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The rapid spreading of Coronavirus disease 2019 (COVID-19) is a major health risk that the whole world is facing for the last two
years. One of the main causes of the fast spreading of this virus is the direct contact of people with each other. There are many
precautionary measures to reduce the spread of this virus; however, the major one is wearing face masks in public places.
Detection of face masks in public places is a real challenge that needs to be addressed to reduce the risk of spreading the virus.
To address these challenges, an automated system for face mask detection using deep learning (DL) algorithms has been
proposed to control the spreading of this infectious disease effectively. This work applies deep convolution neural network
(DCNN) and MobileNetV2-based transfer learning models for effectual face mask detection. We evaluated the performance of
these two models on two separate datasets, i.e., our developed dataset by considering real-world scenarios having 2500 images
(dataset-1) and the dataset taken from PyImage Search Reader Prajna Bhandary and some random sources (dataset-2). The
experimental results demonstrated that MobileNetV2 achieved 98% and 99% accuracies on dataset-1 and dataset-2,
respectively, whereas DCNN achieved 97% accuracy on both datasets. Based on our findings, it can be concluded that the
MobileNetV2-based transfer learning model would be an alternative to the DCNN model for highly accurate face mask detection.

1. Introduction

Coronavirus (COVID-19) is the latest evolutionary virus
that has taken over the world in just a few months. It is a
type of pneumonia that was initiated at the beginning of
December 2019 near Wuhan City, Hubei Province, China,
while, on 11th March 2020, it was declared as a world pan-
demic by the World Health Organization (WHO) [1].
According to WHO statistics, till 24 February 2021, more
than 111 million people were affected by the virus and about
2.46 million deaths were reported [2]. The most common

symptoms of Coronavirus are fever, dry cough, and tired-
ness among many others. It mainly spreads through close
direct contact of people with respiratory drops of an infected
person generated through coughs, sneezes, or exhales. Since
these droplets are too dense to swing in the air for long dis-
tances and quickly fall on floors or surfaces, therefore, it also
spreads when individuals touch the impaired surfaces with
the virus and touch back to their face (e.g., eyes, nose, and
mouth) [3]. The WHO has declared a state of emergency
all over the world and has developed some emergency pre-
cautionary measures to limit the spread of the virus, i.e.,
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washing hands regularly with soap for the 20 s, using saniti-
zers, keeping distance, regularly disinfecting the surfaces,
using disposable tissues while coughing or sneezing, and
the most importantly wearing of face masks in public places
[4, 5]. Like controlling the community spread of the SARS
virus effectively during the SARS epidemic in the year 2003
[6], wearing community-wide face masks has also been
proven very effective in controlling the widespread of Coro-
navirus [7–11]. Due to effective controlling the respiratory
droplets, the wearing of masks has become a prominent fea-
ture of the COVID-19 response. For instance, the efficiency
of N95 and surgical masks in blocking virus transmission
(through blocking the respiratory droplets) is 91% and
68%, respectively [12, 13]. Wearing face masks can effec-
tively interrupt airborne viruses and particles so that certain
contaminants cannot reach the respiratory system of
another person [14].

The worldwide scientific cooperation has improved
dramatically due to the outbreak of Coronavirus and is
searching for new tools and technologies to fight this
virus. One such technology that can be used is artificial
intelligence (AI). It can track the spread of the virus
quickly, can recognize high-risk patients, and can poten-
tially control the pandemic in real-time [3]. It is also ben-
eficial in early predicting infection by the analysis of the
previous patient’s data, which in turn can reduce the mor-
tality risks because of the virus.

As already discussed that wearing face masks is the most
effective protective measure against Coronavirus transmis-
sion, however, ensuring the wearing of face masks in public
places is a difficult task for the government and the relevant
authorities. Luckily, AI as a tool (by using machine learning
(ML) or deep learning (DL) algorithms) can help ensure the
wearing of face masks in public places just by detecting face
masks in real-time with the help of an already installed cam-
era network (surveillance camera network or any other). It is
an easy method to manage the people in the society, to
maintain social distancing, and to make sure that everyone
has worn a face mask.

