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Location-based services (LBSs) support various applications in vehicular ad hoc network (VANET). However, location/trajectory
privacy becomes a serious concern for LBSs. Existing location/trajectory privacy-preserving schemes rarely take the attack model
of adversaries into consideration, and the cost for achieving privacy has not been carefully studied. To deal with these problems,
this study proposes a collaborative trajectory obfuscation scheme based on analyzing the attack model and designs a privacy-
preserving efficiency metric that balances the achieved privacy and the cost. 'rough simulation, the effects of the density of
vehicles using the same LBSs on the performance of our design and an existing scheme are investigated. 'e performance
comparison results validate the effectiveness and efficiency of our scheme.

1. Introduction

Vehicular ad hoc network (VANET) has become an im-
portant framework of the intelligent transportation system
(ITS) for applications such as navigation, road safety, and
entertainment [1]. Location-based service (LBS) usually acts
as the foundation that supports these applications. For
example, a vehicle that wants to find a nearby supermarket
and decide a suitable driving route should submit its
identity, location, and service requests to corresponding LBS
providers (LBSPs). While providing LBSs, LBSPs collect
vehicles’ locations. Once the LBSP is untrustworthy or
attacked by malicious adversaries, vehicles’ identities and
locations will be disclosed. By analyzing frequently visited
locations, private information of vehicle drivers, such as
personal preferences, work locations, home addresses, and
health conditions, can be revealed [2, 3]. To deal with these
threats, location privacy preserving for LBSs has long been
considered as an important research topic in VANETs.

'e basic idea for location privacy preserving is to use
pseudonyms instead of real identities when submitting LBS
requests to eliminate the link between vehicles’ identities and
locations [4]. However, simple pseudonym replacement can
only provide a single-point location privacy preserving [5].

When continuous LBSs are used, frequently visited location
and/or trajectories of vehicles can still be revealed if loca-
tions are submitted to LBSPs periodically with the same
pseudonym. To deal with this problem, pseudonym-
changing schemes such as silent period [6, 7] and mix zone
[8] are proposed, but their performance is unsatisfactory
when facing the correlation attacks and their real-time
performance is expected to be improved.

Location/trajectory obfuscation schemes have been
designed to solve the aforementioned problems. In location
obfuscation schemes, vehicles change their actual location
coordinates within a tolerable error range and submit the
changed locations to LBSPs. In this way, location privacy is
preserved with the cost of decreased service quality since the
LBSs are provided based on changed locations [9]. In tra-
jectory obfuscation schemes, fake LBS requests, whose lo-
cations are obtained from collaborators, are submitted
together with vehicles’ actual LBS requests. In this way,
adversaries will be misled and failed to trace the trajectories
when proper collaborators are selected [10]. Trajectory
obfuscation schemes preserve privacy without decreasing
the service quality. However, most work has not taken the
attack model of adversaries into consideration for designing
trajectory obfuscation schemes. Intuitively, trajectory
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privacy can be better preserved if we understand how the
attackers trace the trajectories. Besides, the scenario when
not all vehicles are using the same LBS has not been carefully
studied. When vehicle v selects a vehicle not using the same
LBS as the collaborator, the collaborator will not be able to
cause significant bifurcation of the trajectory. Consequently,
an attacker can still trace the trajectory successfully with high
probability. Regarding the performance evaluation, various
metrics, such as tracking successful ratio [11], location/
trajectory entropy [12], and anonymity set size [13], have
been designed to measure the achieved location/trajectory
privacy. However, the cost for achieving such privacy-pre-
serving performance has rarely been studied.

In this study, we tackle these challenges by making the
following contributions:

(1) We propose a novel trajectory privacy-preserving
scheme based on understanding the attack model of
adversaries. We first analyze how the adversaries
predict/trace the vehicles’ trajectories using the
Kalman filter. 'en, vehicles using LBSs predict their
future locations with the Kalman filter and select
collaborators based on predicted locations. In this
way, collaborators that are most capable of mis-
leading the adversaries can be selected and the tra-
jectory privacy-preserving performance can be
ensured.

