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Image segmentation plays an important role in various computer vision tasks. Nevertheless, noise always inevitably appears in
images and brings a big challenge to image segmentation. To handle the problem, we study the nonlocal total variation (NLTV)
spectral theory and build up an image segmentation framework with NLTV spectral transform to segment images with noise.
Firstly, we decompose an image into the NLTV flow in the NLTV spectral transform, with which the max response time of each
pixel is calculated. Secondly, a separation surface is constructed with the max response time to distinguish the objects and preserve
the structure details in segmentation. )irdly, the image is filtered by the surface in the NLTV spectral domain, and a rough
segmentation result is obtained by means of an inverse transform. Finally, we use a binary process and morphological operations
to refine the segmentation result. Experiments illustrate that our method can preserve edge structures effectively and has the
ability to achieve competitive segmentation performance compared with the state-of-the-art approaches.

1. Introduction

Image segmentation refers to partitioning images into
multiple homogeneous parts or objects. It plays a significant
role in a broad range of computer vision applications, in-
cluding scene understanding [1], image compression [2],
and image retrieval [3, 4]. To date, two categories of seg-
mentation methods have been widely proposed: data-driven
methods [5–7] and model-driven methods [8–28].

Among data-driven methods, the common strategy is to
extract the semantic features of images using deep con-
volutional neural networks, based on which each pixel can
obtain a semantic label to realize segmentation. )e popular
deep neural networks for semantic segmentation consist of
FCN [5], U-Net [6], SegNet [7], etc., which can obtain
satisfying segmentation results without any postprocess
techniques. However, deep neural networks often suffer
from high computational resource consumption and need a
great mass of labeled data. Moreover, the interpretability of

neural networks is always an Achilles’ heel. )erefore,
model-driven methods are our research centrality.

According to different segmentation strategies, model-
driven methods can be further categorized as boundary-
based methods, region-based methods, hybrid methods, and
transform-based methods. Boundary-based methods sepa-
rate objects from the background by edge or shape. )e
representative methods include edge detection [8–10] and
graph-cut methods [11, 12]. )e former uses intensity
discontinuity to segment an object. Common edge detection
operators contain Prewitt [8], Sobel [9], Roberts [9], and
Canny [10]. Compared with the edge detection approaches,
graph-cut-based methods can achieve better segmentation
accuracy. Nonetheless, the extraction of gradients is sensitive
to noise, which makes the boundary-based models produce
unsatisfying segmentation results for noisy images.

Region-based approaches recognize similar regions and
complete segmentation by means of statistical techniques.
)e Chan-Vese model [13] and FCM [14] are representative
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works.)e Chan–Vese model makes the contour curve close
to the object boundary by minimizing the energy on both
sides of the evolution curve [15]. Nevertheless, the Chan–
Vese model fails to obtain satisfying results because of the
intensity inhomogeneity. FCM improves the tolerance to
ambiguity and obtains more reasonable segmentation results
by introducing a membership matrix. However, FCM is
unrobust to noise because of the fact that it merely considers
gray-level information. To solve the problem, many variants
of FCM [16–19] have been developed, which bring good
segmentation performance. Nonetheless, the improved
methods are still sensitive to the complex background and
intensity inhomogeneity.

Hybrid methods employ boundary information to detect
the region of objects and then use region information to
preserve the boundary structures. Recently, transition region
(TR)-based image thresholding [20–23] has been proposed as a
type of hybrid method.)emethod, firstly, uses edge detectors
or statistical techniques to extract a transition region, which is a
structure similar to the image edge, and then, it segments the
image by a threshold, which is a gray level mean value of the
transition region. TR-based image thresholding additionally
exploits the spatial information to acquire more satisfying
segmentation results. However, it is a global thresholding
method, which is unrobust to intensity inhomogeneity.

)e aforementioned model-driven methods segment the
image using spatial features, which results in sensitivity to
noise. Differently, transform-based approaches, firstly,
transform the image to a specific domain according to
mathematical theories, where noise and image details have
different performances. )en, denoised images are obtained
by filtering and inverse transformation, on which post-
processing is performed to segment the image. As one of the
popular transform approaches, wavelet transform is widely
used in diverse computer vision tasks because of its ease of
use and multiresolution processing ability. )e common
operation of the wavelet transform in image processing is to
decompose the image to obtain multiscale sub-bands in the
wavelet domain with the help of Mallat’s pyramid algorithm
[24]. )en, filter the image by low-pass, band-pass, or high-
pass filter to obtain the required features. Finally, the pro-
cessed image can be obtained by inverse transform. To get
satisfying segmentation results, wavelet transform is often
combined with other segmentation methods, such as wa-
tershed segmentation [25], clustering approaches [26], and
image thresholding methods [27]. For instance, the method
in [25], firstly, decomposes the original image into a mul-
tiscale pyramid representation in the wavelet transform
domain. Secondly, the watershed algorithm is applied to
segment every image of the multiscale pyramid into several
regions, including objects and background. )irdly, the
reverse wavelet transform is conducted on the split regions
to get the next higher resolution representation. Finally, the
size of split regions gradually becomes the same as that of
regions in the ground truth to achieve the segmentation
result. Nonetheless, wavelet transform-based methods are
sensitive to contrast, and the segmentation results are
influenced by the selection of wavelet basis functions.

Recently, the NLTV spectral theory has been introduced
[28] and has attracted people’s attention. )e NLTV spectral
transform can transform the image from the spatial domain
to the spectral domain, in which objects with different
contrast, size, and detailed structures can be distinguished
well. Additionally, the NLTV spectral transform can pre-
serve image structures because of its nonlocal operators [28].
To this end, we further discuss the performance of NLTV
spectral theory and attempt to further enhance the appli-
cability of the NLTV spectral transform. Inspired by the
work [29], we demonstrate the sensitivity of the NLTV
spectral transform to size, contrast, and its detailed struc-
tures in images with or without noise. We also indicate that
the spectral transform is invariance to rotation and trans-
lation. Besides, we are motivated to put forward a robust
image segmentation framework with NLTV spectral
transform. )e main process is as follows: firstly, the NLTV
flow is imposed on an image to acquire the NLTV spectral
transform, by which spectral response and a salient time
map of the image are calculated. )e elements in the salient
time map represent the max response time of each pixel of
the image. Secondly, we filter the salient time map by a
Gaussian filter to remove the isolated points and perform a
least-squares regression using a polynomial on the filtered
map to fit a separation surface. )irdly, the image is filtered
by the surface in the NLTV spectral domain, followed by the
NLTV inverse transform to obtain a rough segmentation
result. Finally, we use morphological operators and a binary
process to refine the segmentation result.

