module has stronger expressive power than the
square convolution kernel and has the idea of multiscale fea-
ture extraction, it can extract more context features [9]. There-
fore, the asymmetric convolution block is used in this method.
And the effectiveness of the ACB module has been verified in
many fields, such as image denoising, high-resolution remote
sensing image segmentation, and medical image segmenta-
tion. The asymmetric convolution module structure is shown
in Figure 1.

In Figure 1, the ACB module can extract feature informa-
tion from different directions from horizontal, vertical, and
rectangular convolution kernels, thus enhancing the ability
to extract feature information. The ACB module is composed
of three convolution kernels of different sizes and shapes,
which is similar to the idea of multiscale feature extraction
[10]. The sizes of the convolution kernels are d × d, d × 1,
and d × d, respectively. d × d is a square convolution kernel.
d × 1 is a vertical convolution kernel. 1 × dis a horizontal con-
volution kernel. Three convolution kernels with different
shapes can obtain the spatial feature information in the rectan-
gular area, horizontal direction, and vertical direction, respec-
tively [11]. After the convolution operation, the elements of
the three branches are added so that the output feature map
can fuse the feature information extracted from the input
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Figure 1: Structure diagram of asymmetric convolution module.
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feature map with convolution kernels of different shapes and
directions. Finally, the fused feature map is normalized by
batch processing, and the nonlinear activation function ReLU
is used to improve the expression ability of the feature map
[12]. The value of d chosen in the method of this paper is 3.
See formulas (1) and (2) for the ACB module in this method.

xi = F3×3 xi−1ð Þ + F1×3 xi−1ð Þ + F3×1 xi−1ð Þ, ð1Þ

xi = ReLU BN Fnð Þð Þ, ð2Þ

where xi is the input feature diagram of ACB module and xi−1
is the output feature diagram of ACB module. F3×3, F3×1, and
F1×3 represent 3 × 3, 3 × 1, and 1 × 3 convolution kernel,
respectively. And ReLUð⋅Þ and BNð⋅Þ represent activation
function ReLU and batch normalization operation, respec-
tively .

2.2. Global Attention UpsamplingModule. The structure of the
global upsampling module has two inputs and one output.
The two inputs are high-level semantic features X ∈ RH×W×C

and low-level semantic features Y ∈ RH′×W′×C′, where H, W,
and C are the width, height, and channel number of the
high-level semantic feature X. H ′, W ′, and C′ are the width,
height, and channel number of the low-level semantic feature
Y . The semantic information of high semantic feature X is
richer than that of low semantic feature Y , which is shown
as C > C′; but its spatial location information is largely lost
in downsampling, which is shown as the resolution of X,
which is smaller than that of Y , i.e., H <H ′ and W <W ′
[13]. The idea of the global upsampling model is to use the
high-level semantic features with rich semantic information
to guide the low-level semantic features with a large amount
of spatial information in the upsampling process. The imple-
mentation steps are as follows:

(1) Use channel attention to calculate the channel
weight of high-level semantic feature X, whose
dimension is 1 × 1 × C

(2) The number of channel weights of the high-level
semantic features is reduced to be the same as the
number of channels of the lower-level semantic fea-
tures through a convolution operation, that is, C
⟶ C′

(3) Multiply the low semantic feature Y with the chan-
nel weight 1 × 1 × C′ to obtain a new feature H ′ ×
W ′ × C′

(4) The output feature out is the element-wise addition
of the high-level semantic feature and the new fea-
ture map generated in the third step after N times
of upsampling operation [14]. The above process is
shown as

out = Conv1 × 1 Attention Xð Þðð Þ × Conv3 × 3 Yð Þ + Upsample Xð Þ,
ð3Þ

where Conv1 × 1ð⋅Þ and Conv3 × 3ð⋅Þ denote the con-
volution operation 1 × 1 and the convolution opera-
tion 3 × 3, respectively. Conv3 × 3ð⋅Þ contains
convolution BN and ReLU. Attentionð⋅Þ represents
attention operations, and the attention operations in
the global attention upsampling module are imple-
mented using global average pooling. Upsampleð⋅Þ
indicates the upsampling operation.

3. Improvement of Global Attention
Upsampling Module

Although the global upsampling module in the PANet net-
work has a good effect in image semantic segmentation, it
is proved in CBAM (convolutional block attention module)
that global average pooling is not the optimal choice for
channel attention. Global maximum pooling can extract
some unique features of objects and infer more meaningful
feature information [15]. Therefore, CBAM uses both global
average pooling and global maximum pooling to improve
the expressiveness of the network [16]. Inspired by CBAM,
this paper uses global average pooling and global maximum
pooling to replace global average pooling in the global
upsampling module, as shown in Figure 2.