(2) A privacy-preserving efficiency metric is designed to
evaluate the trajectory privacy-preserving perfor-
mance and the cost for achieving such privacy
performance.

(3) Unlike the simulation settings of the existing col-
laborative solutions, we set the density of vehicles
using the same LBSs as a variable to better reproduce
the real usage scenario. 'e effects of the density on
our design and an existing scheme are investigated.

'e rest of the study is organized as follows. Related
works are reviewed in Section 2. Section 3 describes the
considered system model. 'e attack model of adversaries
is analyzed in Section 4, based on which a collaborative
trajectory obfuscation scheme is proposed in Section 5.
'e performance of our design is compared with some
exiting schemes in Section 6, and this study is concluded
in Section 7.

2. Related Work

LBS supports a broad range of applications in VANETs.
Locations are submitted to the LBS provider together with
vehicle identities, which threaten users’ location privacy and
trajectory privacy. To deal with these threats, pseudonym-
changing-based schemes and location/trajectory obfusca-
tion-based schemes have been extensively studied [14].

In pseudonym-changing-based schemes, vehicles use
pseudonyms instead of real identities when submitting LBS
requests. In this way, links between locations and identities
are broken, and location privacy can be preserved. More-
over, a vehicle changes pseudonyms following designed

algorithms. 'us, links among locations of a vehicle at
different times are broken and trajectory privacy can be
preserved.

'e silent period is an early proposed pseudonym-
changing algorithm [6, 7]. A time period is defined as silent
period, within which vehicles do not submit any LBS re-
quests (i.e., keep silent) and after which vehicles submit LBS
requests with changed pseudonyms. 'is method can
mislead the attacker when more than one vehicles change
their pseudonyms at the end of a silent period. However, due
to the silence period, applications with high real-time re-
quirements cannot be satisfied.

Mix zone is considered as a promising pseudonym-
changing algorithm [8, 15] where mutually cooperative
vehicles concurrently change their pseudonyms inmix zones
created by themselves. 'e effectiveness of the mix zone
depends on factors such as geometry, vehicle density, and
geographic location in the road network. In addition, most
mix zone schemes cannot avoid the continuous query
correlation attack, thus limiting their performance in con-
tinuous LBS applications.

Due to the limitations mentioned above, pseudonym
changing is usually used together with location/trajectory
obfuscation. In location obfuscation, a vehicle changes the
actual location coordinates within a tolerable error range.
'en, the changed location is submitted to the LBSP. A
method called CoPrivacy is proposed in [16], where ve-
hicles form k anonymity groups through collaboration
and a vehicle replaces its actual location by the regional
density center of the anonymous group it belongs to.
Reference [17] explores the minimum amounts of ob-
fuscation and anonymization to block attacks on user’s
location privacy using an information-theoretic approach
with the Markov chains. However, location obfuscation
preserves location privacy with the cost of decreased
service quality since LBSP provides service based on the
changed locations [9].

In 2016, [18] proposed a trajectory obfuscation scheme
called mutual obfuscating path (MOP) to preserve privacy
without decreasing the service quality. For each vehicle v, it
selects a collaborator from vehicles that are currently within
its communication range. Vehicles whose trajectories are
predicted to converge on v’s trajectory within a predefined
time threshold form the candidate collaborator set and
within which the vehicle being nearest to v is selected as the
collaborator. 'en, v will send two LBS requests with two
different pseudonyms to the LBSP. 'e locations of these
two requests will be v’s actual location and the collaborator’s
predicted location, respectively. From the attacker’s per-
spective, the trajectories continue to bifurcate over time,
which impedes the attacker from successful trajectory
tracing. Reference [10] pointed out that there may be ne-
farious vehicles in the internal cooperation of MOP. To deal
with this problem, it proposed a non-collaborative approach.
A vehicle independently decides whether to exploit the fake
location of the surrounding vehicles based on the proposed
algorithm.