It should be noticed that the total variation (TV) spectral
transform-based method [30] has a similar idea in seg-
menting images with noise. However, the TV spectral
transform used in [30] calculates the horizontal and vertical
gradient of every pixel, which means only local information
is selected to describe object features. In reference [30], the
TV flow is obtained by iteratively solving the ROF model,
and then the TV spectral transform is yielded. Considering
that the edge detail of objects is lost for solving the ROF
model, the guided filter is adopted to refine the object edge in
[30]. In contrast to the spectral transform strategy in [30],
our method pays more attention to the difference between
one pixel and all other pixels in the image, termed nonlocal
gradients, to achieve NLTV spectral transform. With the
nonlocal information, the edge details can be effectively
preserved when segmenting the object in a variety of noises.
In addition, our segmentation framework does not intro-
duce the guided filter, which may bring the noise from the
original image to the segmentation result. We perform the
experiments on synthetic, natural, and medical cell images,
which demonstrate that the proposed method can achieve
competitive segmentation performance compared with the
state-of-the-art methods.

Overall, the contributions of this work are twofold,
which are as follows:

(i) We illustrate the properties of NLTV spectral
transform by theoretical proof and experiments. )e
analysis demonstrates that objects with varying size,
contrast, and detailed structures can be
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distinguished in the NLTV spectral domain. Addi-
tionally, the transform is invariant to rotation and
translation. )ese properties indicate the feasibility
of segmentation based on NLTV spectral transform.

(ii) We propose an image segmentation framework
using NLTV spectral transform, which fits a sepa-
ration surface to filter sub-bands in the NLTV
spectral domain, and it obtains segmentation results
by means of postprocessing. Our method can
achieve satisfying results for images with diverse
noise or complex texture.

)e rest of the article is structured as follows: section 2
gives an overview of the NLTV spectral theory. Section 3
discusses the properties of NLTV transform and introduces
our segmentation framework based on NLTV spectral
transform. Section 4 illustrates the experimental results of
the proposed method. At last, the paper is concluded in
section 5.

2. Preliminaries

)is section introduces the NLTV spectral transform
framework [28]. )e framework is made of several parts:
nonlocal operators, NLTV flow, NLTV spectral transform,
and spectral response.

2.1. Nonlocal Operators. According to continuous defini-
tions on the graphs of nonlocal gradient and divergence [31],
three nonlocal operators, namely nonlocal derivatives,
nonlocal gradients, and nonlocal divergences, are defined as
follows:

Let Ω ⊂ R2 be a bounded domain and w(X, Y)≥ 0 be
non-negative weights between any two points, X, Y ∈ Ω. In
the view of graphs, these weights correspond to a certain
relationship between these points. For simplicity, we assume
that these weights are symmetric, which means
w(X, Y) � w(Y, X). )en, Gilboa and Osher [28] extended
the local derivative to a nonlocal version by the following
definition:

zYu(X) � (u(Y) − u(X))
�������
w(X, Y)


, X, Y ∈ Ω, (1)

where u(X) is a real function, u: Ω⟶ R, 0<w(X, Y)<∞,
and zYu(X) represents the partial derivatives of u(X) in the
direction of point X and Y.

Similar to local gradients derived from local partial
derivatives, nonlocal gradient ∇wu(X): Ω⟶Ω ×Ω is
defined as the vector composed of all partial derivatives.

∇wu( (X, Y) � (u(Y) − u(X))
�������
w(X, Y)


, X, Y ∈ Ω. (2)

Before introducing nonlocal divergence, the definition of
inner product for vectors is shown as below. Denoting
vectors as v1

→
� v1(X, Y), v2

→
� v2(X, Y) ∈ Ω ×Ω, an inner

product is defined as follows:

〈v1
→

, v2
→〉 � 

Ω
v1(X, Y)v2(X, Y)dY. (3)

)en nonlocal divergence (divw v→)(X): Ω ×Ω⟶Ω is
defined as the adjoint of nonlocal gradient.
(divw v→)(X) � Ω(v(X, Y) − v(Y, X))

�������
w(X, Y)


dY.

2.2.NLTVFlow. )eweight matrixW depends on the patch
similarity. For fixed point X and arbitrary point Y in the
image,W(X, Y) represents the weight between the points X

and Y, which is defined as follows:

W(X, Y) �
E(X, Y)

Y∈ΩE(X, Y)
,

E(X, Y) � exp −
‖P(X) − P(Y)‖

2
2

σ2
 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where P(X) and P(Y) represent the patches centered at
points X and Y in the image, respectively. σ is a parameter to
control the decay of the exponential function. E(X, Y)

describes the similarity between the points X and Y.
NLTV is divided into two types, including isotropic

NLTV and anisotropic NLTV. )e former is defined as
follows:

JISO−NLTV(u) � 
Ω


Ω

(u(X) − u(Y))
2
w(X, Y)dY 

1/2
dX.

(5)

)e latter is defined as follows:

JANISO−NLTV(u) � 
Ω×Ω

|u(X) − u(Y)|
�������
w(X, Y)


dYdX.

(6)

In our work, the anisotropic nonlocal TV is applied to
calculate NLTV flow.

−
zu

zt
∈ zuJNLTV(u),

u(0, X) � u(X).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

2.3.NLTVTransform. )e sine and cosine functions are the
basic functions in Fourier transform.)ese basic functions’
amplitude forms impulses in the Fourier domain. )e work
[28] generalized this to NLTV domain. By examining the
elementary structures disks for NLTV functional, the
second derivative in the time of NLTV flow is considered
the representation of the impulse of the elementary
structure. Hence, the NLTV transform is defined by the
following:

ϕ(t) � uttt, (8)

where t ∈ (0,∞) is a time parameter of the NLTV flow
equation (7), and utt is the second derivative in the time of
the NLTV flow.