Because of the importance of face mask detection in
public places, here in this study, we have demonstrated the
use of two popular DL-based architectures, i.e., DCNN and
advanced CNN based on “transfer learning,” i.e., Mobile-
NetV2 for effective face mask detection. To evaluate the per-
formance of the employed DL architectures, two different
datasets have been used, i.e., (1) our own developed face
mask detection dataset having 2500 images (dataset-1) and
(2) the dataset taken from PyImage Search Reader Prajna
Bhandary and some random sources (dataset-2). Finally,
the results achieved by the algorithms on both datasets have
been compared. Moreover, dataset-1 was collected from
Karakoram International University, Pakistan, keeping in
view the limitations of datasets under different real-world
scenarios. In the future, this technology can be employed
in real-time applications that require face mask detection
for safety reasons due to the COVID-19 pandemic. This pro-
ject can be integrated with embedded systems for applica-
tions in offices, schools, airports, and public places to
ensure public safety guidelines.

2. Related Work

Loey et al. [15] introduced a face mask detection model that
works on deep transfer learning and classical ML classifiers
(classical ML classifiers refer to the ML algorithms that work
on handcrafted extracted and engineered features from the
input data). They used the Residual Neural Network (ResNet
50) algorithm for feature extraction. The extracted features
were then used to train three classical ML algorithms, i.e.,
Support Vector Machine (SVM), Decision Tree (DT), and
Ensemble Learning (EL). Three different face mask datasets
have been used in the study for the investigation, i.e., (i)
Real-World Masked Face Dataset (RMFD), (ii) Simulated
Masked Face Dataset (SMFD), and (iii) Labeled Faces in
the Wild (LFW) dataset. Finally, the trained classifiers were
tested for possible face mask detection. During the testing
experiment, the SVM classifier achieved the highest detec-
tion accuracies as compared to DT and EL classifiers. In
RMFD and SMFD, it achieved 99:64% and 99:49% detection
accuracies, respectively, while, in the case of LFW, it
achieved 100% detection accuracy.

Militante and Dionisio [16] developed an automatic sys-
tem to detect whether a person wears a mask or not and if
the person does not wear a mask the system generates an
alarm. To develop their system, the authors used the VGG-
16 architecture of CNN. Their system achieved overall 96%
detection accuracy. In the future, the authors decide to make
a system that will not only detect whether a person is wear-
ing a mask or not but will also detect a physical distance
between each individual and will sound an alert if the phys-
ical distancing is not followed properly.

Rahman et al. [17] built a framework that gathers data
from the IoT (Internet of Things) sensors of the smart city
network (where all the public places are monitored with
Closed-Circuit Television (CCTV) cameras) and detects
whether an individual wears a mask or not. Real-time video
footage from CCTV cameras of the smart city is collected for
extracting facial images from it. The extracted facial images
of people with and without masks are then used to train
CNN architecture. Finally, the trained CNN architecture is
used to distinguish people with and without facial masks.
One advantage of using the CCTV network of the smart city
is that when the system detects people without wearing
masks, the information is sent through the city network to
the concerned authority of the smart city to take appropriate
action. The overall dataset used in this work is 1539 images
including 858 images with masks and 681 images without
masks. 80% of data was used for training, and the rest of
the data was used for testing. The system achieved overall
98.7% accuracy on previously unseen data for distinguishing
people with and without masks.

Table 1: Dataset description.

Datasets With mask Without mask Total images

Dataset-1 1250 1250 2500

Dataset-2 2220 2216 4436
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Sanjaya and Rakhmawan [18] introduced a model using
a DL algorithm to detect whether a person wears a mask or
not in public areas. To do this, they used the MobileNetV2
image classification method, which is a pretrained method.
In this experiment, the authors used two datasets, i.e., (1)
RMFD, taken from Kaggle, and (2) dataset collected from
25 cities of Indonesia using CCTV cameras, traffic lamp
cameras, and shop cameras. Both the datasets were used to
train their model. The trained model achieved 96% and
85% detection accuracies on the test sets of these two data-
sets, respectively.

Sandler et al. [19] present a method for automatically
detecting whether someone wears a mask or not. They
designed a transfer learning-based method with Mobile-
NetV2 for detecting masks in images and also in video
streaming. Their system achieved 98% detection accuracy
at a dataset of 4095 images. According to the authors, their
model can work on devices with minimal computational
capability and can process on real-time image data.

Oumina et al. [20] developed a system by combining
pretrained DL models such as Xception, MobileNetV2, and
VGG19 for the extraction of features from the input images.
After extracting features, they used different ML classifiers
such as SVM and k-nearest neighbor (k-NN) for the classifi-
cation of extracted features of images. They used a total of
1376 images of two classes (i.e., with mask and without
mask). The experimental results show that the combination
of MobileNetV2 with SVM achieved the highest classifica-
tion accuracy of 97.11%.