Despite the real time and guaranteed service quality of
these two schemes, there are still open challenges to be
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solved. First, the attack model has not been investigated in
this work. Intuitively, trajectory privacy can be better pre-
served if we understand how the attackers trace the tra-
jectories. 'erefore, in this work, we will design a trajectory
obfuscation scheme based on analyzing the attack model.
Second, this work does not consider the scenario when not
all vehicles are using the same LBS. When vehicle v selects a
vehicle not using the same LBS as the collaborator, the
collaborator will not be able to cause significant bifurcation
of the trajectory. Consequently, an attacker can still trace the
trajectory successfully with high probability. 'erefore, we
will take the scenario when not all vehicles are using the
same LBS into consideration and the effects of the density of
vehicles using the same LBS on the trajectory obfuscation
performance will be investigated.

3. System Model

For easier following, we summarize the notations introduced
throughout the next three sections in Table 1.

In the considered system model, there are n vehicles,
denoted by V � v1, v2, . . . , vn􏼈 􏼉 on the road, and m LBS
providers (LBSPs), denoted by P � p1, p2, . . . , pm􏼈 􏼉, pro-
viding m different LBSs. Each vehicle can access to pi ∈ P for
LBS or do not use LBS depending on its demand. Each
vehicle is equipped with an onboard unit (OBU). 'rough
the OBU, a vehicle can obtain real-time information about
the surrounding environment and communicate with other
vehicles or infrastructures in VANET. When a vehicle wants
to use the ith (1≤ i≤m) LBS, it sends a request to pi via
Internet service provider (ISP). ISP is a communication
agency between OBU and LBSP via which the LBS requests
and responses are sent. 'e considered LBS model is shown
in Figure 1.

In our work, we mainly focus on the continuous LBS
scenario, where a vehicle periodically sends the LBS request
to LBSP during the service time. A topical continuous LBS is
navigation. Assume a vehicle vk uses the ith LBS from time t0
to time tend. 'e LBS request sent by vk at time t0 ≤ tj ≤ tend

can be denoted by Ik, Loc
j

k, Ri
k, tj􏽮 􏽯. Here, Ik denotes the

identity of vk, Loc
j

k � (Lo
j

k, La
j

k)T indicates vk’s location at tj

with Lo
j

k and La
j

k being the longitude and the latitude, Ri
k

represents vk’s service request to LBSP pi, and tj is the
timestamp. Let Tint � tj+1 − tj denote the time interval be-
tween two continuous LBS requests. Without loss of gen-
erality, we let Tint be an unit time in this study. To resist the
identity-link attacks, vehicles usually use time-changing
pseudonyms instead of real identity for LBS request.

'erefore, the LBS request can be revised as 􏽥I
j

k, Loc
j

k, Ri
k, tj􏼚 􏼛

with 􏽥I
j

k being the pseudonym of vk at tj.
Let v i ∈ V denote the subset of vehicles using the ith LBS

from t0 to tend. By the end of tend, pi collects information
regarding the pseudonyms and locations of these vehicles at
different time points as CI � 􏽥I

0
k, Loc0k, t0􏽮 􏽯, . . . ,􏽮

􏽥I
end

k , Locend
k , tend􏼚 􏼛}, vk ∈ vi. If pi is malicious or it is attacked

by malicious adversaries, the possible trajectories of vehicles
in vi can be predicted using the Kalman filter or other
methods. 'us, the private trajectory information will be
disclosed. To tackle this problem and preserve the trajectory
privacy, a collaborative obfuscation method will be designed
based on the understanding of the adversary’s attack model.