In this paper, the ablation experiment proves that the
improved global attention upsampling module performs
better than the global attention upsampling module pro-
posed in PANet, which indicates that the improved global
attention upsampling module is effective.

4. Multiscale Global Attention
Upsampling Module

Two different feature fusion methods are proposed in this
paper. One is the feature fusion of multiple features of De2
and De3 according to different weights. Feature fusion is
performed by cascading multiple features of De2 and De3.
The two different fusion methods are explained below.

4.1. Feature Fusion Based on Weight. To facilitate the under-
standing of feature fusion with different weights in MGAU,
the multifeature graph aggregation module in the MGAU
module in Figure 3 was rebuilt in the way of feature fusion
with different weights.

In the MGAU module, W represents the weight, such as
W52 represents the weight of the feature map when the new
feature generated by GAU5 is fused on the DE2 layer [17].
De2 is the second layer of the decoder. ACB3, ACB4, and
ACB5 are the high-level semantic features, and ACB2 is the
low-level feature. ACB3, ACB4, and ACB5 generate their
own new feature maps F32, F42, and F52 through the GAU
module and ACB2, respectively. Since different high-level fea-
tures have different influence on the same low-level feature,
that is, the information fusion capabilities of indirect guidance
and direct guidance of the same low-level feature map are dif-
ferent. Different weightsWi2 are given to the newly generated
feature map fFi2gi=3,4,5 during feature fusion at the De2 level,
and the formula is shown as
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Fj = 〠
5

i=j+1
Wij × GAU Xi, Y j

� �
= 〠

5

i=j+1
Wij × Fij, ð4Þ

where GAUð⋅Þ denotes the global attention upsampling mod-
ule. X and Y represent high and low semantic features, respec-
tively. Wij represents the weight of the new feature map Fij

generated by the GAUmodule at the j th layer of the decoder.
Fij represents the new feature map generated by the GAU
module. Fj represents the feature map generated by weight
concatenation at the j th layer of the decoder [18].

4.2. Feature Fusion Based on Cascade. Figure 4 simplifies the
feature extraction content in Figure 3 but refines the content
in the MGAU model to facilitate the understanding of the
cascading method fusion feature graph.

Fij in the MGAU represents the feature map generated
by GAU module for high-level semantic features of layer i
and low-level features of layer j [19]. The MFF module is
used to aggregate multiple new feature graphs generated
on a certain layer of the decoder side. The specific structure
is shown in Figure 5.

In Figure 5, the input of the MFF module of the De2
layer at the decoder side are F32, F42, and F52, which are,
respectively, the feature maps of ACB3, ACB4, and ACB5
after weighted guidance of ACB2 through channel attention.
F42 and F52 are the high-level feature map ACB4, ACB5
indirectly guide the low-level feature map ACB2, and F32
is the high-level feature map ACB3 that directly guides the
low-level feature map ACB2 [20]. The feature aggregation
steps on the De2 layer are the following:

(1) The feature map F32 generated by direct guidance
and the feature maps F42 and F52 generated by indi-
rect guidance are cascaded, and the channel number
of the cascaded feature map is 256 × 4

(2) A new feature map F2′ is obtain by reducing that
numb of channels 256 × 4 from 256 layers through
a convolution kernel 1 × 1

(3) Pass the feature map F2′ through the spatial attention
module to generate a new feature map

5. Experiment and Analysis

5.1. Experimental Dataset. In this paper, two datasets, PAS-
CAL VOC 2012 and Cityscapes, which are commonly used
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Figure 2: Global attention with its improved module structure diagram.
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Table 1: Hardware and software experimental environment settings.

Experimental environment Tool configuration

CPU Ntel (R) I7-10900K 10-core/20-thread CPU @ 3.7GHz

Running memory 32G

GPU Quadro P2000

Video memory 5G

System type 64 bit

Operating system Ubuntu16.04

Programming language Python

Deep learning framework PyTorch

Table 2: Dataset performance comparison.

Number Method ResNet101 Dilated ResNet101 ACB FPA GAU MGAU MIoU (%)

1 PANet √ √ 78.52

2 PANet √ √ √ 78.93

3 Our-weight √ √ 78.76

4 Our-weight √ √ √ 80.21

5 Our-weight √ √ √ 80.33

6 Our-connect √ √ 79.93

7 Our-connect √ √ √ 79.98
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in the field of image semantic segmentation, are selected for
evaluation.

