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The exploration of information for aircraft wake vortex enables us to obtain new knowledge of wake turbulence separation
standards. Traditional manual methods cannot work satisfactorily for the identification of great number of wake vortex data
with high accuracy. Fortunately, the LiDAR intensity data can be explained by integrating LiDAR products with the strategies
of computer vision. To overcome the limitation of traditional manual methods, this paper is aimed at developing an automatic
method to identify a given set of wake vortices from various aircrafts. The main innovation works are outlined as follows. (1)
From the wake vortex data that consists of various aircrafts measured by Wind3D 6000 LiDAR, a grayscale dataset of wake
flow is constructed to boost the deep learning model for identifying aircraft wake vortex. (2) Following this, we propose a new
method for the identification of aircraft wake vortex by modifying the VGG16 network, providing binary classifications of
uncertain behavior patterns for wake vortices. To evaluate the proposed identification model, performance evaluation was
conducted on our dataset, where experimental results revealed the values of 0.984, 0.951, 0.959, and 0.955 in terms of accuracy,
precision, recall, and F1-score, respectively.

1. Introduction

Wake vortex refers to a pair of closed vortices around the
aircraft wingtip and is a by-product of an aircraft lift during
the entire flight life cycle [1]. In the Near-Earth phase, the
aircraft wake vortex poses a potential hazard to the trailing
aircraft, which originates an inherent limiting factor in the
airport capacity [2]. Correspondingly, recognition of the air-
craft wake vortices is considered a key issue in the aviation
research area. Likewise, there have been many attempts to
address the above stated issues. Currently, the research on
wake vortex detection for civil aviation passenger aircrafts
mainly includes the microwave, acoustic wave, radar test,
and other methods [3]. Particularly, Doppler LiDAR is one
of the most widely utilized tools for wind field detection
[4]. In one relevant study, Bilbro et al. successfully used
the pulsed CO2 coherent Doppler wind LiDAR for commer-
cial turbulence detection [5]. The French Aerospace Center
first reported the coherent Doppler based on a 1.5μm wave-
length fiber laser Wind LiDAR [6–8]. Additionally, a group

from National Center for Atmospheric Research (USA) used
an airborne continuous-wave coherent Doppler to measure
the wind LiDAR at an altitude of 12 kilometers and detected
the turbulence in front of the aircraft [9].

In fact, the wake vortex data measured by the pulsed
Doppler LiDAR provides lower quality materials caused by
the sensor scanning and environmental parameters, whose
explaining extent requires the intervention of experts in the
manual process. In tradition, the productivity of the manual
methods does not accommodate the accumulated vortices,
and the inappropriate color configuration can lead to poor
performance and information loss [10]. Fortunately, the
intensity data of the wake vortex contains significant amount
of information about the behavior of the ground effect.
Therefore, the behavior of the wake vortex is possible to be
analyzed by models based on computer vision. Following
this, in our previous works, we used k-nearest neighbor
(KNN) [11], support vector machine (SVM) [12], and ran-
dom forest (RF) [13] methods to identify wakes, respectively.
However, these machine learning techniques cannot elicit
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better recognition, limited to the wake shapes changing
acutely when wake vortices are affected by the environment
and ground effects.

In recent years, the development of deep learning made a
series of breakthroughs in the field of computer vision. Par-
ticularly, deep learning has been surfaced as a new method
in LiDAR data research due to the versatility and robustness
of convolutional neural networks (CNNs). By mapping the
LiDAR echo data to grayscale imaging, we propose a theo-
retical method to identify a given set of wake vortices based
on VGG neural network (VGGNet) [14]. Compared with
other learning models, VGGNet has the characteristics of
simplicity and consistency. Experimental results demon-
strated that the task of wake vortex identification was solved
by the proposed scheme with only a small loss. For wake
identification purposes, the main innovation works of this
study were the following:

(i) From the wake vortices that consists of various air-
crafts measured by Wind3D 6000 LiDAR, we con-
structed a grayscale dataset of wake flow to boost
the VGGNet-based model, allowing the transfer
learning and retaining the correlation information
of high-dimensional data when it is applied to solve
the task of wake vortex identification