For NLTV transform, the inverse transform reconstructs
a signal or image from all ϕ(t) elements.

Wireless Communications and Mobile Computing 3



I(X) � 
∞

0
ϕ(t, X)dt + u, (9)

where u � (1/Ω)Ωu(X)dX is the residual part of NLTV
transform, and it is also the mean value of the initial
condition.

2.4. NLTV Spectral Response. Corresponding to the ampli-
tude of the response in Fourier domain, the NLTV spectral
response is defined as follows:

S(t) � 
Ω

|ϕ(t, X)|dX, t ∈ (0,∞). (10)

)e NLTV spectral response can roughly measure the
importance of image information at different time scales in
the NLTV spectral domain [28]. )e main features of the
image emerge at the time scale corresponding to the high
response. Otherwise, the NLTV spectral transform could be
considered negligible.

3. Proposed Method

)is section discusses the properties of the NLTV spectral
transform and displays a segmentation method for im-
ages with noise using the NLTV spectral transform.
Firstly, the seminal works [29, 30], which demonstrate the
properties of TV spectral transform in images with or
without noise, are extended to the NLTV spectral
transform in motivation. Secondly, a segmentation
method using NLTV spectral transform for images with
noise is introduced.

3.1.Motivation. )e section tries to research the properties
of NLTV spectrum transform in images with or without
noise. )eories and experiments without noise are shown,
firstly. )en, the properties are extended to the noise
condition by experiments. As known to all, the typical
noises in digital images are additive noise, multiplicative
noise, and impulse noise. For this reason, we corrupt the
images with Gaussian noise, Salt & Pepper noise, and
Speckle noise.

3.1.1. Property 1: Sensitivity to Size. A short proof about the
property is provided. For the sake of simplicity, we consider
scaling with a gray level image f(X), where X � (x, y) ∈ Ω.
)en, the image after scaling can be denoted as f(aX). With
the above notations, we explore why NLTV spectral
transform values over the time scale of images before and
after scaling satisfy the following relationship:

ϕ(t, X) � aϕ(at, aX), (11)

where ϕ(t, X) and ϕ(t, X) are NLTV spectral transforms
corresponding to images before and after scaling, respec-
tively. Notice that for the original image f(X), the NLTV
flow can be derived from the following partial differential
equation:

−
zu

zt
∈ zuJNL−TV(u),

u(0, X) � f(X).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Inspired by the case of TV, we consider the elementary
structures called nonlocal disks for the image f(X). A set A
can be used as a nonlocal disk when two conditions are
satisfied [28]: 1) A is a nonlocal calibrable set. 2) )e cur-
vature is constant on the internal boundary of the set A.

)e characteristic function of A is

χA(X) �
1, X ∈ A
0, X ∉ A . )en, the explicit solution of prob-

lem (12) with u(0, X) � χA(X) is expressed as follows:

u(t, X) �
1 − tλA( χA(X), X ∈ A,

0, X ∉ A,
 (13)

where λA � (Per(A)/|A|) and Per(A) and |A| are, respec-
tively, perimeter and normal of A. In the same way, the
NLTV flow of nonlocal disk A′ for the image f(aX) is as
follows:

u(t, X) �
1 − tλA′( χA′( X), X∈ A′,

0, X ∉ A′.

⎧⎨

⎩ (14)

)e energy of points in the image f(X) and f(aX)

decreases with the average speed of λA and λA′ , respectively.
It is worth noting that λA is equal to λA′ because the object
patterns before and after scaling are similar. Hence, we have
u(t, X) � u(t, X) with t � t/a and X � X/a. For time scaling
is t � t/a, ut t(

t, X) � a2utt(t, X) is obvious. )erefore,
ϕ(t/a, X/a) � tut t

(t, X)/a � t · a2utt(t, X)/a � aϕ(t, X).
Figure 1 is an example showing how the NLTV spectral

transform separates different size objects.)emultiscale NLTV
spectral descriptions of the pixels are shown in Figure 1(b),
which shows that there is a positive correlation between the size
and the time to reach themax spectral response. In addition, we
can find that the disappearance order of objects in Figure 1(c) is
consistent with the order of reaching max spectral response
time in Figure 1(b). Figure 1(d) shows the visualization of sub-
bands in the NLTV spectral domain, and it is a more intuitive
interpretation of figure 1(b). Moreover, Figure 2 shows the
sensitivity of NLTV spectral transform to size and similar
performance in different noises.

3.1.2. Property 2: Sensitivity to Local Contrast. Combing the
work [29], we attempt to provide a short proof. )e image
after gray-scale transformation by factor a is denoted as
af(X). )en, we plan to prove that the NLTV spectral
signatures of f(X) and af(X) satisfy the following
relationship:

ϕ(at, X) � ϕ(t, X). (15)

It is noting that ϕ(t, X) is still related with characteristic
function χA(X) mentioned in property 1. Copying the
analysis of property 1, the NLTV flows of f(X) and f(aX)

are as follows:
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Figure 1: Demonstration of property 1. Signatures are distinguished because of their sensitivity to size. (a) Image f. (b) Multiscale NLTV
spectral descriptions of different pixels. (c) Results of NLTV flow of f. (d) Multiscale NLTV spectral components.
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Figure 2: Continued.
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u(t, X) �
1 − tλA( χA(X), X ∈ A,

0, X ∉ A,


u(t, X) �
a 1 − tλA′( χA′( X), X∈ A′,

0, X ∉ A′,

⎧⎨

⎩

(16)

where t � at, A � A′, and X � X. u(t, X) � au(t, X) and
ut t(at, X) � utt(t, X)/a are given. )erefore,
ϕ(at, X) � atut t(

t, X) � at · utt(t, X)/a � ϕ(t, X).
An example is demonstrated on a synthetic image

without noise, as shown in Figure 3. )e image exhibited in
figure 3(a) contains four different contrast squares with a
black background. )e NLTV spectral transform is calcu-
lated, and multiscale NLTV spectral descriptions of different
pixels are shown in Figure 3(b). Figures 3(c) and 3(d) show
more intuitive performance, which indicates that the low
contrast squares disappear first. In addition, the NLTV
spectral transform is implemented on different noises to
verify its performance. As shown in Figure 4, except for
small time scales, the NLTV spectral description has a
similar performance, which demonstrates the sensitivity of
the NLTV spectral transform to contrast images with noise.

