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The sharp increasing volume of encrypted traffic generated by malware brings a huge challenge to traditional payload-based
malicious traffic detection methods. Solutions that based on machine learning and deep learning are becoming mainstream.
However, the machine learning-based methods are limited by manual-design features, which have the problem of highly
correlated multicollinearity. And both methods rely heavily on a large number of labeled samples, which needs lots of human
effort. In this paper, we apply the active learning to the malicious encrypted traffic detection problem and propose AS-DMF
framework. AS-DMF is a lightweight detection framework that combine the uncertainty sampling and density-based query
strategy to query the informative and representative instances from the sample set and then train them in a detection (DMF)
model. Moreover, we propose a feature selection mechanism which can select the meaningful features of traffic efficiently. Our
comprehensive experiments on the real-word dataset indicate that AS-DMF achieves lightweighting at both feature and data
levels with a high performance of 0.9460 mAcc.

1. Introduction

With the increasing awareness of user privacy protection,
many encryption protocols are widely used by applications,
especially TLS (Transport Layer Security) [1]. Unfortu-
nately, encryption protocols also give malware the opportu-
nity to hide malicious behavior. This is because the contents
of communication are not available, making malicious
encrypted traffic hard to detect by network intrusion detec-
tion system. As a result, malware traffic using TLS encryp-
tion has gradually increased. According to the report of
Sophos News, in 2020, 23% of malware communicating with
remote systems over the Internet used TLS encryption, while
this number is closer to 46% today [2]. Although many solu-
tions to detect malicious encrypted traffic have been pro-
posed, they are still difficult to deploy in real-word
environments [3]. On the one hand, solutions that decrypt
TLS traffic weaken user privacy and are limited to use [4].

On the other hand, the complexity of the detection system
increases the difficulty of deployment [5]. Therefore, light-
weight TLS malicious encrypted traffic detection becomes a
focus issue and attracts the widespread attention of indus-
tries and academia.

Combining machine learning algorithms and statistical
features extracted from traffic flows becomes the main-
stream method for malicious encrypted traffic detection
[6]. The general procedures include feature engineering
and model training [7]. Researchers are able to obtain not
only statistical characteristics from the traffic level, but
plaintext information from TLS handshake packets as fea-
tures to train the model. However, the manually designed
features have the problems that their own changes have little
influence on the target and multicollinearity among them.
And the detection models are also needed to be carefully
selected to adapt the features. Obviously, the expressiveness
of this kind method depends on model and feature selection,
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and the result of each factor will directly affect the final
detection performance. Due to the drawbacks of machine
learning based solutions above, deep learning-based solu-
tions are designed [8]. Researchers have mainly used the
autoencoder, CNN, and LSTM networks to learn patterns
from traffic data by extracting observable information from
the TLS handshake [9, 10]. However, the features automati-
cally extracted by deep learning network are poorly inter-
pretable, and those methods rely excessively on a large
amount of labeled data.

A common limitation of machine learning and deep
learning applications is the need for a large number of accu-
rately labeled samples to provide the model for training.
However, it is expensive to obtain labeled encrypted traffic
in real networks. An alternative idea to solve this problem
is to introduce a pool-based active learning approach. The
objective of active learning is to train an accurate prediction
model with minimum cost by labeling the most informative
and representative instances. Initially, the training set with
labels is small. The learner consults the oracle to obtain the
class labels of the query instances, which are added to the
training set to update the model. This process is repeated
until the model achieves the preset indicator values. The
fundamental question is how active learners pick the most
critical instances to label. The uncertainty sampling query
strategy often builds a model using available labels with the
least certainty to predict others [11]. However, some
instances at the classification boundary may be outliers and
not suitable as training samples, although with high uncer-
tainty. Moreover, the strategy does not consider the distribu-
tion of the original data when querying the samples. We
believe that informative and representative instances are
not only samples with strong uncertainty, but instances with
dense distribution (high information density) in the sample
domain space. In that case, samples with higher density in
the spatial region should be taken into account when select-
ing instances.

In this paper, we propose an AS-DMF detection frame-
work based on active learning for malicious encrypted traffic
detection. The major structure of AS-DMF framework
include a feature selection mechanism to select the impor-
tant features, a query strategy combining uncertainty sam-
pling and density-based approach to query the most
informative and representative instances for oracle to label,
and a detection model called double layer mutimodel fusion
(DMF) classifier to train the labeled instances. The features
for detection are selected from initial feature set by feature
selection mechanism and are trained by the DMF classifier.
The principle of this mechanism is to use analysis of vari-
ance (ANOVA) method and mutual information (MI) to
select features that are informative and less relevant. The
detection DMF classifier is build based on stacking strategy
to reconstruct and train the selected features. The contribu-
tions of this paper are summarized as follows.