(ii) To achieve the binary classification, we remove the
original convolution layer and the last two layers of
the fully connected layer section in the original
VGGNet by adding a new convolution layer and an
output layer. Following this, the deeper convolution
layers and smaller convolution kernel embedded in
VGGNet structure makes our VGG-based model
capable of expressing rich feature space and han-
dling the uncertainty of behavior patterns for wake
vortices

The remainder of this paper is organized as follows. Sec-
tion 2 details the data acquisition designing of our wake vor-
tex dataset. The proposed model and its procedure for wake
vortex identification are given in Section 3. Section 4 pre-
sents the results and discussion. The possible future research
is provided in Section 5. The conclusion of this paper is pre-
sented in Section 6.

2. Data Acquisition Designing

2.1. LiDAR Working Principle. Principally, the LiDAR detec-
tion phenomenon starts with an emission of a laser beam
(radiating at some specific wavelength) into the target air-
space. Consequently, the Brownian motion of aerosol parti-
cles in the laser beam along with the thermal motion of
atmospheric molecules produces a Doppler broadening.
The motion speed, direction of motion, and scattering angle
relative to the light source are different. Likewise, the Dopp-
ler frequency shift of the wave signal relative to the emitted
laser light is different. Doppler frequency shift (Δf D) of the
backscattered signal with the laser wavelength (λ0), and the

radial wind velocity (VR) can be measured as follows:

Δf D = 2
λ0

VR: ð1Þ

Figure 1 depicts the visual elaboration of LiDAR working
principle, where laser beam emitted by LiDAR scans the
cross-section of the aircraft while perpendicular to the flight
direction.

2.2. LiDAR Detection Simulation. In this section, we explain
the LiDAR detection simulation routine by taking A320 air-
craft as an example, and the aircraft parameters are listed in
Table 1. We use the Halock-Burnham (HB) model [15] to
generate aircraft wake vortex. The overall simulation studies
the radial velocity field generated by the wake of aircraft
under LiDAR scanning.

Under the influence of A320, the vortex generated by
wind field particles, the flow field, and velocity intensity
are shown in Figure 2(a), whereas Figure 2(b) demonstrates
the simulation results of the relevant velocity field scanning
at the origin point (Oð0, 0Þ) combined with the principle of
LiDAR detection. In Figure 2(b), the grayscale corresponds
to the speed in the gray bar. White represents the radial
velocity of air particles moving away from the LiDAR, and
black represents the radial velocity of air particles
approaching the LiDAR.

2.3. Field Detection. Following the simulations of the wake
vortex detection for various aircraft types in the previous
section and combining the principle of LiDAR, we selected
3 suitable data collection points at Shuangliu Airport
(Figure 3(b)), where the maximum radius of detection goes
beyond 6 km. Correspondingly, due to its excellent perfor-
mance characteristics, including smaller size, lesser weight,
and low power consumption, we used Wind3D 6000 LiDAR
(capable of detecting at large distances) to collect the wake
data. A detailed description of Wind3D 6000 LiDAR is pro-
vided in Table 2(a). Considering the factors, e.g., airport ter-
rain, weather conditions, and runway operation mode, we
set the LiDAR parameters as highlighted in Table 2(b).

For the purpose of preserving the features of wake data
efficiently, the wake data is visualized using a gray cloud
image with linear mapping. Similarly, an example visualiza-
tion of wake evolution data during the flight of A380 aircraft
is presented in Figure 4. Through the analysis of the evolu-
tion diagram, it is clearly visible that under the action of
the two eddies mutual induction and the environmental
wind, the shape of the left and right eddies gradually
increases, while the antisymmetric characteristic structure
begins to weaken. When the wake vortex touches the ground
and is bounced back into the air, the intuitive characteristic
structure of the vortex becomes less obvious, while the wake
vortex is still strong and a risk to the operation of the aircraft
at this time. The changes in the wake vortex structure make
it difficult to cope with the entire wake vortex life cycle using
traditional machine learning methods. Deep learning-based
methods are state-of-the-art in computer vision, while the
weight learning may be more helpful in extracting the latent
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features of these unstructured wake vortices. The VGG16
model used in this paper has the ability to capture the
dynamic morphological changes of the wake by reconstruct-
ing the structure and introducing a large number of unstruc-
tured features learned from the source domain for
ImageNet.