4. Adversary Model When the Kalman Filter Is
Used for Trajectory Prediction

To effectively protect the trajectory information from being
disclosed, we should understand how the adversaries predict
the trajectories. 'erefore, we will analyze the attack model
of adversaries when the Kalman filter is used for trajectory
prediction. Based on CI collected at the LBSP pi, the ad-
versary forms a state vector xj � (Loj, Laj, Voj, Vaj)T to
denote the state of a LBS request with timestamp tj. Here,
Loj and Laj denote the longitude and the latitude obtained
from the LBS request, andVoj andVaj denote the velocity in
the longitude direction and the latitude direction. Vo0 and
Va0 are set to be 0. Voj and Vaj (j≠ 0) can be calculated as
Voj � (1/Tint)Doj and Vaj � (1/Tint)Daj) with Doj indi-
cating the distance between locations (Loj, Laj) and
(Loj− 1, Laj) in the longitude direction and Daj indicating
the distance between locations (Loj, Laj) and (Loj− 1, Laj) in
the latitude direction.

For t0, the adversary will form |vi| state vectors xj
1, x

j
2, . . . , xj

|vi|
to denote the initial states of the |vi| vehicles that are

using pi’s service. For tj (j≠ 0), the adversary may not be able
to identify the state of vk ∈ vi due to pseudonym changing. Let
us take an example for better understanding. Let 110011,{{

(41.40, 2.17), t0}, 110000, (40.40, 2.31), t0􏼈 􏼉, 110011, (42.40,{

2.17), t1}, 110000, (40.87, 2.40), t1􏼈 􏼉, 100110,{ (42.98, 2.39),

t2}, 001100, (41.05, 2.37), t2􏼈 􏼉} denote the CI collected by pi

from t0 to t2. Two state vectors x01 � (41.40, 2.17, 0, 0)T and
x02 � (40.40, 2.31, 0, 0)T will be formed at t0. Since the pseu-
donyms are not changed from t0 to t1, the adversary easily
identifies x11 and x22 from CI as x11 � (42.40, 2.17, Vo11, Va1

1)
T

and x12 � (40.87, 2.40, Vo12, Va1
2)

T. At t3, the pseudonyms of
vehicles are changed. 'e adversary cannot identify directly
from CI whether location (42.98, 2.39) or location
(41.05, 2.37) belongs to x31. In this case, the Kalman filter will
be applied by the adversary to make a prediction and decide
which location belongs to x31.

Vehicle vk ∈ vi is taken as an example, and we will
describe how the adversary predicts vk’s trajectory. Let x

j

k

denote the state of vk at tj (j≠ 0) estimated using motion
model, and it can be given as follows:

xj

k � Axj−1
k + Buj−1

k + w, (1)
where xj−1

k is considered by the adversary to be vk’s state at
tj−1 with probability p(k, j − 1) and p(k, 0) is set to be 1.'e
calculation of p(k, j − 1) will be given later in this section. A
is called as the state transition matrix, and B is called as the
input matrix. 'ey are defined as follows:
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Table 1: Summary of notations.

Symbol Meaning
n, m Number of vehicles on the road, number of LBSPs
vk,V 'e kth vehicle (1≤ k≤ n), set of vehicles on the road
pi,P 'e ith LBSP (1≤ i≤m), set of LBSPs
tj 'e jth timestamp of vk using pi(0≤ j≤ end)

Ik, 􏽥I
j

k Identity of vk, pseudonym of vk at tj

Lo
j

k, La
j

k, Loc
j

k vk’s longitude at tj, vk’s latitude at tj, vk’s location at tj

Ri
k vk’s service request to pi

Tint 'e time interval between two continuous LBS requests
v i Subset of vehicles using the ith LBS (1≤ i≤m)