(1) We propose a lightweight AS-DMF framework for
malicious encrypted traffic detection. AS-DMF
framework jointly uses a few number of instances
with a small feature set to identify flows and consists

of a feature selection mechanism, a DMF classifier,
and a query strategy

(2) The feature selection mechanism is used to select the
important features. By combining ANOVA and MI,
the selected features can become more discrimina-
tive, which improves the detection performance

(3) Our DMF classifier with feature selection mecha-
nism achieves excellent results on real-word network
traffic for malicious encrypted traffic detection, and
AS-DMF framework achieves lightweighting at both
the data and feature level. The source code can be
found at the link: https://github.com/Timeless-zfqi/
AS-DMF-framework

The remainder of this article is organized as follows.
Section 2 reviews the related work on TLS malicious traf-

fic detection method and active learning query strategy. Sec-
tion 3 describes the proposed DMF classifier and AS-DMF
framework. In Section 4, we conduct experiments on real-
world datasets to evaluate the performance of our method
and compare with advanced methods. Section 5 concludes
this article and discusses future directions.

2. Related Work

2.1. Feature Engineering and Malicious Encrypted Traffic
Classification. The TLS protocol can provide a series of
observable data during the handshake process, as shown in
Figure 1. Therefore, many machine learning approaches
based on the features of handshake packets have been pro-
posed to predict TLS encrypted traffic, aiming to distinguish
benign encrypted traffic from malicious encrypted traffic
[12]. Cisco proposed a “data omnia” machine learning
approach to correlated TLS handshake, DNS, and HTTP
header information to achieve 99.99% accuracy using L1
logistic regression [13]. Pai et al. implemented a decision
tree algorithm for traffic detection using the Client Hello fea-
ture in the TLS handshake record [14]. Anderson and
McGrew analyzed two causes of inaccurate ground truth
and a highly nonstationary data distribution that affect the
application of machine learning models [3]. Their works
show us the decisive role of feature engineering for machine
learning. Therefore, many classification methods based on
multifeature fusion are explored. Yang et al. proposed a
stacking-based ensemble learning method MGEL for multi-
granularity features to identify encrypted malicious traffic
[15]. The X.509 certificates are complex and diverse [16].
Torroledo et al. proposed a neural network model in combi-
nation with LSTM networks to verify that certificates are sig-
nificantly differentiated [10]. Yu et al. proposed a method
that combines natural language processing and machine
learning to learn the laws of data using TF-IDF [17]. How-
ever, these methods are only considering feature diversity,
but the problem of feature correlation is not effectively
addressed.

Deep learning methods have shown their effectiveness in
many applications including computer vision, human activ-
ity recognition, and network traffic classification [18]. Yu
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et al. used an autoencoder network to reconstruct features
from TLS traffic [17]. Zhang et al. converted traffic into 2D
image and combined CNN and LSTM network to create a
new neural network [19]. The model achieves an average
accuracy of 99.5% on TLS encrypted traffic classification.
Chen et al. proposed a tree-shaped deep neural network
(TSDNN) to detect malicious traffic when faced with the
problem of gradient dilution due to unbalanced data [20].
However, they all use an end-to-end model to classify behav-
iors, but do not consider the complexity of the practical
application.

2.2. Active Learning. The goal of active learning is to reduce
the cost of labeled data [21]. The active learner can query
and train a small number of samples to enable the model
to achieve high performance [22]. In order to obtain a light-
weight training set, the active learner needs to sample the
initial sample set. Sampling strategies can be divided into
exploitative (uncertainty-based), explorative (density-based),
or a combination of both [23]. And most commonly used to
query the least uncertain data points is the strategy based on
exploitative. Despite the success of these methods, the prob-
lem of not being able to take the sample distribution into
account also exists.