Related to the above-mentioned literature, here in this
research, we have used two DL architectures for face mask
detection, i.e., DCNN and transfer learning-based Mobile-
NetV2. The performance of these architectures is evaluated
on its own collected dataset as well as on the dataset col-
lected from PyImage Search Reader Prajna Bhandary and
some random sources. The purpose of evaluating the perfor-

mance of these two architectures on two different datasets is
to compare their performance and to know how better the
models perform on our own collected dataset.

3. Materials and Methods

3.1. Dataset. This research performed its experiments on two
different datasets:

The first is our own collected dataset, which was col-
lected at Karakorum International University, Pakistan, con-
sidering the real-world scenarios. The images were taken
from each individual with and without wearing face masks.
To increase the size of the dataset (for achieving better
model performance), some augmentation techniques (like
rotating, zooming, and blurring) have been performed on
the collected images. The final version of our dataset
included 2500 images labeled as with mask and without
mask. The second dataset used in our experiments was taken
from PyImage Search Reader developed by Mikolaj Wit-
kowski and Prajna Bhandary (available at Kaggle) and some
from random sources. This dataset contains 4436 images
belonging to two classes (i.e., with mask and without mask).
Mikolaj and Prajna created this dataset by taking normal
images of faces and then by creating a custom computer
vision python script to add a face mask to them, thus creat-
ing an artificial dataset that is used as a with mask. Details of
the images included in both datasets have been provided in
Table 1. Furthermore, Figures 1 and 2 show some pictures
taken from our own collected dataset and the dataset devel-
oped by Prajna Bhandary.

3.2. Methodology of the Proposed Study. In this study, we are
considering two DL architectures, i.e., DCNN and transfer
learning-based MobileNetV2. To evaluate the performance
of these two models, two different datasets have been used.
For convenience, these datasets were named dataset-1 and

(a) With masks

(b) Without masks

Figure 1: Some images with and without face masks taken from our own collected dataset (dataset-1).
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dataset-2, respectively. Dataset-1 contains 2500 and dataset-
2 contains 4000 with and without mask images (refer to
Figures 1 and 2 for a few samples of images taken from
dataset-1 and dataset-2), respectively. Each dataset is split
into two groups, one for training the models, while, the other
for testing the models. In the case of training MobileNetV2
architecture, 80% data of each dataset was used, whereas,
the remaining 20% data was used for testing the model. In
the case of DCNN, 90% data of each dataset was used for
training, and the remaining 10% was used for testing the
model. Data augmentation technique was used to increase
the amount of data by making slight changes like resizing,
zooming, and rotating the images. This technique helps to
reduce the problem of overfitting during training the model.
We resized images to 100 ∗ 100, rotated images to 40
degrees, and zoomed images using a 0:2 zoom-in factor. A
schematic diagram of DCNN and MobileNetV2 for face
mask detection has been presented in Figure 3.

3.2.1. Deep Convolutional Neural Network (DCNN). DCNN
is not just a deep neural network with many hidden layers,
but actually, it is a deep network that mimics the way the
human brain’s visual cortex processes and recognizes images
[21]. A given input image is processed by assigning relevant
weights (learnable parameters) to various parts of the image
and then making distinctions between the various character-
istics. It is substantially less preprocessing and time-
consuming than other classification methods when com-
pared to DCNN. While traditional techniques necessitate
the creation of filters by manually, DCNN can learn to create
these filters with sufficient training. The DCNN architecture
that we used in our research is depicted in Figure 4. These
five layers include convolutional layers, average-pooling
layers, and one fully connected layer. Convolutional layers
and avg-pooling layers are included in this network. For
every convolution layer, the layer is convolved with their
respective kernel size and after every convolution; Rectified

Model training
via DCNN and
mobile net V2

Classification
result

Image
augmentation 

Model evaluation
and validation 

Re-train till better accuracy

Input image
Output image

Data set

Figure 3: Schematic representation of the proposed work.

(a) With masks

(b) Without masks

Figure 2: Some images with and without face masks taken from Prajna Bhandary dataset (dataset-2).
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Linear Unit (ReLU) activation function is added. ReLU is
used for filtering information that propagates forward
through the network. After every convolution, the avg-
pooling operation takes place. The fully connected layer also
known as the classification layer includes the flattening pro-
cess. Flattening converts the matrix found after the last avg-
pooling into a single column matrix for inputting it to the
final output layer. At the last output layer, a “softmax” acti-
vation function is used that predicts a multinomial probabil-
ity distribution.