CI Set of vi’s information collected by pi

xj State vector formed by the adversary at tj

xj

|vi |
Initial state of the |vi|th vehicle that is using pi’s service at tj

Voj, Vaj Velocity in the longitude direction and the latitude direction at tj

Doj Distance between locations (Loj, Laj) and (Loj− 1, Laj) in the longitude direction
Daj Distance between locations (Loj, Laj) and (Loj− 1, Laj) in the latitude direction
xj

k, xj

k Estimated state of vk at tj (j≠ 0), vk’s state considered by the adversary at tj

uj

k vk’s acceleration vector at tj

A,B,H State transition matrix, input matrix, measurement matrix
Ao

j

k, Aa
j

k vk’s acceleration in the longitude direction and the latitude direction at tj

w, v Disturbance noise, measurement noise
Q,R Covariance of w, covariance of v
En Unit matrix with n rows and n columns
Pj,Pj Error covariance at tj, error covariance calculated according to Pj−1 at tj

Lo
j

k, La
j

k
Estimated longitude and latitude of vk at tj

Vo
j

k, Va
j

k Estimated velocity in the longitude direction and the latitude direction of vk at tj

G, C Distance threshold, set of vehicles meeting the condition G

p(k′, j) Probability that x
′j
k is considered by the adversary to be vk′ ’s state at tj

Zj

k′ Measurement value consisting of Lo
j

k′ , La
j

k′
K Kalman gain
s

j

k, S
j

k vk’s recorded information regarding coordinate, velocity, and acceleration at tj, set of s
j

k

V
j

k Set of vk’s neighbors at time tj

y Serial number of the minimum distance between Loc
j+1
k and

vky Collaborator selected by vk

OBU

OBUOBU

LBSP

ISP

Figure 1: LBS system model in VANET.
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A �

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �

1
2

0 1 0

0
1
2

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

(2)

uj−1
k is called as the acceleration vector and is defined as

uj−1
k � (Ao

j−1
k , Aa

j−1
k )T with Ao

j−1
k and Aa

j−1
k denoting vk’s

acceleration in the longitude direction and the latitude di-
rection at time tj−1. Note that Ao0k and Aa0

k are set to be 0.
'erefore,Axj−1

k + Buj−1
k can be used to estimate the location

and velocity of vk at time tj based on the location, velocity,
and acceleration at tj−1. Considering the error caused by
imprecise estimation, a disturbance noise w is added in (1).
Assume that w is a Gaussian white noise, and the covariance
Q can be given as follows:

Q � qE4. (3)

Here, En denotes an unit matrix with n rows and n

columns. 'e error covariance P caused by w can be cal-
culated as follows:

Pj � APj−1A
T

+ Q, (4)

where Pj−1 is the error covariance at time tj−1 and P0 is set to
be E4.

Getting xj

k � (Lo
j

k, La
j

k, Vo
j

k, Va
j

k)T, the adversary will
check CI and find a set of vehicles:

C � vk′ |Di s k′( 􏼁<G􏼈 􏼉. (5)

Here, Di s(k′) indicates the distance between locations
(Lo

j

k, La
j

k) and (Lo
j

k′ , La
j

k′), G is a distance threshold set
based on the longest distance traveled by the vehicle in one
Tint under the speed limit on the road. Here, we set G to a
fixed value 15. 'en, vehicle vk′ will be considered to be
vehicle vk by the adversary at time tj with probability
p(k′, j), and p(k′, j) can be calculated as follows:

p k′, j( 􏼁 �

􏽐
v

k
′′
∈∈ C/v

k′􏽮 􏽯

Dis k″( 􏼁

􏽐
vk
′′
∈∈C

Dis(k′′) ×
p(k, j − 1)

|C| − 1
.

(6)

Here, p(k, j − 1) is the probability that x
j−1
k is considered

by the adversary to be vk’s state at tj−1. When vehicle vk′ is
considered by the adversary to be vehicle vk at time tj, Z

j

k′ �

(Lo
j

k′ , La
j

k′)
T will be taken as vk’s location at time tj.