In contrast, the underlying data distribution of the unla-
beled data can be considered by exploration-driven strategy.
To reduce the query number and obtain better performance,
it is necessary to dynamically select instances by considering
representativeness and informativeness. Zha et al. investi-
gated active learning-based anomaly detection and proposed
a novel framework called Active Anomaly Detection with
MetaPolicy (Meta-AAD) [24]. This study provides strong

support for us to introduce active learning into malicious
encrypted traffic detection. Wang et al. proposed an active
learning method based on density clustering (ALEC) that
takes the structure of the data into account and selects the
most representative instances [25]. And then, Shi et al. pro-
posed an active density peak (ADP) clustering algorithm
that considers both representativeness and informativeness,
while informative instances are queried to reduce the uncer-
tainty of clustering results [26]. These algorithms are based
on clustering to ensure the minimum distance between two
samples. Konyushkova et al. suggested a novel data-driven
approach (LAL) to active learning. This approach formulates
the query selection procedure as a regression and works well
on real data [27]. Huang et al. addressed the limitation of ad
hoc in finding unlabeled instances by developing a princi-
pled approach, termed QUIRE, based on the min-max view
of active learning [28]. This approach provides a systematic
way to measure and combine the informativeness and repre-
sentativeness of an unlabeled instance. However, these
methods ignore the information of global uncertainty and
sensitive to outliers.

In this paper, we combine uncertainty sampling and
density-based strategies to query instances in the sample
set. The new query strategy uses the Euclidean distance as
a density calculation metric. The benefit of this design is to
reduce the impact generated by outliers while obtaining the
most representative and informative instances.

3. Model Framework and Methods

In this section, we first give the categories and contents of
the defined features. Then, the feature selection mechanism,
DMF classifier, and AS-DMF framework are introduced
briefly.

3.1. Feature Selection and Numericalization. To distinguish
malicious traffic from benign traffic encrypted by TLS, we
extract the following 3 class features from captured packets.
The open source tool Zeek is used to complete feature
extraction. These features are stored in flowmeter.log, con-
n.log, ssl.log, and X509.log in log format. The unique identi-
fiers (uid) for each flow are assigned by Zeek, which are used
to track the relevant activity of the flow in each log.

(1) Flow metadata and connection features. The first
class of features is the connection status and flow
metadata stored in flowmeter.log and conn.log. The
connection state is associated with the TCP (Trans-
mission Control Protocol) stateful. And the flow
metadata include number of packets, the proportion
of backward and forward packets number, the num-
ber of bytes of the headers, payload size, the total
number of FIN/SYN/PSH/ACK/URG/CWR/ECE
flags which have been seen in a TCP flow, the inter-
arrival time between two consecutive packets, the
number of payload bytes transmitted in a bulk trans-
mission, and the duration of the flow. The first class
of features reflects the statistical behavior of the

TLS Client TLS Server

Server hello
Server hello

Server certificate
Server key exchange
Certificate request
Server hello done

Cipher

Server certificate
Encrypted handshake
Change cipher spec

finished

Certificate & key & cipher
Client certificate

Client key exchange
Certificate verify

Change cipher spec
finished

Client hello
Version

Cipher suites
Extension

Client hello done

Figure 1: TLS handshake process. Graphical representation of a
simplified TLS handshake and the features used in this paper are
taken from the Client Hello, Server Hello, Certificate, and Cipher
messages.
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traffic and contains a total of 89 dimensions of
numerical type data

(2) Unencrypted TLS handshake features. The second
class of features is the TLS handshake logs stored
in ssl.log. These features include the TLS protocol
version, cipher suite, TLS extension, and connection
status extracted from the Client Hello and Server
Hello. In addition, the length of the public key of
the cipher group extracted from the client key
exchange massage is included. A bag-of-words model
is used to encode the cipher suite and transform the
words into a frequency-of-words matrix. And the
rest of features are mapped to a number field and
normalized to a uniform scale

(3) X.509 certificate features. The third class of features is
the TLS certificate information stored in X509.log,
including the certificate subject, issuer, and certificate
chain. The traditional one-hot encoding approach for
certificate features leads to dimensional catastrophes.
The certificate features that we extract have a common
paradigm. For example, the subject field is fixed as f
CN = ∗,OU = ∗,O = ∗,L = ∗,ST = ∗,C = ∗g. There-
fore, we encode the certificate features using the TF-
IDF method. In the paradigm, the words “CN,” “OU,”
“O,” “L,” “ST,” and “C” are inherent and do not change
with the sample. In our experiments, we use these
words to combine features in the encoding phase and
remove them after encoding

3.2. Feature Selection Mechanism. For machine learning, the
number and quality of features directly affect the efficiency of
model learning. Therefore, it is essential to reduce the feature
dimension. The main weak point of the initial feature set is
the high correlation and multicollinearity problem, which can-
not improve the detection model performance. We select the
extracted features based on 3 main aspects: (1) the volatility of
the features themselves, (2) the relevance of the features to the
target, and (3) the correlation between the features. ANOVA
is an efficient feature selection method, which drop the useless
features. And the MI method traces the informative features
with maximal information coefficient (MIC).