The PASCAL VOC 2012 dataset is a general dataset for
training and testing models or methods in the fields of image
classification, segmentation, and object detection. The PAS-
CALVOC2012 has a training set, a test set, and a validation
set in the field of image segmentation, including 1464 images
in the training set, 1449 images in the test set, and 1456
images in the validation set [21].

Cityscapes are semantically understood pictures for city
street scenes. It is a high-resolution dataset and a commonly
used dataset in the field of semantic segmentation. The
image resolution of the Cityscapes dataset is 1024 × 2048.
It has 5000 manually annotated images in the semantic seg-
mentation domain, including 2975 images in the training
set, 1525 images in the test set, and 500 images in a valida-
tion set. These images have 19 semantic categories [22].

5.2. Evaluation Standard. In the field of image semantic seg-
mentation, there are four commonly used evaluation

indexes, namely, pixel accuracy (PA), mean pixel accuracy
(MPA), intersection over union (IoU), and mean intersec-
tion over union (MIoU). PA represents the ratio of the num-
ber of correctly classified pixels to the number of all pixels in
the image, which is the simplest evaluation method, and its
formula is shown as

PA = ∑k
i=0Nii

∑k
i=0∑

k
j=0Nij

: ð5Þ

Table 3: Comparison of different semantic categories of IoU.

Category FCN8s (%) UNet (%) PANet (%) Our-connect (%) Our-weight (%)

A1 76.8 66.1 87.49 88.69 87.78

A2 34.2 31.7 83.49 85.45 84.89

A3 68.9 49.2 89.58 90.82 89.88

A4 49.4 35.6 71.45 70.83 72.40

A5 60.3 39.2 70.84 75.74 73.04

A6 75.3 70.3 93.12 93.33 93.04

A7 74.7 62.4 78.03 77.55 80.19

A8 77.6 60.6 92.71 94.19 92.67

A9 21.4 16.6 48.71 47.20 47.52

A10 62.5 41.5 83.42 89.94 87.65

A11 46.8 32.5 56.10 57.69 52.93

A12 71.8 50.3 88.35 88.76 89.25

A13 63.9 48.3 82.17 84.28 86.85

A14 76.5 65.0 90.37 86.49 87.31

A15 73.9 67.8 88.39 88.76 88.81

A16 45.2 34.5 61.83 66.15 63.39

A17 72.4 54.3 85.93 88.48 89.96

A18 37.4 27.2 50.63 54.06 51.20

A19 70.9 64.6 86.55 86.48 86.47

A20 62.2 49.9 79.35 80.34 80.06

(a) Original picture (b) Real value map (c) PANet (d) Our-weight (e) Our connect

Figure 6: PASCAL VOC 2012 AUG prediction results.

Table 4: Performance comparison of Cityscapes datasets.

Methods MIoU()

FCN-8 s 62.56

UNet 58.69

PANet 72.55

Our-weight 76.36

Our-connect 74.56
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MPA is the pixel calculation accuracy of each semantic
class and represents the ratio of the number of correctly pre-
dicted pixels of different semantic categories to the total
number of pixels of the semantic category. The formula is
shown as

MPA = 1
k + 1〠

k

i=0

Nii

∑k
j=0Nij

: ð6Þ

IoU represents the ratio of the intersection and union of
the two sets of labeled categories and predicted categories in
the truth graph, and its formula is shown as

IoU = ∑k
i=0Nii

∑k
i=0∑

k
j=0Nij +∑k

i=0∑
k
j=0Nji − ∑k

i=0Nii

: ð7Þ

MIoU is a subdivision of IoU, which represents the IoU
of each class and then averages it as

MIoU = 1
k + 1〠

k

i=0

Nii

∑k
j=0Nij +∑k

j=0Nji −Nji

: ð8Þ

k + 1 in formula (8) represents the number of all seman-
tic categories in the dataset, including k object categories and
1 background category. N represents the number of pixels in
the picture. For example, Nij represents Nij pixel predicted
to be in the j th class but actually belongs to the i th class.
MIoU is a standard metric used to evaluate the segmentation
effect of semantic segmentation tasks. MIoU and PA are
used as the evaluation methods in this paper.

5.3. Experimental Setup. Table 1 shows the software and
hardware environment settings required by the experiment.

The poly learning rate strategy was selected in the exper-
iment, and its formula is shown as

lr = init rate × 1 − iter
max iter

� �power

: ð9Þ

lr represents the learning rate. init rate represents the
initial learning rate. iter and max iter represent the current

iteration number and the maximum iteration number,
respectively. power is the momentum. In the PASCAL
VOC 2012 dataset, the setting of init rate was 4 e−3, and p
ower was set to 0.9. A stochastic gradient descent optimizer
was used, a batch size of 8 was employed, and the weight
decay was 0.0001. 100 rounds were iterated per training at
the time of the ablation experiment and 150 rounds at the
time of the formal experiment. Set to 1e-4 in the Cityscapes
dataset init rate. Use a stochastic gradient descent optimizer
by employing a batch size of 8, a weight decay of 5 e-4, a
momentum of 0.99, and 200 iterations per experiment.