Considering the errors caused by imprecise positioning, the
relationship between Zj

k′ and the actual locationHxj

k′ can be
described as follows:

Zj

k′ � Hxj

k′ + v. (7)

Here, H is a measurement matrix:

H �
1 0 0 0

0 1 0 0
􏼠 􏼡, (8)

where v is the measurement noise caused by imprecise
positioning. Assume that v in (7) is a Gaussian white noise,
and the covariances R can be given as follows:

R � rE2, (9)

'e parameters of the Kalman filter are updated and vk’s
state at time tj is predicted using the following formula:

K � PjH
T HPjH

T
+ R􏼐 􏼑

− 1
,

xj

k � xj

k + K Zj

k′ − Hxj

k􏼐 􏼑,

Pj � E4 − KH( 􏼁Pj,

(10)

where K is called as the Kalman gain. It can be found from
(10) that K decreases with R. 'at is, smaller R will lead to
more trustable estimation using the Kalman filter. Given
today’s increasingly precise positioning systems, we assume
that there is almost no deviation between Zj

k′ and x
j

k′ . 'us, r
is set to be a small value r � 0.05. As for the setting of q, we
refer to the conclusion in [5] and q � 0.05 is set. It should be
noted that xj

k obtained using (10) denotes vk’s state at time tj

predicted by the adversary when vk′ is considered to be vk. x
j

k

will be substituted into (1) to estimate xj+1
k and corre-

spondingly p(k, j − 1) in (6) will be replaced by p(k′, j).

5. Collaborative Obfuscation for Trajectory
Privacy Preserving

Understanding how the adversary traces the vehicles’ tra-
jectories, we will design a collaborative trajectory obfusca-
tion algorithm in this section.

Our main idea is to find collaborators for each vehicle vk,
and the collaborators will help vk by sending the same LBS
request with their pseudonyms and locations. When proper
collaborators are selected, the adversary will mistake the
collaborators for vk and thus be misled during trajectory
tracing. It should be noted that it is meaningless if a col-
laborator is driving on the same road with vk and the ad-
versary is successfully misled by the collaborator since vk is
still predicted to be on that road and the adversary can still
get vk’s trajectory. 'erefore, this work only selects col-
laborators at intersections and vehicles that are most capable
of misleading the adversary will be selected as collaborators.

While driving, a vehicle vk keeps recording its locations,
velocities, and accelerations for the current time and N most
recent historical time points. Assume the current time point
is tj, and the recorded information can be denoted as S

j

k �

s
j

k, s
j−1
k , . . . , s

j−N

k􏽮 􏽯 with s
j

k � (Lo
j

k, La
j

k, Vo
j

k, Va
j

k, Ao
j

k, Aa
j

k).
Here, Lo/La, Vo/Va, and Ao/Aa denote the coordinate,
velocity, and acceleration in the longitude/latitude direction,
subscript k denotes vehicle vk, and superscript j denotes
time tj. With the recorded information, vk will predict its
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location in the future time tj+1, denoted by Loc
j+1
k , using the

Kalman filter. 'e prediction process is given in
Algorithm 1.

When arriving at an intersection, vehicles predict their
future locations at tj+1 according to Algorithm 1. Each
vehicle adds its predicted location to the beaconmessage and
broadcasts the message to neighbors, which are vehicles
within its communication range. In our work, we assume
that all vehicles have the same radius of communication
range. 'erefore, vk is a neighbor of vx if vehicle vx is a
neighbor of vk. For vehicle vk, let V

j

k � vk1, vk2, . . . , vkY􏼈 􏼉

denote the set of its neighbors at time tj. vk will select
vky ∈ V

j

k as the collaborator if:

y � arg min
1≤y≤Y

Dis Loc
j+1
k , Loc

j+1
ky􏼐 􏼑, (11)

and

Dis Loc
j+1
k , Loc

j+1
ky􏼐 􏼑≤G. (12)

Here, G is a distance threshold as described in Section 4.
After selecting vky as the collaborator, vk sends to vky a
cooperative awareness message containing the LBSP vk is
connected to and the kind of LBS request it is using. 'en,
vky will help vk send fake LBS requests with vky’s pseudo-
nyms and locations to the LBSP. We assume that all vehicles
are willing to collaborate since a selfish vehicle who does not
collaborate will threaten its own privacy [18]. 'erefore,
motivation schemes will not be considered in our work.