According to the above principle, the feature selection
mechanism can be described as the following 3 steps. First,
observe the distribution of individual features from the sam-
ple set. Features with highly concentrated, that is, small vol-
atility in spatial distribution, should be removed, due to it is
difficult to classify samples according to these features.

Second, the variance of each feature is calculated by
ANOVA, as shown in

σ2 =
∑ X − μð Þ2

N
, ð1Þ

where σ2 represents the variance, μ is the mean of a feature,
and the number of samples is N . A variance threshold is set
to measure the correlation of the features with the target by
analyzing the effect of perturbations from different sources

on the results. And a feature with a low variance value below
the threshold should be dropped from the feature set.

Third, features with low correlation within the feature
set are selected. The MI can map high-dimensional features
to the optimal vector comparison space, and the projected
samples have maximum differentiability in the subspace.
The MI is defined as follows:

I X ; Yð Þ = 〠
x∈X

〠
y∈Y

p x, yð Þ log2
p x, yð Þ
p xð Þp yð Þ =

ð
p x, yð Þ log2

p x, yð Þ
p xð Þp yð Þ dxdy,

ð2Þ

where IðX ; YÞ represents the correlation between X and Y .
Moreover, the MIC is able to handle both linear and nonlin-
ear features and treating each feature equally.

MIC x ; yð Þ =max
x⋅y<B

I x ; yð Þ
log2 min x, yð Þ : ð3Þ

Therefore, the features with top MIC values should be
selected to form a lightly feature set.

3.3. DMF Model Structure. To identify malicious encrypted
traffic in the network, as shown in Figure 2, we design a
DMF classifier. Machine learning models differ in their ability
to learn from linear and nonlinear data. To achieve a better
detection performance, DMF combines three heterogeneous
models. Specifically, random forest classifier, XGBoost classi-
fier, and Gaussian Naive Bayes classifier are used to learn the
patterns in the dataset. The three classifiers are combined with
a logistic regression using the stacking strategy. The working
mechanism of the DMF classifier is as follows.

First, the three classifiers, as the primary learners of the
DMF classifier, are used to learn and reconstruct the features
in Section 3.1. And we train primary learners using a 5-fold
cross-validation approach. The predictions of the 5-fold cross-
validations performed on training set D are reconstructed into
new 3-dimensional features, while the corresponding labels of
the training samples remain unchanged. And then, a new train-
ing set D′ (level 1) is formed by the new features with the orig-
inal labels. Finally, a logistic regression model (level 2), as a
secondary learner, is used to train D′ so that the DMF classifier
outputs the predicted labels of the samples. It is worth to notice
that we do not average the probability values generated by each
category, as this would be unfair to the primary learner with
high reliability. We use the probability values of the categories
as input to the secondary learner, and we use logistic regression
to train the training set D′ to dynamically adjust the weights of
the primary learners.

3.4. Active Learning-Based AS-DMF Framework. AS-DMF
framework compresses the raw encrypted traffic and learn
instances that can represent the main points of the raw
encrypted traffic under the query strategy. In order to
achieve this recurrence, the query strategy of AS-DMF needs
to search the most important instances as the informative-
ness and representativeness samples of the raw encrypted
traffic.
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(1) AS-DMF framework. The architecture of AS-DMF
framework is shown in Figure 3. Feature selection
mechanism, DMF classifier, pool-based active learning
approach, and query strategy are four elements of AS-
DMF framework. First, the TLS flows are filtered from
raw traffic for initial feature extraction. Then, the fea-
ture selection mechanism selects the main features to
construct a lightweight feature set. The data that retain
these features form a sample set, and a part of samples
are labeled to obtain a small training setL for pretrain-
ing the DMF classifier. Finally, the pool-based active
learning approach uses a query strategy to search the
most informative and representative instances of U,

which is a large number of unlabeled sample sets, to
label for DMF classifier training. The pool-based active
learning query process is shown in Algorithm 1