3.1.3. Property 3: Sensitivity to Detailed Structures.
Figure 5 shows objects with diverse structures. Figure 5(b)
shows that different objects have different time scales when
reaching the max spectral response. Figures 5(c) and 5(d) show

an intuitive description.)e center square with high contrast is
decomposed, firstly. )en, the square ring to which the blue
point belongs starts to be decomposed.)e black square ring is
decomposed finally. )e experiment indicates the sensitivity of
the NLTV spectral transform to detailed structures. )e
phenomena are caused by the nonlinear property of the NLTV
spectral transform. Assuming that imagesf and g make up the
image h, the response of these images satisfies the following:

ϕh ≠ ϕf + ϕg. (17)

To observe the decomposition process of NLTV spectral
transform within noise, examples are carried out on different
noises. Figure 6 shows the decomposition results of different
pixels in diverse noises. It can be seen that, except for small time
scales, the NLTV spectral description is similar to the case
shown in figure 5(b). )e experiments demonstrate that the
NLTV spectral transform has a sensitivity to detailed structures.

3.1.4. Property 4: Invariance to Rotation and Translation.
Suppose the original image is denoted asf(X), X ∈ Ω.)en,
the image after rotation by angle θ about the origin is
f(RX), where R is the rotation matrix.

R �
cos θ sin θ

−sin θ cos θ
 ,

f(X) � f(RX).

(18)
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Figure 2: NLTV spectral transform on different size objects corrupted with different noises. (a) is the image corrupted with Gaussian (10%
variance), Salt & Pepper (10% density), and Speckle noise (10% variance), respectively. (b) is the multiscale NLTV spectral descriptions of
different pixels corrupted with noises. (a) Gaussian noise. (b) Salt & Pepper noise. (c) Speckle noise.
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Figure 3: Demonstration of property 2. Signatures are distinguished because of their sensitivity to contrast. (a) Image f. (b) Multiscale
NLTV spectral descriptions of different pixels. (c) Results of NLTV flow of f. (d) Multiscale NLTV spectral components.
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Figure 4: Continued.
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Figure 4: NLTV spectral transform on different local contrasts corrupted with different noises. (a) is the image corrupted with Gaussian
(10% variance), Salt & Pepper (10% density), and Speckle noise (10% variance) respectively. (b) is the multiscale NLTV spectral descriptions
of different pixels corrupted with noises. (a) Gaussian noise. (b) Salt & Pepper noise. (c) Speckle noise.
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Figure 5: Demonstration of property 3. Signatures are distinguished because of their sensitivity to detailed structures. (a) Image f. (b)
Multiscale NLTV spectral descriptions of different pixels. (c) Results of NLTV flow of f. (d) Multiscale NLTV spectral components.
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Figure 6: NLTV spectral transform on different structures corrupted with different noises. (a) is the image corrupted with Gaussian (10%
variance), Salt & Pepper (10% density), and Speckle noise (10% variance), respectively. (b) is the multiscale NLTV spectral descriptions of
different pixels corrupted with noises. (a) Gaussian noise. (b) Salt & Pepper noise. (c) Speckle noise.
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Moreover, the image after translation by spatial shift on
the original image is f(X − d) and f(X) � f(X − d). In
essence, the rotation or translation of the image is equal to
rotating or translating the coordinate system in the original
image. On the other hand, the NLTV spectral transform is
invariant to the coordinate system and sensitive to deriva-
tives. )erefore, the NLTV spectral transform is invariant to
rotation and translation, i.e.,

ϕf(RX)(t, X) � ϕf(t,RX),

ϕf(X−a)(t, X) � ϕf(t, X − a).

⎧⎪⎨

⎪⎩
(19)

)ere are three groups of objects with different shapes in
figure 7(a). )e objects in the same group have the same
shape and contrast. Different objects have been translated in
different positions and rotated at different angles. As figure
7(b) shows, the objects in the same group have a similar
NLTV spectral description. More intuitive illustrations are
displayed in figures 7(c) and 7(d), which present that the
objects within the same group disappear simultaneously.
Figure 8 shows the NLTV spectral descriptions of different
pixels corrupted with noises. )e bottom row of Figure 8
shows that the objects with the same shape have similar
descriptions in large time scales, even though they have
distinct rotations and translations.

3.2. NLTV Spectral Transform for Robust Image Segmentation

3.2.1. Overview of the Proposed Segmentation Flowchart.
Figure 9 shows the flowchart of the proposed method. )e
method starts with the decomposition of an original image
in the NLTV spectral domain. )en, the available infor-
mation dimension of every pixel in the image increases from
one to the number of time scales. To better get appropriate
components, a soft threshold band-pass filter is selected to
replace the traditional hard threshold band-pass filter. After
obtaining the separation surface result, an inverse transform
is used to get an abstract structure. )e segmentation result
is obtained with the help of the binary process and mor-
phological operations.

3.2.2. NLTV Spectral Decomposition. In the subsection, the
process of image decomposition using the NLTV spectral
transform is illustrated in detail. Assuming that the
number of decomposition components is N, the NLTV
flow xxx can be calculated with the help of formulae (6)
and (7). According to the definition of the NLTV spectral
transform described in formula (8), the second derivative
of the element u(i) with respect to time scale needs to be
computed. To speed up the calculation, the first and
second derivatives are combined, expressed by formula
(20).

utt(i, X) �
(u(i + 1, X) + u(i − 1, X) − 2 · u(i, X))

Δt2
, (20)

where Δt is the time interval. NLTV transform is obtained
based on utt by equation (21).