As we have mentioned, the scenario where not all ve-
hicles are using the same LBS should be considered when
designing algorithms to preserve trajectory privacy. Under
this scenario, if the selected collaborator vky is not using the
same LBS as vk and vky just sends one fake request to the
LBSP, it will be easy for the adversary to identify the fake
request. To deal with this problem, the collaborator should
keep sending fake LBS requests for a period of time.

In our design, vky, which is selected as the collaborator at
an intersection, is required to keep sending fake LBS requests
until arriving at the next intersection. Once the attacker
mistakenly tracks vky, its predicted trajectory may create
more divergences at the next intersection. In this way,
trajectory privacy of vehicles will be better preserved. 'e
distance between two intersections is generally more than
600meters in the main urban roads, and the distance be-
tween the two gateways of the expressway is even further
[19]. According to [20], the average speed of vehicles on
weekday in first-tier cities is about 24(km/h), while it can
reach 30 − 45(km/h) in other major cities. 'erefore, we
assume that the average speed of vehicles is 10(m/s) and the
time required for a collaborator to keep sending fake re-
quests is 60s.

6. Performance Evaluation

In this section, we conduct traffic simulation to evaluate the
performance of the proposed trajectory privacy-preserving
scheme. 219 vehicles drive on an 6 km × 6 km map of
Suzhou, China, as shown in Figure 2, using SUMO [21, 22].

We consider that a LBSP collects the received LBS requests
for 5minutes. Within these 5minutes, vehicles using this
LBS move randomly on the map following traffic rules. 'e
LBS requests are sent by the vehicles every Tint. To inves-
tigate the effects of the density of vehicles using the LBS on
the performance of our design, four situations, where 25%,
50%, 75%, and 100% vehicles on the road are using the LBS,
are set.

As described in Section 5, a vehicle vk records its lo-
cations, velocities, and accelerations of N most recent his-
torical time points.'is information of N time points will be
used to predict vk’s location at the future time and the
collaborator will be selected based on the predicted location.
A proper set of N will help vk make an accurate prediction,
thus selecting a capable collaborator, with small memory and
computation cost. To set a proper value of N, we try to make
location predictions using the moving information of the
219 vehicles. As shown in Figure 3, prediction deviation, the
average distance difference between predicted locations and
real locations, changes with N. Generally, smaller deviation
comes with greater N. 'is is intuitive since more infor-
mation leads to more precise prediction. However, fluctu-
ation occurs in Figure 3. 'is is because that vehicles cannot
stay on the same moving pattern on different points of the
road. For example, the velocity tends to be stable or change
slightly between intersections, while the velocity tends to
decrease and the acceleration tends to be stable or change
slightly when a vehicle approaches the intersections. 'ese
complex road conditions cause fluctuations in the results of
our predictions of vehicles’ full trajectories.'erefore, if N is
not set properly, a vehicle will use the moving pattern be-
tween intersections to predict the moving pattern
approaching intersections leading to imprecise predictions
and increased deviations. According to the results shown in
Figure 3, N is set to be 5 in our simulation.