(2) Problem. The UNSM query strategy based on exploit-
ative is commonly used because of its simplicity and
speed. In ideal, as shown in Figure 4(c-1), an active
learner uses a metric function to derive the uncertainty
value of each instance and determines whether to dis-
card the instance by setting a threshold. These metric
values form an uncertainty region, and active learner
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Figure 2: DMF classifier structure.
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Figure 3: AS-DMF framework. The “Std” represents standardization, and “Bags” represents bag-of-words method.
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Input: Labeled set L , unlabeled pool U,
query strategy ϕð⋅Þ, query batch size B, learner M

do
// learn a M using the current L
M =M:trainðLÞ;
// initial the empty query batch
Q = ½ �;
forb = 1 to Bdo

// select the most informative and representative instance
x∗b = arg max

x∈u
ϕðxÞ;

// move the selected query instance from U to Q

Q =Q←x∗b ;
U =U −x∗b ;

end for
// label each instance in Q and add to L

fori = 1 to len(Q) do
y = labelðQ½i�Þ;
L =L ←ðxi, yÞ;

end for
untilreached the preset number of queries;

Algorithm 1: Pool-based active learning query process.

(a) target function (b) sample distribution (c-1) Uncertainty sampling query strategy ideally

(a) target function (b) sample distribution (c-2) Uncertain sampling query strategy for entering suboptimal query state

(a) target function (b) sample distribution (c-3) Uncertain sampling & Information density query strategy

(a) target function (b) sample distribution (c-4) Uncertain sampling & Graph density query strategy

Figure 4: Fitting results of the three query strategies on the same data distribution with the query on the objective function (black area
represents positive cases, white area represents negative cases, and yellow area represents uncertainty region).
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select instances within the region to be labeled by oracle.
However, this strategy assumes only a single hypothesis
space and lacks consideration of the data structure. For
the former, the metric function only considers the
hypothesis space of the previous state, which tends to
make the query instance deviate from the sample cen-
ter. This problem, as shown in Figure 4(c-2), will lead
our model to stay away from the objective function.
For the latter, the UNSM query strategy takes the data
structure out of account, which is prone to querying
outliers simply. However, the density-based approach
considers the data distribution of the unlabeled samples
in the pool

In order to address the above issues, we design a density-
based query strategy. Considering that different scenes have
different degrees of attention to the local and global samples
density, we design the query strategy based on information
density for scenarios that pay more attention to local den-
sity, and the query strategy based on graph density for sce-
narios that pay more attention to global density,
respectively. The details will be presented in the following.

(3) Uncertainty sampling and information density. An
instance as an outlier located on a classification
boundary, it does not represent other instances in
the distribution, although it has high uncertainty.

Representative instances should not only be uncer-
tain instances but also instances that are representa-
tive of the input distribution. Therefore, the input
distribution is modeled using the information
density-based strategy. For an unlabeled dataset Xu,
as shown in Figure 4 (c-3), the information density
of an instance x can be calculated as:

I xð Þ = 1
Xuj j 〠

x′∈X
sim x, x′
� �

, ð4Þ

where Xu represents all instances in U, x′ represents
instances in U except for x, and simðx, x′Þ is a Euclidean
similarity function, which is the reciprocal of Euclidean dis-
tance. That means the higher the information density, the
more similar the given instance is to the rest of the data.
Then, the uncertainty measures weighted by information
density as

x∗I = arg max
x

ϕE xð Þ × Iβ xð Þ, ð5Þ

where x∗I represents the instance with maximum informa-
tion, ϕEðxÞ represents the entropy method for uncertain
sampling, and β is the exponential parameter to control
the relative importance of the density IðxÞ. The samples in
the pool are weighted to lead the query proceeds in the
direction of high density. Moreover, the uncertainty region
is reduced to guide the query results to approximate the true
data distribution.

(4) Uncertainty sampling and graph density. The graph
density-based approach considers the global data
distribution. In comparison to information density,
the basic principle of graph density is to use the
graph structure to identify connected nodes (func-
tion node):

Node xið Þ = 〠
n

j=1
exp −

d2 xi, xj
À Á
4ra2

 !
, ð6Þ

where dðxi, xjÞ denotes the Euclidean distance between two
samples and ra is the neighborhood of node. First, it calcu-
lates the minimum distance DtðxiÞ of an unlabeled sample
in U to all labeled sample in L .

Dt xið Þ =min
xj∈L

d xi, xj
À Á

: ð7Þ

Then, select the farthest instance x∗ = arg max
i

ðDtðxiÞÞ
for labeling.