3. VGGNet for Wake Vortex Identification

3.1. CNNs. The CNNs have shown a great impact on the field
of computer vision and other various applications [16–20] in
recent years, and these recent advancements could pave the
way for aircraft wake data identification with LiDAR. In this
work, the CNN algorithm is used to perform the aircraft wake
recognition. For radar data recognition, CNNs offer many
unique advantages [21–23], and thus, many CNN tools are
widely used in LiDAR detection. At present, the AlexNet,
VGGNet, GoogleNet, and deeper ResNet are largely used in
solving complicated intelligence tasks. Theoretically, the dee-
per the neural network, the better the detection and recogni-
tion effect. Particularly, the VGG model [9] serves as a
backbone network and performs well in target detection tasks
with its simple network structure. Owing to these advantages,
we have chosen the VGG16 network for aircraft wake recogni-
tion and make changes to the structure to adapt to the wake
grayscale dataset.

3.2. Network Model Construction. The overall network struc-
ture algorithm is explained in Figure 5; the reconstructed

VGG network basically retains the basic structure of the
original VGG. There are 13 convolutional layers in the net-
work modular structure, and each convolutional layer and
pooling layer are stacked on each other, which makes the
network have a larger receptive field while reducing the
number of network parameters. After the operation of each
convolutional layer, a ReLU activation function is calculated
to change the original single linear change. At the same time,
the four largest pooling layers are interspersed, which solves
the blurring effect of average pooling and improves the rich-
ness of features. In the last 3 fully connected layers, dropout
layers are interspersed to randomly ignore some neurons to
avoid model training overfitting.

In this work, the trained ImageNet model was used as
the pretraining model, and the convolutional layer parame-
ters of the original model were transplanted to the model
by transfer learning [24]. Next, we remove the original con-
volution layer and the last two layers of the fully connected
layer section. We then add a new convolution layer and an
output layer so that the model outputs can achieve binary
classifications instead of the original network’s multiple clas-
sifications. Since the grayscale image is single-channel while
the VGG is three-channel color image input, we change the
first layer of VGG from three-channel input to a single-
channel input and force VGG model to align with the gray-
scale image input style.

Figure 6 shows the aircraft wake vortex identification
process based on the VGG16 model. The identification pro-
cess of aircraft wake vortex based on VGG16 network relies
on obtaining the wind field radial velocity data through
LiDAR detection. In consequence, the collected data is
mapped into grayscale cloud images, and the collected cloud
atlases are preprocessed to generate the training samples. As
the wake vortex sample cloud image is identified, we input
the learned model and perform the identification test, and
then, the results from identification test are passed to output
via VGG16 network.
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Figure 1: LiDAR working principle when it is applied to vortex scanning.

Table 1: A320 specifications.

Parameter Value

MTOW (t) 78.00

Wingspan (m) 35.80

Speed (m/s) 69.96
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Figure 2: The wind field from HB model and the simulated LiDAR detection. (a) Velocity calculated from HB model; (b) radial velocity
calculated by simulation.

(a) (b)

Figure 3: (a) Wind3D 6000; (b) sketch map of field measurement.

Table 2: The specifications of Wind3D 6000 and experimental configuration (RHI).