3.2.2. MobileNetV2. MobileNetV2 is a Google-based devel-
oped architecture that is pertained on 1.4 million images of
1000 classes [19]. It is an advanced DCNN architecture that
performs well on mobile devices. In MobileNetV2, we do not
have to train the model from scratch, we only change the last
output layers according to our domain. The architecture of
MobileNetV2 is based on its previous version (i.e., Mobile-
netV1). To preserve the information, it introduced a new
structure named “inverted residual.” The problem of infor-
mation destroying in convolution blocks by a nonlinear
layer applies the technique of Depthwise Separable Convolu-
tion (DSC) by using a linear bottleneck layer [22]. Figure 5
shows the basic architecture of MobileNetV2.

3.3. Evaluation Metrics. The performance of the classifica-
tion models on testing data was evaluated using the accuracy
(Equation (1)), precision (Equation (2)), recall (Equation
(3)), specificity (Equation (4)), F1-score (Equation (5)),
and kappa coefficient (Equation (6)). The F1-score is the
harmonic mean of recall and precision. Recall, precision,
and accuracy are computed using the True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative
(FN), which can be calculated using the confusion metric.
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Figure 5: MobileNetV2 architecture. Source: Sandler et al. [19].
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Accuracy =
TP + TN

TP + TN + FP + FN
, ð1Þ

Precision =
TP

TP + FP
, ð2Þ

Recall =
TP

TP + FN
, ð3Þ

Secificity =
TN

TN + FP
, ð4Þ

F1‐score = 2 ∗ Precision ∗ Recall
Precision + Recall

, ð5Þ

Kappa coefficient =
total accuracy − random accuracyð Þ

1 − random accuracyð Þ :

ð6Þ

Kappa coefficient is the measure of agreement between
predicted and true values in testing datasets. The value of
kappa can be 0 to 1. If the value of kappa is 0, there is no
agreement between the predicted and actual image, and if
the value of kappa is 1, then the predicted and actual image
are identical. Thus, the higher the value of kappa, the more
accurate the classification. Moreover, the random accuracy
for binary classification can be calculated as
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Figure 9: Training/validation loss graph of dataset-2 using
MobileNetV2.
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Figure 8: Training/validation loss graph of dataset-1 using
MobileNetV2.
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Figure 7: Training/validation accuracy graph of dataset-2 using the
MobileNetV2.
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Figure 6: Training/validation accuracy graph of dataset-1 using the
MobileNetV2.
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Random accuracy =
1

total no: of classes
: ð7Þ

4. Experimental Results and Analysis

On two separate datasets of images, extensive experiments
were conducted to evaluate the performance and effective-
ness of the suggested models. On dataset-1, Figure 6 shows
the MobileNetV2 model’s training and validation curves. It
shows that over 20 epochs, the training and validation
accuracy achieved by MobileNetV2 are 99% and 98%,
respectively. Similarly, Figure 7 provides the training and
validation plots of the MobileNetV2 model on dataset-2.
Figure 7 indicates that over 20 epochs, the training and val-
idation accuracy achieved by MobileNetV2 are 99% and
99%, respectively. Hence, the MobileNetV2 model achieved

equal training accuracy on both datasets, however, higher
validation accuracy on dataset-2 as compared to dataset-1.
Figure 8 presents the training and validation loss curves
of the MobileNetV2 model on dataset-1 which shows that
over 20 epochs, the training and validation losses are 5%.
Similarly, Figure 9 provides the training and validation loss
curves of the MobileNetV2 model on dataset-2. It shows
that over 20 epochs, the training and validation losses
acquired by MobileNetV2 are 5% and 4%, respectively.
Hence, the MobileNetV2 model achieved comparatively
equal training losses on both the datasets, whereas higher
validation losses on dataset-1 as compared to dataset-2.

Figures 8 and 9 further specify that there is less gap in
training and validation loss curves, which indicates that the
employed model is well converged on the datasets and there
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Figure 13: Training/validation loss graph of dataset-2 using
DCNN.
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Figure 12: Training/validation loss graph of dataset-1 using
DCNN.
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Figure 11: Training/validation loss graph of dataset-2 using
DCNN.
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was no problem of overfitting occurring during training and
validation. Figures 10 and 11 show the training and valida-
tion plots of the DCNN model on dataset-1 and dataset-2,

respectively. Figures 10 and 11 show that during 50 epochs,
the training and validation accuracy achieved by the DCNN
model on both the datasets are 98% and 97%, respectively.