First, we build a graph of the k-nearest neighbor contain-
ing k samples and compute the Euclidean distance d
between the instance xi in U and the k samples in the graph.
A symmetric connection matrix P will be created if d is one
of the k smallest Euclidean distances (or xi is the k nearest

Table 1: The statistical information of dataset.

Type Flow

Malware

Dridex 4969

Tickbot 5045

Trojan-Rasftuby 55

Dyname 5154

Bunitu 2708

Cobalt 250

Yakes 1819

Benign Benign 20000

Table 2: Performance of DMF classifier on different feature sets.

Accuracy Precision Recall F1 measure FPR

F10 0.9793 0.9691 0.9901 0.9795 0.0315

F15 0.9854 0.9762 0.9950 0.9855 0.0241

F20 0.9858 0.9764 0.9956 0.9859 0.0210

F25 0.9864 0.9765 0.9968 0.9865 0.0240

F30 0.9872 0.9774 0.9975 0.9873 0.0230

F35 0.9882 0.9792 0.9976 0.9883 0.0211

F40 0.9895 0.9832 0.9961 0.9896 0.0170

F45 0.9896 0.9833 0.9962 0.9897 0.0168

F50 0.9916 0.9858 0.9976 0.9917 0.0143

Fall 0.9949 0.9917 0.9981 0.9949 0.0080
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neighbor of one of the labeled samples), initializing the
matrix Pij = 1. The connectivity matrix is updated after
weighting the graph edges by applying a Gaussian kernel
to the Euclidean distance.

Wij = Pij × e−d xi ,xjð Þ/2σ2 : ð8Þ

Then, define the graph density for an observation to be
the sum of weights for all edges to the node representing
the datapoint. Finally, normalize the sum weights by the
total number of neighbors, as shown in Equation (9). The
matrix is used to rank all samples according to their repre-

sentativeness.

Gd xið Þ = ∑iWij

∑iPij
: ð9Þ

The query strategy based on the density of the graph
reduces the weight of neighboring instances of the currently
selected node xi by reducing the weight of that node, as
shown in Figure 4(c-4) and

Gd xj
À Á

=Gd xj
À Á

−Gd xið ÞPij: ð10Þ

This approach avoids both instances in the same dense
domain being selected multiple times and UNSM falling into
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ce
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0.955

0.95
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F10 F15 F20 F25 F30 F35 F40 F45 F50 Fall

Figure 5: The performance trends of DMF in accuracy, recall rate, and precision.
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Figure 6: Trend of FPR under different feature sets.
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suboptimal queries in a certain direction. In practice, we set
up a mechanism to prevent querying neighboring instances
during the query process. When the query starts, we com-
pare the next instance of the query with the k instances of
the dense domain where the previous instance is located. If
the same instance appears, this query is dropped. After the
instance is removed from the pool, a new round of queries
is performed.

4. Experiment and Results

In this section, we present the dataset, evaluation metrics,
experimental setting, model results, and result analysis.

4.1. Dataset. We use the dataset of CTU-13 which is cap-
tured form a real-word network environment to verify the
effectiveness of our AS-DMF framework [29]. The dataset
was collected for over 24 hours long and consists of 100+
thousand encrypted traffic flows referring to 13 popular mal-
ware family. We filter 20,000 flows from benign traffic
packet captured in a normal environment. There are over
100,000 flows to be extracted from malware packets, and
20,000 malicious flows are retained after filtering. The statis-
tical information of dataset is shown in Table 1. We filter the
pcap traffic packets by setting an established flag to extract
the TLS flows that have established a full connection.

4.2. Experiment Setting

(1) Metrics.We evaluate the methods based on accuracy,
precision, recall rate, F1 measure, and false-positive

rate (benign flows are predicted to be malicious
flows, FPR). We also use mAcc (mean accuracy) to
measure AS-DMF performance. The definitions are
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð11Þ

Precision =
TP

TP + FP
, ð12Þ

Recall =
TP

TP + FN
, ð13Þ

F1 = 2 ×
Precision × Reacll
Precision + Recall

, ð14Þ

FPR =
FP

FP + FN
, ð15Þ

where TP (true positive) represents positive samples cor-
rectly identified as positive samples, FP (false positive) repre-
sents positive samples incorrectly identified as negative
samples, FN (false negative) represents negative samples
incorrectly identified as positive samples, and TN (true neg-
ative) represents negative samples correctly identified as
negative samples.