(a) Qualification specifications

Wavelength (μm) 1.55

Pulse repetition (kHz) 10

Sampling rate (GHz) 1

Data update rate (Hz) 4

Pulse width (ns) 100–400

Pulse energy (μJ) 150

Measurement range (m) 45–6000

Range resolution (m) 15–50

(b) LiDAR parameters

Azimuth angle (°) 112

Scanning rate (°/s) 1

Elevation range (°) 0–10

Elevation angle resolution (°) 0.2± 0.03
Detection radial range (m) 45–885

Longitudinal resolution (m) 15

Distance between points A and B (m) 503

Distance between points B and C (m) 1468
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Figure 4: Visualization of wake evolution (A380).
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Figure 5: The reconstructed VGG network.
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Figure 6: Aircraft wake vortex identification based on VGG16 model.
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4. Results and Discussion

4.1. Experimental Platform. In our experiments, the deep
convolutional neural network is built on the PyTorch
framework and is implemented using Python language
programming. The experimental workstation used in this
work is a Dell T7810 workstation with 16G memory, a
dual-core CPU12 core, and a 3.4G main operating
frequency.

4.2. Data Processing and Network Parameter Setting. This
study considers the flight take-off in Shuangliu International
Airport, where about 500 flights (including A380, A320, and
A330) depart from the airport every day. By converting the
wind field data (detected by the LiDAR as a target) to gray
cloud image, the average wind speed of the background wind
field is plotted in Figure 7.

In practice, a number of collected images are limited. To
increase the diversity of the data while preventing overfitting
in network training, the original image is randomly flipped
up and down in the preprocessing stage of network training
to improve the generalization ability of the model [25]. In
total, 3,530 datasets were collected in our experiment. Pro-
gressively, random sampling without replacement was used
to select 60% of the images as the training set, 20% of the
images as the validation set, and the rest 20% of the images
as the test set. Among these datasets, the sample containing
the vortex is positive (T), while the sample without the vor-
tex is negative (F). The specific data related to image sets are
shown in Table 3.

We use the stochastic gradient descent (SGD) method
[26] to train the neural network, where the SGD algorithm
adjusts the hyperparameter θ every time when the network
weight is updated. The algorithm formula used in the given
approach is as follows:

θ = θ − η ⋅ ∇θ J θ ; x ið Þ ; y ið Þ
� �

: ð2Þ

The initial learning rate of the SGD function is set to
0.01, and the regularization coefficient is set to 0.005. The
cross-entropy, which characterizes the distance between
the actual output (p value) and the expected output proba-
bility (q value), is used as the loss function. The loss function
H ðp, qÞ can be mathematically represented as

H p, qð Þ = −〠
x

p xð Þ log q xð Þ: ð3Þ

4.3. Experimental Results. We use the VGG16 network
model and train it for 500 times in the PyTorch framework.
Figure 6 illustrates the variation in the output value of loss
function and the accuracy with the number of iterations dur-
ing convolutional neural network training.

In Figure 8, when the epoch is 0 to 400, the loss of the
training set shows a downward trend, the accuracy result of
the training set shows an upward trend, and the accuracy
result of the verification set oscillates repeatedly, indicating
that the model obtained at this time is not stable enough and
the model is not optimal. The output value of the network loss

function gradually decreases with the increase in training time.
When the number of training rounds reaches 450, the VGG16
network tends to stabilize and returns an optimal model.

To set comparison experiments, the results of KNN [11],
SVM [12], RF [13], and VGG16-based model were consid-
ered. We first carry out an experiment to compare the per-
formances of these models in terms of confusion matrix
(Figure 9). The analysis of this evaluation metric in
Figure 9 shows that the VGG16-based model performs bet-
ter than the other methods, giving consistently improved
identification accuracy. An additional identification experi-
ment was conducted to assess the introduced model. To
evaluate the performance of our VGG16-based model when
it is applied to the identification of aircraft wake vortex, the
accuracy, recall, precision, and F1-score [27] are considered.
Table 4 shows the performance indicators of VGG16-based
model on the test set, and the experimental results from this
work are compared with the already reported models.

The accuracy of the VGG16 network on the gray cloud
image test set is 98.40%, where the recall and precision are
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Figure 7: Background wind field average wind change.

Table 3: Dataset division.