Training accuracy Validation accuracy Training accuracy ValidationS accuracy
Mobile netV2 CNN

Dataset1 0.99 0.98 0.98 0.97
Dataset2 0.99 0.99 0.98 0.97

A
cc

ur
ac

y (
%

)

Figure 14: Training/validation accuracy graph of dataset-1 and dataset-2 using DCNN and MobilNetV2.

Table 2: The performance of MobileNetV2 for the test datasets.

Datasets Precision Recall Specificity F1-score Accuracy Error rate Kappa coefficient

Dataset-1 0.98 0.98 0.98 0.98 0.98 0.014 0.96

Dataset-2 0.99 0.99 0.99 0.99 0.99 0.017 0.98

Table 3: The performance of DCNN for the test datasets.

Datasets Precision Recall Specificity F1-score Accuracy Error rate Kappa coefficient

Dataset-1 0.96 0.98 0.95 0.97 0.97 0.02 0.94

Dataset-2 0.96 0.98 0.95 0.97 0.97 0.02 0.94

(a) Without masks

(b) With masks

Figure 15: Results of the test images with a face mask and without a face mask.
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Hence, the DCNN model performed equally well on dataset-
1 and dataset-2.

Figures 12 and 13 describe the training and validation
loss curves of the DCNN model achieved during experi-
ments, plotted throughout 50 epochs using dataset-1 and
dataset-2, respectively. Both the graphs indicate that in both
the datasets, the DCNN model achieved the minimum and
equal training and validation losses, i.e., 0:5% and 1%,
respectively. Figures 12 and 13 further specify that there is
less gap in training and validation loss curves, which indi-
cates that the DCNN model was well converged during
training and validation and no problem of overfitting
occurred during the training and validation process. By
comparing the training and validation accuracy as well as
training and validation losses of MobileNetV2 and DCNN
models, it can be concluded that the MobileNetV2 model
achieved higher accuracy and minimum losses over DCNN
in both datasets.

Figure 14 provides the overall comparative summary of
the training and validation accuracy achieved by Mobile-
NetV2 and DCNN models. It indicates that for both data-
sets, the MobileNetV2 model achieved higher accuracy as
compared to the DCNN model. Furthermore, in the case
of dataset-2, the accuracy achieved by the MobileNetV2
model are better as compared to dataset-1.

Tables 2 and 3 provide the classification reports of Mobi-
leNetV2 and DCNN on dataset-1 and dataset-2, respectively.
Both models achieved higher evaluation metric scores of
accuracy, precision, recall, F1-score, specificity, error rate,
and kappa coefficient on both datasets. These higher values
indicate that both models performed well on both datasets.
However, from the overall experimental results, it can be
concluded that even with the less amount of data, the Mobi-
leNetV2 model can provide better accuracies than DCNN. It
is because MobileNetV2 models are already trained on a
large amount of data and we do not need to train them from
the scratch. We only have to change the last two layers of the
MobileNetV2 model according to our problem. Moreover,
results further show that in the case of our collected dataset
(dataset-1), both the models performed well. It is because we
collected our dataset with real face masks and without face
masks and did not create a dataset with masks artificially.
However, in the case of dataset-2, the dataset was generated
with artificial masks. Furthermore, our models are succeeded
in detecting the real-time images with a mask and without a
mask with the accuracy displayed on the images as shown in
Figure 15.

5. Conclusion

COVID-19 is one of the fast-spreading viruses that have
been threatening human health, world trade, and the econ-
omy. Its high mutation and spreading rate made the situa-
tion difficult to be under control. Taking precautionary
measures may reduce the spreading of this virus, and one
of the most important measures is to wear a face mask in
public places. Therefore, in this study, a deep learning-
based approach has been applied to detect the face mask
automatically. The learning models, i.e., Deep Convolutional

Neural Network (DCNN) and MobileNetV2 transferred
learning-based model, have been evaluated on two different
datasets. The datasets consist of our own collected dataset
containing 2500 images of individuals with and without
masks (dataset-1) and dataset-2 from PyImage Search
Reader Prajna Bhandary (dataset-2) and some random
sources. The comparative results show that MobileNetV2
achieved 98% and 99% classification accuracy on dataset-1
and dataset-2, respectively, whereas Deep Convolutional
Neural Network achieved 97% accuracy on both datasets.
The main contribution of the study is the development of
our own face mask detection dataset with 2500 images,
which were collected from Karakoram International Univer-
sity, Pakistan, keeping in view the limitations of datasets
under different real-world scenarios. In the future, we will
increase the size of the dataset by embedding real-time video
streams into it to detect face masks in real-time.
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