(2) Experimental environment. This study built an
experimental environment based on Python3.7 and
ALiPy [30, 31]. The hardware device used for the
experiments is a 64-bit Windows 10 operating

Table 3: Performance of DMF classifier and primary classifiers.

Feature sets Model Accuracy Precision Recall F1 measure FPR

F10

DMF 0.9793 0.9691 0.9901 0.9795 0.0315

RF 0.9783 0.9681 0.9891 0.9785 0.0325

XGB 0.9777 0.9672 0.9890 0.9785 0.0335

GNB 0.9778 0.9666 0.9898 0.9781 0.0341

F20

DMF 0.9858 0.9764 0.9956 0.9859 0.0210

RF 0.9858 0.9784 0.9935 0.9859 0.0218

XGB 0.9856 0.9789 0.9926 0.9857 0.0214

GNB 0.9861 0.9792 0.9933 0.9826 0.0210

F30

DMF 0.9872 0.9774 0.9975 0.9873 0.0230

RF 0.9859 0.9777 0.9945 0.9860 0.0226

XGB 0.9867 0.978 0.9958 0.9868 0.0223

GNB 0.9866 0.9779 0.9958 0.9867 0.0223

F40

DMF 0.9895 0.9832 0.9961 0.9896 0.0170

RF 0.9896 0.9830 0.9960 0.9896 0.0170

XGB 0.9894 0.9837 0.9953 0.9895 0.0164

GNB 0.9892 0.9833 0.9954 0.9893 0.0169

F50

DMF 0.9916 0.9858 0.9976 0.9917 0.0143

RF 0.9906 0.9853 0.9960 0.9906 0.0148

XGB 0.9905 0.9850 0.9962 0.9906 0.0151

GNB 0.9909 0.9854 0.9965 0.9909 0.0146
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system with an Inter® Xeno® Gold 5210 CPU
@2.20GHz 2.19GHz dual processors and 32GB of
RAM

(3) Setting of parameters. For the base learner of ran-
dom forest, we use the trees with a number of
100, and the maximum depth of each tree is 12.
For the base learner based on XGBoost, we choose
the maximum depth of the tree to be 12 and the
number of trees to be 120. Logistic regression
model using “lbfgs” solver and class_weight set to
“balanced” (dynamically adjusted weights). More-
over, we divide the sample set into a training set
and a test set by 7 : 3 to avoid overfitting. We set
the number of samples in L at 0.1% of the train-

ing set, and each query strategy queries 10
instances per round, for a total of 100 rounds of
queries

(4) Baseline. We compare a series of state-of-the-art
methods as baseline to evaluate the performance of
our methods

The specific parameters of the baseline methods are as
follows:

UNID: the exponent parameter β = 1, distance metric is
Euclidean distance, and choosing information entropy as an
uncertainty measure.

UNGD: The number of neighbors k = 10, and the dis-
tance metric is Euclidean distance.
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Figure 7: Query results of three strategies with different feature sets.
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LAL: n = 50, d = 5, and the mode of data sampling is iter-
ative, where n is the number of forest estimators and d is the
forest depth.

ALEC: r = 0:1, and the block size threshold b is set to 3,
where r is density radius, and blocks with b < 3 are no longer
divided.

QUIRE: kernel = ‘linear’, λ = 1, where λ is a regulariza-
tion parameter used in the regularization learning
framework.

4.3. Experiment

(1) Feature selection results. After extracting features from
the dataset, a 98-dimension feature set is obtained. We
use the feature selection mechanism described in Sec-
tion 3.3 to rank these features by MIC values. In prac-

tice, 10 sets of experiments are designed for
comparison on the full feature set (Fall) and the postse-
lection feature set Fm (m ∈ ½10, 50�), respectively, to ver-
ify the effectiveness of the feature selection mechanism.
The comparison results are shown in Table 2 and
Figures 5 and 6, and the values in bold represent the
best results

(2) DMF classifier. To examine the performance of the
DMF model, we compared the DMF model with the
three primary classifiers on the Fm ðm ∈ f
10,20,30,40,50gÞ. As shown in Table 3, RF, XGB, and
GNB represent random forest classifier, XGBoost clas-
sifier, and Gaussian Naive Bayes classifier, respectively

UNSM
UNID

UNGD

m
Ac

c

0.93

0.94

0.95

0.92

0.91

0.9

0.89

0.88

0.87

Feature sets
F10 F15 F20 F25 F30 F35 F40 F45 F50

Figure 8: The final mean accuracy achieved by the 3 query strategies with different feature sets.