Classes Training set Validation set Test set

F 1722 580 581

T 397 126 124
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Figure 8: Accuracy and loss curve.
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95.90% and 95.10%, respectively. Moreover, the results pro-
vided in Table 4 clearly demonstrate the efficiency of the
proposed network to distinguish the wake vortex in the gray
cloud image. Significantly, our VGG16-based model
achieves an F1-score of 95.50% which is the new state-of-
the-art result on this dataset. The results highlight the poten-
tial of the developed network when it is implemented for the
wake vortex identification in complex background wind
fields. In other words, the method proposed in this work
can be applied in practice to provide auxiliary decision-
making information to airport control. Figure 10 shows the
identification results for some aircraft wake vortex samples.

Thanks to the depth and migration learning of the net-
work convolutional layer, the VGG16 network itself can
extract various textures and high-level abstract features in
the image. By changing the structure of the first layer of
VGG16, the model adapts to the grayscale mapping of the
aircraft wake. Figure 10 shows that the various shapes of air-
craft wake in different evolution stages can be well
recognized.

5. Limitations and Future Work

5.1. Limitations. Although the VGG-based model presented
in this paper has achieved good results in wake recognition,
there are still some limitations that need to be discussed.

(i) Our dataset was collected at Chengdu Shuangliu
International Airport from August 16, 2018, to
October 10, 2018. In total, more than 270,000 detec-
tions obtained by wind3D 6000 LiDAR and per scan
cycle on average 48 data from field observations
were used for the task of wave vortex recognition.
After data cleaning and preprocessing, about
169,440 complete data were obtained to build our
wake dataset. Although the amount of our wake
dataset is not large compared with benchmark data-
set such as ImageNet, these wake data are represen-
tative and have high consistency with other data. In
fact, the labor-intensive and time-consuming task
of acquiring wake vortex data from the field results
in the difficult data acquisition and anomalous data
generation that often becomes the limiting step.
We believe that large datasets can better explain
the recognition models at work, which can help
understand the results. In further research, by setting
up multiple Doppler LiDAR in the near-ground
flight areas of different runways of Shenzhen Bao’an
Airport, a large amount of accurate wind field data
will be captured for wake vortex data collection
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Figure 9: Confusion matrix for different models.

Table 4: Performance of trained VGG16 classifiers on the test set.

Method Accuracy Precision Recall F1-score

VGG16 0.984 0.951 0.959 0.955

KNN 0.909 0.640 0.714 0.930

SVM 0.917 0.763 0.724 0.743

RF 0.923 0.778 0.752 0.765
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(ii) Our recognition model is formed by modifying the
VGG16 network. The VGG16 network has certain
requirements on the computing power and memory
capacity, which may limit some of its application
scenarios and user requirements. For some special
scenarios which requires more in-depth, maintain-
ing a balance between the efficiency and the compu-
tational cost is crucial for next-generation wake-
recognition networks

5.2. Future Work. Although the task of wake data recognition
can be well solved using deep learning techniques, some pos-
sible directions for further research are the designs of wake
spatiotemporal sequence prediction, wake feature parameter
estimation, etc. It should be noted that the rapid and accurate
estimation of the geometric position of the wake based on the
wake warning can provide the research basis for these further
studies. Therefore, this section discusses a preliminary appli-
cation of deep learning interpretability technology on aircraft
wake vortex core based on the gradient-weighted class activa-
tion mapping (Grad-CAM) [28].

5.2.1. Grad-CAM Implementation. Grad-CAM is a visual
interpretation technology to learn the results of convolu-
tional neural networks. Grad-CAM calculates the activation
heat map of CNN for the input image through the gradient
information. The magnitude on the activation heat map
indicates the degree of influence of image classification
results, on each part of the original image. Furthermore, to
evaluate whether the constructed model has acquired the
key features, the given approach selects images correctly rec-
ognized by the three models from the test set and visualizes
them through Grad-CAM. The interpretation of Grad-CAM
implemented in this work is provided in Figure 11.