5.4. PASCAL VOC 2012. The PASCAL VOC 2012 AUG
dataset was used for the experiments, and the resolution
was set to 512 × 512. In the feature fusion method based
on weight, the optimal weight ratio is W53,W43,W52,W42,
W32 = ð0:3, 0:7, 0:1, 0:2, 0:7Þ. Our-weight means that the
feature fusion method based on weight is used in the MFF
module. Our-connect means that feature fusion is per-
formed in the MFF module using the cascading-based fea-
ture fusion method. Dilated ResNet101 denotes a ResNet
with dilated convolution.

The method proposed in this paper uses two different
ways to fuse the MFF feature map. The feature fusion method
based on weight and the feature fusion method based on cas-
cade will be compared with the PANet segmentation method,
respectively. The experimental results are shown in Table 2.

In Table 2, it can be seen from groups 1, 3, and 6 that when
the ResNet101 with dilated convolution is used as the back-
bone network, the MGAU module has a better segmentation
effect than the GAU module whether the feature map is fused
using the weight-based method or the cascade-based method
in the MFF module. The second, fourth, and seventh experi-
ments show that the semantic segmentation method using
ACB +MGAU is better than the PANet. And while using
the ResNet101 as the backbone network, the effect is better
than the segmentation effect of the ResNet101 with dilated
convolution.

Table 3 describes the IoU and MIoU of some current
methods and the methods proposed in this paper in each
category. It can be seen that the cascade and weight methods
proposed in this paper are higher than other methods in 14
and 13 of the 20 semantic classes, respectively.

our-connect our-weightoriginal picture Real value map 

Figure 7: Prediction results of Cityscapes.
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The segmentation effect diagram of this method is
shown in Figure 6.

Our-weight and our-connect represent the feature fusion
method based on weight and the feature fusion method
based on cascade used in the feature fusion stage.

5.5. Cityscapes. The Cityscapes dataset is a high-resolution
image of 1024 × 2048. Too much computing resources are
needed to input the original resolution into the model for
prediction. Due to the limited video memory of the experi-
mental equipment, the input image is cropped into pixels
512 × 512 in the experiment. The comparison between the
experimental results of this method in the validation set of
Cityscapes and the experimental results of the existing
semantic segmentation methods is shown in Table 4.

In the experiment, the proposed method does not use
any other techniques or auxiliary datasets to improve
segmentation results. Figure 7 is the segmentation effect
diagram obtained by the method in this paper on the ver-
ification set.

In the fusion module, the method of weight and cas-
cade is better than FCN-8 s and UNet. Because the input
image resolution of PANet is 768 × 768, the effect of the
method proposed in this paper is slightly worse than that
of PANet.

6. Conclusion

In this paper, a semantic segmentation method based on
asymmetric convolution and multiscale global attention
upsampling is proposed.

(1) Asymmetric convolution is used to improve that fea-
ture expression ability, and a multiscale upsampling
module is used to complete the direct and indirect
influence of high-level semantic features on low-
level features.

(2) In the feature fusion stage, two fusion methods are
given: feature fusion based on weight and feature
fusion based on the cascade. In the ablation experi-
ment of feature fusion based on weight, the rule of dif-
ferent weights to achieve a good segmentation effect is
found, which also proves that indirect guidance of
low-level features is helpful to the segmentation effect,
and is verified in the PASCAL VOC 2012 dataset.

(3) The experimental results show that the method of
direct guidance and indirect guidance of high-level
semantic features is better than the method of only
direct guidance of low-level semantic features, and
the fusion method based on cascade is better than
the fusion method based on weight.

The difference between the proposed MGAU module
and the GAU module is that the MGAU module not only
provides direct guidance for low-level features, but also pro-
vides indirect guidance to establish a closer relationship
between high-level and low-level features. It can integrate

semantic and spatial information to a greater extent, thus
improving the ability of semantic segmentation.

In future work, we mainly focus on the case that there are
too few original images in the public dataset and personal
dataset used in this paper. There is no subdivision of each large
category, and the effectiveness of the segmentation effect of the
model has not been verified when there are too many samples
and categories in the dataset. The semantic segmentation
models of the Segnet network, DeeplabV3 network, and
DGCN network will be used for training and result evaluation.
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