ϕ(i, X) � utt(i, X) · i · Δt. (21)

)eNLTV spectral response can also be calculated using
equation (10).)e residual can be computed by equation (9).
If the forward time difference ut(i) � (u(i + 1) − u(i))/Δt is
used to calculate the first derivatives, the residual part f can
be transformed into formula (22).

f � (N + 1) · u(N) − N · u(N + 1). (22)

3.2.3. Object and Background Separation. After the de-
composition of the original image in the NLTV spectral
domain, the available information dimension of every pixel
in the image increases from one to the number of time scales,
i.e., the information used before decomposition is just pixel
value. Inspired by the work [29], a separation surface is
selected to effectively reduce the interference of noise on
segmentation.

To better characterize the feature of objects in the
image, time parameters t1 and t2 are chosen to construct a
time range [t1, t2]. By the above analysis of the four
properties of NLTV spectral transform, the max response
time is computed to describe the image. )e max response
time here is different from the spectral response of equation
(10). As equation (10) shows, the spectral response cal-
culates the element ϕ(t) of the image in the NLTV spectral
domain and can reflect the significant part of the image.
)e NLTV element ϕ(t) on the time scale t corresponding
to the low response contains unimportant features, which
can be discarded. However, formula (10) demonstrates that
it fails to reflect the spatial information of the objects. To
better analyze the performance of pixels in the NLTV
spectral domain, the max response time is calculated.
Specifically, the NLTV spectral transform, firstly, decom-
poses the image into several spectral components on a time
scale, as shown in Figure 9. )en, every pixel in the image
corresponds to a set of spectral responses. )e time scale of
the maximum spectral response is selected to indicate the
performance of the local spatial information in the NLTV
spectral domain. )e maximum response time of pixels
inside the same target tends to be close. )erefore, different
objects of the image can be extracted by analyzing the max
response time corresponding to each pixel. In other words,
a salient time map T(X) for each point X is calculated by
equation (23).

T(X) � argmax
i

ϕ(i, X), i ∈ t1, t2 . (23)

To extract more meaningful information about the
segmentation target, we fit a separation surface whose role is
a band-pass filter to separate the target from undesired
information. Firstly, the filtered max response map Tfilter(X)

is obtained by performing the Gaussian filtering on T(X) to
ensure the smoothness of separation surface. )en, the time
scale corresponding to the maximum spectral response is
stored as scatters, on which the least square regression is
performed to finish fitting the surface Tsur(X). )e fitted
surface can be regarded as a soft threshold in the range of
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Figure 7: Demonstration of property 4. Signatures are similar to different rotations and translations. (a) Image f. (b) Multiscale NLTV
spectral descriptions of different pixels. (c) Results of NLTV flow of f. (d) Multiscale NLTV spectral components.
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Figure 8: Continued.
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[t1, t2]. For a certain point X, the surface divides it into two
parts, [t1, Tsur(X)] and [Tsur(X), t2]. )e latter time range is
usually chosen for image description to reduce the effect of
noise. )erefore, the band-pass filter for each point X with
time range [t1, t2] can be denoted as follows:

HHBPF,t1 ,t2
(i) �

0, 1≤ i<Tsur(X),

1, Tsur(X)≤ i≤ t2,

0, t2 < i≤N.

⎧⎪⎪⎨

⎪⎪⎩
(24)

3.2.4. Desired Objects Segmentation. Image reconstruction,
which is also called inverse transform, is implemented after
surface fitting.)e time scale band represents the integration
times of each pixel for the object. )e target in the original
image is easily obtained by integrating over a specific time
scale using reconstruction formula (25).

I(x) � 
T

t�Tsur(X)

ϕ(t, X) + f. (25)
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Figure 8: NLTV spectral transform on different groups corrupted with different noises. (a) is the image corrupted with Gaussian (10%
variance), Salt & Pepper (10% density), and Speckle noise (10% variance), respectively. (b) is the multiscale NLTV spectral descriptions of
different pixels corrupted with noises. (a) Gaussian noise. (b) Salt & Pepper noise. (c) Speckle noise.
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Figure 9: Flowchart of the proposed segmentation method using NLTV spectral transform.
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Binary processing is performed after inverse transform
to obtain the segmentation mask. Finally, morphological
operations are used to refine the final mask. By the above
operations, the desired segmentation mask foutput is ob-
tained. To exhibit more details of the proposed method,
Algorithm 1 shows the specific process of the NLTV spectral
transform-based method for robust image segmentation.

4. Experiment Results

4.1. Data and Settings. To evaluate the performance of the
proposedmethod, synthetic, natural, andmedical images are
used for experiments. 1) )e first experiment contains 3
groups of synthetic images whose textures are taken from the
Brodatz Textures dataset [32]. Speckle, Salt & Pepper, and
Gaussian noises are added to each group of synthetic images
separately. 2) )e second experiment contains 3 groups of
natural images taken from the MSRA-1000 dataset [33]. 3)
)e third experiment contains 1 group of cell images, which
is taken from the Fluo-N2DH-SIM+dataset [34]. )ree
different types of noises are also added to natural and
medical images.

We compare our segmentation method with four clas-
sical methods, i.e., the C-V model [13], FCM [14], FRFCM
[19], and wavelet segmentation method (WSM) [27], which
are used in the experiments. )e experiments are imple-
mented using the MATLAB R2020b platform and a PC with
16GB RAM.

)e parameter settings for the proposed method are as
follows: experiments show that when the image is trans-
formed into the NLTV domain, detailed information is
located in a low time scale. Large scale, which is close to T,
contains less important information. Objects are mostly
distributed in the middle scale. Hence, a middle-scale time
range [t1, t2] is selected. In the following experiments, t1 is
set to T/5 and t2 is set to 3T/5. )e parameters T and Δt are
set to 9 and 0.03, respectively.

4.2. Quantitative Metrics. To quantitatively evaluate the
performance of segmentation effect, four different metrics
are chosen: FPR [21], FNR [21], dice similarity coefficient
(DICE) [35], and segmentation accuracy (SA) [36].

To measure the difference between segmentation results
and ground truths, FPR and FNR are chosen in the sub-
sequent experiments. )e former calculates the number of
background pixels classified as object pixels relative to the
total background pixels. FNRmeasures the number of object
pixels classified as background pixels relative to the total
object pixels. FPR and FNR are defined as follows:

FPR �
BR ∩OG




BG




,

FNR �
OR ∩BG




OG




,

(26)

where BR and BG represent the number of background pixels
in the segmentation results and ground truths, respectively.