As shown in Figure 11, by calculating the gradient of the
pixel in the feature map with respect to the classification
probability, the degree of influence of the feature map on
the classification result can be characterized. The Grad-
CAM algorithm obtains a set of weights by calculating the
average gradient of each feature map with respect to the clas-

sification probability. Finally, when the weight of each fea-
ture map is calculated, the overall Grad-CAM activation
map can be extracted using the weighted summation
method. The mathematical formula is given as follows:

αck =
1
Z
〠
i

〠
j

∂yc

∂Ak
ij

: ð4Þ

First, we compute the gradient of the score for the class c,
yc, where Ak

ij is the pixel value of the coordinate ði, jÞ in the k
th feature map and Z is the total number of feature maps.
Next, we calculate the weight of the kth feature map for the
class c through the inverse gradient αck. Finally, using the
weighted sum method, Grad-CAM reveals the activation
map of the corresponding class c with Ak being the kth fea-
ture map output from the feature extraction part. Since only
the pixels have a positive impact on the classification result,
ReLU is used for the weighted summation result using the
following expression:

LcGrad‐CAM = ReLU 〠
k

αckA
k

 !
: ð5Þ

As the magnitude of the Grad-CAM activation heat map
indicates the degree of influence of the pixel (at the corre-
sponding position in the original image) on the classification
result, the most vital position in the activation map leads to
the position of the wake vortex feature.

5.2.2. Interpretability of Wake Recognition. To verify the pro-
posed detection method, we selected three gray cloud images
with wake vortices. When a vortex is detected, the blue part
indicates the pixel, contributing the least incorrect classifica-
tion. On the contrary, the darker color represents a higher
degree of contribution in the correct classification.

Visual demonstration of Grad-CAM is given in Figure 12,
where Figure 12(b) is the original cloud image and
Figure 12(a) is the Grad-CAM activation heat map. In this

Predicted class (T)
score= 0.99596

Predicted class (F)
score= 0.99999

Predicted class (T)
score= 0.99778

Predicted class (T)
score= 0.98722

Predicted class (F)
Score= 0.99629

Predicted class (T)
Score= 0.91674

Predicted class (F)
Score= 0.98664

Predicted class (T)
Score= 0.92666

Figure 10: Part of experimental results—identification of the wake vortex by VGG16.
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section of the paper, we mainly discuss the interpretability of
wake recognition by the convolutional neural network. The
developed and trained VGG16 model uses wake features to
recognize wake vortices. When recognizing the wake, most
of the pixels that make the greatest contribution in the cloud
image come from the vortex core. These results provide a
new and novel idea to identify the vortex cores in the future.

6. Conclusion

In this work, we have introduced an efficientmethod to identify
the aircraft wake vortex using the VGG16 model. The experi-
mental results reveal excellent model performance to identify
the wake vortex in an atmospheric wind field. In summary,
the proposed method can effectively improve the airport’s con-
trol of aircraft wake interval and determine safe wake interval
for the realization of intelligent air traffic management. Fur-
thermore, we use the Grad-CAM network to discuss the inter-

pretability of wake recognition performed using the VGG16
convolutional neural network. The obtained results show that
whenever VGG16 detects a wake, the vortex core contributes
the most to the network. Consequently, the information on
the contribution of wake vortex in wake detection indicates a
novel direction for our future research on vortex core identifi-
cation. Additionally, the data samples collected in this article
are relatively smaller and are limited to only some locations
of Shuangliu Airport. However, in practice, the humidity and
temperature of various airports are different, which impacts
the evolution of the wake shape. Due to time reasons, the
experiment was not fully explored. To enhance the versatility
of the model presented and complete sufficient comparative
experiments in this work, data from different airports will be
used to train deep learning models in the future. Real-time
wake identification technology will help establish a real-time
wake interval system for air traffic management, thereby,
increasing airport capacity and efficient use of airport airspace.

C

ReLU +

W W W W

Input

FC layer activations

Grad-CAM

Rectified Conv Feature Maps

CNN
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Figure 11: Grad-CAM working principle.

(a) Grad-CAM activation heat map

(b) Original cloud image

Figure 12: Visual explanations based on Grad-CAM.
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