6.1. Performance Metrics. Two metrics are designed to
evaluate the trajectory privacy-preserving performance.
First, tracking success ratio is designed to represent the
possibility that the actual trajectory is vk’s trajectory in the
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ALGORITHM 1: Location prediction process of vehicle vk.
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adversary’s eyes. For a time t, the tracking success ratio is
defined as follows:

SRt � 􏽙
t

j�0
p(k, j), (13)

where k satisfies that location (Lo
j

k, La
j

k) is on the trajectory.
'en, we propose a metric to investigate the trajectory

privacy-preserving efficiency. For collaborative obfuscation,
collaborators are required to send fake LBS requests.'erefore,
the number of collaborators selected by vk is considered as the
cost to preserve vk’s trajectory privacy. Let NCVt denote the
number of selected collaborators until time t, and the privacy-
preserving efficiency Et is defined as follows:

Et �
1 − SRt

NCVt

. (14)

6.2. Performance Analysis and Comparison. We first in-
vestigate the average tracking success ratio of each den-
sity. As can be seen from Figure 4, tracking success ratio of

each density decreases gradually and reduces to almost 0
over time. 'e tracking success ratio of low density is
obviously higher than that of high density. 'is result
confirms the influence of the number of obfuscation lo-
cations on privacy preserving. More vehicles using the
same LBS will lead to more LBS requests with similar
locations submitted at a specific time. 'ese requests can
help each other mislead the adversary. 'at is, the actual
LBS requests from other vehicles play the role of fake
requests for vk.

'e tracking success ratio of our design is also
compared with that of the scheme proposed in [10], re-
ferred to RefScheme in the rest of this section. It can be
seen from Figure 4 that our scheme holds similar tracking
success ratio with RefScheme and our scheme perfor-
mances slightly worse than RefScheme before 2minutes
under 50% and 75% densities. It is because that vehicles
generate fake locations all the time on their way in
RefScheme, while our scheme only works at intersections.
Less collaborators are selected, and less fake LBS requests
are sent leading to a slightly worse performance with less
communication cost for collaborator selection and re-
quest sending. However, our design outperforms
RefScheme when the density of vehicles using the LBS is
low. 'is is because that more confusing trajectories are
generated by our scheme. When the density reaches 100%,
because the vehicles on the road are using the same LBS
and the location updates received by LBSP under these
two schemes are the same, the tracking success ratio of the
two schemes is the same.

Figure 5 shows the efficiency defined in (14) of two
schemes. We can see that the efficiency of both is 0 at first
since SR0 � 1. Clearly, our scheme outperforms RefScheme
since a similar tracking success ratio can be achieved by our
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Figure 4: Tracking success ratio v.s. 'e density of vehicles using
the LBS.
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Figure 3: Prediction deviation with different N values.

Figure 2: Map used in simulation.
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scheme with less collaborators. It should be noted that all
curves in Figure 5 are not monotonous. 'is is because that
NCV does not increase monotonically due to the ran-
domness of vehicle movement.

Moreover, the proposed scheme can be qualitatively
compared with other existing methods, such as silent
period [7], mix zone [15], and location obfuscation [17]
from the perspectives of privacy performance and service
quality. 'e comparison result is shown in Table 2.
References [7, 17] provide good privacy protection with
compromise on service quality since no service request is
sent during the silent period and service is provided based
on deviated locations, respectively. 'e service quality of
scheme [15] can be guaranteed, but it is vulnerable to
continuous tracking attacks. Our scheme overcomes
these drawbacks since fake requests from collaborators
protect trajectory privacy, while actual requests ensure
service quality.

7. Conclusion

'is study proposes a collaborative trajectory obfuscation
scheme based on analyzing the attack model of adversaries.
Compared with exiting works, our design has high service
quality and high privacy strength and can preserve the
trajectory privacy with less cost, that is, fewer collaborators.
To better reproduce the real usage scenario where not all
vehicles are using the same LBS, we introduce the density of
vehicles using the same LBS as a variable in our simulation.
'e results show that low density will increase the risk of
trajectory exposure, and therefore, density should be con-
sidered when designing trajectory privacy-preserving
schemes.
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Figure 5: Privacy-preserving efficiency for different densities.

Table 2: Qualitative performance comparison.

Scheme Service quality Privacy performance
'e proposed scheme High High
Silent period [7] Low High
Mix zone [15] High Low
Location obfuscation [17] Low High
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