Additionally, OR and OG are the number of object pixels in
the segmentation results and ground truths, respectively.

DICE measures segmentation accuracy by calculating
the degree of spatial overlap. Specifically, for the result re-
gion A and target region B,

DICE(A,B) �
2(A∩B)

A + B
, (27)

where ∩ means the intersection of two sets. )e value range
of DICE is [0, 1]. )e higher DICE indicates that the seg-
mentation result is more precise. DICE(A,B) � 1 demon-
strates that the segmentation result is the most complete,
while DICE(A,B) � 0 shows that the segmentation result is
the worst.

Another evaluation metric is SA, which can assess the
number of well-classified pixels in the image. )e definition
of SA is given as follows:

SA �


N
i�1 f

truth
i

N
, (28)

where ftruth
i means the correctly segmented pixel and N

denotes the total number of pixels in an image.

4.3. Parameter Analysis. )is section analyzes the effects of
Δt and T on the segmentation results of the proposed
method through an experiment. )e experiment was carried
out on MSRA-1000, and the average SA was used as an
indicator to show the influence of two parameters on the
segmentation accuracy. )e average SA was calculated by
averaging the SA of all images on the dataset. )e parameter
Δt ranges from 0.01 to 0.1, and the step is 0.01. Additionally,
the maximal time scale T ranges from 1 to 10, and the
interval is 1. Figure 10 demonstrates the results for different
Δt and T. )e proposed method achieves the best perfor-
mance when Δt � 0.03 and T � 9.

4.4. Synthetic Images. )e first experiment was implemented
on three synthetic images, which are shown in Figure 11.)e
first row shows a synthetic image containing multiple re-
peating structures and a dark grid-like background. A simple
synthetic image, which has an irregular object, is arranged in
the middle row.)e object in the bottom row is complex and
has a texture with inhomogeneous contrast. Moreover, three
images are separately contaminated with Speckle (10%
variance), Salt & Pepper (10% density), and Gaussian (10%
variance) noise.

Table 1 lists the quantitative evaluations of different
segmentation methods on various images. Combining
with Figure 11 and Table 1, FCM got wrong segmentation
results because of its sensitivity to noise. FRFCM achieved
a good result on the first image and got a high DICE and
SA value as shown in Table 1. However, it failed to dis-
tinguish the second and the third image because of the
inhomogeneous contrast. WSM, which is based on
spectral analysis, can remove the influence of noise.
However, as Figure 11 shows, WSM oversmoothed the
edge and damaged the edge details. Meanwhile, WSM was
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unable to segment objects accurately on the second and
third images. )e reason is that WSM is sensitive to in-
homogeneous contrast. )e C-V model obtained the
segmentation results of all images more correctly. One of
the reasons was that the C-V model relies on an initial
contour, which provides prior information about the
approximate position of the object. Nevertheless, the C-V
model was sensitive to noise. On the second and third
images, the C-V model was unable to accurately segment
the targets. )e noises slowed down the convergence
speed of the algorithm and made the method fall into the
local minimum problem. However, the proposed method
achieved the best results in all methods. )e NLTV
spectral transform-based method can segment the objects
exactly and can reduce the influence of inhomogeneous
contrast at the same time. )e reason is that our method

can segment objects, combining object size, contrast, and
structures. As shown in Table 1, the proposed method got
a high FNR on the second synthetic image, which
intended an under-segmentation. )e problem was
caused by the morphological operators in the output of
the proposed method, which may cause edge corrodes.

4.5. Nature Images. To further discuss the proposed
method’s segmentation ability for images with various
noises, the second experiment was performed on three
natural images, which are shown in Figures 12, 13, and 14.
)e object that has a similar contrast to the surroundings is
shown in Figure 12. Figure 13 displays a complex scene that
has lots of tiny structures in the background. )e object in
Figure 14 is a piece of paper containing words, and the

Input: gray image f.
Output: segmentation mask foutput.

(1) Initialize: maximal time scale T, time step Δt.
(2) Calculate the number of decomposition components N � T/Δt.
(3) Compute NLTV flow u(i){ }

N+1
i�0 using equations (6) and (7).

(4) Calculate NLTV residual part f using equation (22).
(5) for i � 1, 2, . . . , N do
(6) Compute the second derivatives in time of flow for each pixel X by equation (20).
(7) Achieve NLTV transform by equation (21).
(8) Calculate NLTV spectral response using equation (10).
(9) end for
(10) Select time parameters t1 and t2 according to the NLTV spectral response.
(11) Compute the salient time map T(X) by equation (23).
(12) Obtain Tfilter(X) by performing Gaussian filtering on T(X).
(13) Get the fitted surface Tsur(X) by performing least square regression on Tfilter(X).
(14) Reconstruct the result I(X) using equation (25).
(15) Get the segmentation mask fbw(X) by thresholding segmentation on I(X).
(16) Get the final mask foutput(X) by performing morphological operations on fbw(X).

ALGORITHM 1: NLTV spectral transform-based method for robust image segmentation.
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(a) (b) (c) (d) (e) (f ) (g)

(h)

Figure 11: Segmentation results on synthetic images corrupted by different noises. (a) Original images. (b) Images (from top to bottom) that
are corrupted with Speckle (10% variance), Salt & Pepper (10% density), andGaussian noises (10% variance), respectively. (c) C-VModel. (d)
FCM. (e) FRFCM. (f) WSM (db). (g) WSM (haar). (h) Proposed method.

Table 1: Evaluation metrics of compared methods for synthetic images, which are corrupted with Speckle (10% variance), Salt & Pepper
(10% density), and Gaussian noise (10% variance), respectively.

Image Metric C-V model FCM FRFCM WSM (db) WSM (haar) Proposed method

1

FPR 0.0025 0.0412 0.0010 0.0580 0.0402 0.0009
FNR 0.0501 0.1977 0.0655 0.0428 0.0492 0.0290
DICE 0.9596 0.7564 0.9604 0.7889 0.8328 0.9821
SA 0.9907 0.9397 0.9910 0.9408 0.9558 0.9956

2

FPR 0.0167 0.2111 0.1355 0.0241 0.0326 0.0038
FNR 0.0231 0.0743 0.0187 0.0389 0.0368 0.0273
DICE 0.9666 0.7531 0.8427 0.9510 0.9415 0.9798
SA 0.9808 0.8273 0.8959 0.9718 0.9659 0.9884

3

FPR 0.0358 0.3151 0.2352 0.1963 0.1984 0.0235
FNR 0.0289 0.0901 0.0217 0.0253 0.0255 0.0229
DICE 0.9075 0.5446 0.6402 0.6775 0.6751 0.9333
SA 0.9641 0.7249 0.8015 0.8326 0.8308 0.9748

)e best two results are highlighted in bold and italics fonts.
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Table 2: Evaluation metrics of compared methods for “star,” which are corrupted with Speckle (10%, 20%, and 30% variance) noise.

Noise level (%) Metric C-V model FCM FRFCM WSM (db) WSM (haar) Proposed method

10

FPR 0.0014 0.3299 0.2172 0.2953 0.2934 0.0010
FNR 0.0636 0.1170 0.1456 0.0228 0.0044 0.0544
DICE 0.9612 0.2633 0.3553 0.3067 0.3117 0.9667
SA 0.9953 0.6823 0.7910 0.7189 0.7213 0.9957

20

FPR 0.0014 0.3431 0.2677 0.2979 0.2935 0.0011
FNR 0.0573 0.1296 0.0354 0.0121 0.0107 0.0578
DICE 0.9616 0.2534 0.3294 0.3071 0.3109 0.9649
SA 0.9950 0.6696 0.7461 0.7169 0.7212 0.9955

30

FPR 0.0010 0.3454 0.2668 0.3001 0.2913 0.0010
FNR 0.0718 0.1155 0.0947 0.0112 0.0170 0.0584
DICE 0.9599 0.2558 0.3207 0.3059 0.3113 0.9652
SA 0.9949 0.6683 0.7460 0.7150 0.7231 0.9950

)e best two results are highlighted in bold and italics fonts.
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Figure 12: Segmentation results on image “star” corrupted by Speckle noise. (a) Original images. (b) Images (from top to bottom) that are
corrupted with 10%, 20%, and 30% variance of Speckle noise, respectively (c) C-V model. (d) FCM. (e) FRFCM; (f) WSM (db); (g) WSM
(haar); (h) Proposed method.

10
%

20
%

30
%

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 13: Segmentation results on image “snowman” corrupted by Salt & pepper noise. (a) Original images. (b) Images (from top to
bottom) that are corrupted with 10%, 20%, and 30% variance of Speckle noise, respectively. (c) C-V Model. (d) FCM; (e) FRFCM. (f) WSM
(db). (g) WSM (haar). (h) Proposed method.
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words will interfere with segmentation methods. Moreover,
three images are separately contaminated with Speckle
(10%, 20%, and 30% variance), Salt & Pepper (10%, 20%,
and 30% density), and Gaussian (10%, 20%, and 30%
variance) noise.

As Figure 12 shows, the object has a similar contrast to
the surrounding border. FCM separated the noise while
segmenting the object because of its sensitivity to noise.
FRFCM had better results than FCM, however, it still had
wrong segmentation for noise. WSM can remove the
influence of noise. However, WSM failed to remove the
impact of inhomogeneous contrast. )e C-V model
achieved accurate segmentation results because of its
initial contour. From Table 2, it can be seen that the C-V
model had similar DICE and SA values with the proposed
method. However, the C-V model was difficult to segment
corner structure because of noises. )e proposed method
can better preserve structural information while
segmenting.

Figure 13 shows the algorithms’ performances on the
natural images, which are corrupted by Salt & Pepper noise.
Table 3 shows the corresponding quantitative metrics. In
Figure 13, there are lots of small objects in the background,
which have a similar contrast to the object. When these
small targets are contaminated with Salt & Pepper noise,
they cause serious interference with segmentation
methods, which mainly rely on contrast. Figure 13 shows
that WSM has a good result; however, it is unable to
segment the areas surrounding the object correctly. Table 4
shows that the C-V model has better results than WSM;
however, it still has an incorrect segmentation of the
background. Because of the sensitivity of the NLTV
spectral transform to contrast, size, and structures, the
proposed method can still separate objects when the
background has small size structures.

Figure 14 shows the segmentation results on the natural
image when it is corrupted with different levels of Gaussian
noise. Table 4 shows the corresponding quantitative met-
rics of algorithms. )e natural image is difficult for seg-
mentation methods because it has complex texture like

words inside, which will affect the integrity of the seg-
mentation results. )e C-V model was capable of dealing
with the background, however, it was unable to handle the
interference of the internal texture of the object. FRFCM
and WSM dealt with the effect of noise and internal texture
but failed to remove the interference caused by contrast.
Moreover, WSM cannot obtain accurate edge information
of targets. As shown in Figure 14, WSM expanded the
object and the edge details disappeared. However, our
method can deal with the interference made by noise. )e
NLTV spectral transformwas sensitive to local contrast and
size. Hence, it can separate the low-contrast words on the
paper scrap. Because of the contrast and structure differ-
ence between the paper scrap and the background, the
proposed method can separate the object from the back-
ground and extract the object’s edge details correctly.
Table 4 shows that the proposed method has high FNR
values. From Figure 14, the bottom edge in the results of the
proposed method is a little expanded, and the left edge is
obviously corroded. )e main reason is that the mor-
phological operator makes the segmentation result
corroded.

4.6.Medical Image. )e proposed method was evaluated on
a medical image in this part. Because the medical image has
a black background and the inference of speckle noise on
the image is not obvious, the experiment was implemented
on an image with Gaussian noise and Salt & Pepper noise.
As Figure 15 shows, the top row is a cell image, which is
contaminated with Gaussian noise, and the bottom row is
the cell image corrupted with Salt & Pepper noise. On
account of the noise, the initial contour of the C-V model
generated a local minimum problem and was unable to be
iteratively converged. As a result, the segmentation results
of the C-V model can only be around the initial contour.
FCM had wrong results because of its sensitivity to noise.
FRFCM obtained the best result on the cell image corrupted
with Salt & Pepper noise. However, Gaussian noise can
cause FRFCM to generate an over-segmentation. WSM can
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Figure 14: Segmentation results on image “paper scrap” corrupted by Gaussian noise. (a) Original images. (b) Images (from top to bottom)
that are corrupted with 10%, 20%, and 30% variance of Speckle noise, respectively. (c) C-VModel. (d) FCM. (e) FRFCM. (f) WSM (db). (g)
WSM (haar). (h) Proposed method.

Wireless Communications and Mobile Computing 17



better remove the influence of Gaussian noise. However,
WSM achieved high FPR values in the cell image corrupted
with Salt & Pepper noise, which intends the over-seg-
mentation. Nevertheless, our method obtained good seg-
mentation performances in both noises. Our method
achieved the best results on the image corrupted with

Gaussian noise and obtained the second-best performance
in Salt & Pepper noise. Table 5 shows that the proposed
method achieves a high FNR value, which implies under-
segmentation. As shown in the bottom row in Figure 15,
the proposed method is difficult to segment the cells that
have both small size and low contrast.

Table 3: Evaluation metrics of compared methods for “snowman,” which are corrupted with Speckle (10%, 20%, and 30% variance) noise.

Noise level (%) Metric C-V model FCM FRFCM WSM (db) WSM (haar) Proposed method

10

FPR 0.0137 0.1406 0.0737 0.0532 0.0467 0.0049
FNR 0.0577 0.1756 0.0408 0.0848 0.0983 0.0890
DICE 0.9472 0.6988 0.8556 0.8642 0.8675 0.9524
SA 0.9783 0.8531 0.9332 0.9406 0.9431 0.9810

20

FPR 0.0140 0.1809 0.0763 0.0570 0.0497 0.0053
FNR 0.0553 0.1768 0.0402 0.0764 0.0883 0.0979
DICE 0.9483 0.6546 0.8520 0.8622 0.8682 0.9505
SA 0.9787 0.8207 0.9312 0.9391 0.9428 0.9804

30

FPR 0.0214 0.2263 0.0785 0.0542 0.0548 0.0175
FNR 0.0529 0.1651 0.0380 0.0880 0.0764 0.0997
DICE 0.9345 0.6178 0.8505 0.8603 0.8656 0.9479
SA 0.9725 0.7870 0.9301 0.9389 0.9408 0.9732

)e best two results are highlighted in bold and italics fonts.

Table 4: Evaluation metrics of compared methods for “paper scrap,” which are corrupted with Speckle (10%, 20%, and 30% variance) noise.

Noise level (%) Metric C-V model FCM FRFCM WSM (db) WSM (haar) Proposed method

10

FPR 0.0013 0.4130 0.4138 0.5043 0.5063 0.0002
FNR 0.1302 0.0962 0.0265 0.0154 0.0230 0.0688
DICE 0.9265 0.3813 0.4023 0.3585 0.3557 0.9754
SA 0.9809 0.6271 0.6340 0.5557 0.5533 0.9939

20

FPR 0.0016 0.4236 0.4158 0.5059 0.5077 0.0005
FNR 0.1310 0.1144 0.0202 0.0225 0.0162 0.0743
DICE 0.9250 0.3686 0.4037 0.3562 0.3568 0.9725
SA 0.9805 0.6152 0.6333 0.5538 0.5527 0.9932

30

FPR 0.0016 0.4239 0.4164 0.5170 0.5137 0.0011
FNR 0.1331 0.1129 0.0230 0.0168 0.0188 0.0893
DICE 0.9239 0.3693 0.4034 0.3525 0.3534 0.9661
SA 0.9803 0.6154 0.633 0.5446 0.5472 0.9917

)e best two results are highlighted in bold and italics fonts.

Table 5: Evaluationmetrics of comparedmethods for “cell” which are corrupted with gaussian (5% variance) and salt & pepper (5% density)
noise.

Noise Metric C-V model FCM FRFCM WSM (db) WSM (haar) Proposed method

Gaussian

FPR 0.4835 0.2775 0.1360 0.1170 0.1020 0.0019
FNR 0.7958 0.1577 0.0213 0.0277 0.0325 0.3540
DICE 0.0926 0.4688 0.6638 0.6892 0.7112 0.7409
SA 0.4779 0.7332 0.8640 0.8796 0.8920 0.9436

Salt & Pepper

FPR 0.1256 0.1488 0.0009 0.2666 0.2491 0.0180
FNR 0.2415 0.1140 0.3895 0.0376 0.0502 0.2780
DICE 0.6000 0.6216 0.8119 0.5163 0.5299 0.8026
SA 0.8640 0.8484 0.9562 0.7523 0.7672 0.9459

)e best two results are highlighted in bold and italics fonts.

18 Wireless Communications and Mobile Computing



5. Conclusion

We have analyzed the properties of NLTV spectral transform
with the help of theoretical proof and experiments. Our analyses
demonstrate that the object in an image corrupted with various
noises can be separated its size, contrast, and detailed structure.
)e analyses also illustrate that the objects with same structures
have similar descriptions in the NLTV spectral domain.

Furthermore, we have developed a novel transform-based
method that segments images based on the NLTV spectral
transform. )e approach, firstly, decomposes an image into
many sub-bands in the NLTV spectral domain and utilizes the
max response time to represent the image features. )en, to
better divide the object and background, the sub-bands in the
NLTV spectral domain are filtered by fitting the separation
surface, which is calculated based on maximum response
time. Next, the filtered image is reconstructed by an inverse
transform to obtain the rough segmentation result. Finally,
the segmentation mask is calculated using postprocess
methods. Subjective and objective evaluations show that the
proposed method effectively protects the edge details while
segmenting the object in a variety of noises.

However, one limitation of the proposed method is the
high computational cost since the computation of nonlocal
operators needs a long time and large memory storage. )e
other limitation of the method is the difficulty in fitting
multiple separation surfaces accurately. We attempt to solve
the aforementioned problems and develop a fast multiobject
segmentation method in future work.
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