Table 4: Comparison of three query strategies in different feature set results (mAcc ± std).

Feature sets UNSM UNID UNGD

F10 0:9053 ± 0:0339 0:8965 ± 0:0491 0:9019 ± 0:0239
F15 0:9276 ± 0:0141 0:9295 ± 0:0126 0:9314 ± 0:0102
F20 0:9180 ± 0:0241 0:9359 ± 0:0103 0:9320 ± 0:0125
F25 0:9211 ± 0:0317 0:9383 ± 0:0102 0:9336 ± 0:0169
F30 0:9245 ± 0:0206 0:9383 ± 0:0106 0:9300 ± 0:0174
F35 0:9250 ± 0:0209 0:9386 ± 0:0130 0:9311 ± 0:0093
F40 0:9292 ± 0:0174 0:9451 ± 0:0159 0:9395 ± 0:0164
F45 0:9277 ± 0:0208 0:9414 ± 0:0193 0:9411 ± 0:0109
F50 0:9292 ± 0:0211 0:9460 ± 0:0115 0:9427 ± 0:0112
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(3) AS-DMF results: an experiment with 9 groups are
designed by using the reduction feature sets to
observe the performance of AS-DMF lightweight
framework. The query strategy includes uncertainty
sampling strategy with entropy method, uncertainty
sampling with information density (UNID), and
uncertainty sampling with graph density (UNGD).
The results of the query are shown in Figures 7 and
8 and Table 4, and std represents the overall stan-
dard deviation

(4) Comparison with advanced methods. We compared
density-based methods with LAL, ALEC, and
QUIRE mentioned in Section 2.2. The comparison
results are shown in Table 5

4.4. Analysis of Feature Selection Results and DMF Classifier.
The comparison results are shown in Tables 2 and 3. We can
obtain the following conclusions.

(1) Analysis of feature selection results. The DMF classi-
fier achieves the best performance in the fall feature
set, as expected, and outperforms other feature sets
in most cases, as is shown in Table 2. However, when
the target feature set is F10, the accuracy, precision,
recall, and F1 measure of the DMF classifier differ
by only 0.0156, 0.0226, 0.080, and 0.0154, respec-
tively, and can be trained faster. From the aspect of
the informativeness of feature sets, the differences
between the various performance metrics are small,
indicating that F10 feature set and Fall feature set
similar of identical distribution and also indicating
that the feature selection mechanism of this paper
is effective

As the dimensionality of the feature set increase, the sim-
ilarity of informativeness becomes larger, which is expressed
in the decreasing various performance metrics. And the FPR
of the DMF classifier, as shown in Figure 6, shows a decreas-
ing trend, which means fewer misclassified samples.

(2) Analysis of DMF classifier. Comparing them with
different sequences, as is shown in Table 3, the
DMF classifier always outperforms the primary

learners in recall rate and F1 measure. And it can
obtain the best performance on most of the metrics.
However, the random forest classifier and Gaussian
Naive Bayes classifier outperformed the DMF classi-
fier by precision on F20, F30, and F40. And the
XGBoost classifier shows better performance in
FPR, which outperforms the DMF classifier by
0.0003 and 0.0006 in F20 and F30, respectively. The
reason for the degraded performance of the DMF
classifier is that, compared to average the probability
values of each single component, the DMF classifier
chooses a logistic regression model as a secondary
learner to dynamically adjust the weights of the pri-
mary learners. Compared to single primary learners,
DMF classifier has a better generalization ability. In
general, the DMF classifier has good classification
performance and outperforms a single primary
learner

4.5. Analysis of AS-DMF Results. The experimental results of
AS-DMF framework are shown in Figures 7 and 8 and
Tables 4 and 5, and we can draw some conclusions.

(1) AS-DMF framework can indeed reduce the com-
plexity of the detection process and improve data
utilization. When comparing performance with dif-
ferent feature sets, the F50 outperforms the others
with more than 0.0046 in mAcc. With feature selec-
tion mechanism, the feature sets selected from the
raw encrypted traffic are guided by the ANOVA
and MIC to store richer information. Furthermore,
the performance of the DMF classifier improves as
the informativeness of the feature set increases

(2) The performance of the three query strategies on a
specific feature set steadily improves with the num-
ber of queries, but the UNSM is more volatile, such
as F20, F40, and F50. In most cases, the strategy com-
bined with density works better than the UNSM
alone. Under contract, the volatility of UNID is min-
imal, and the performance of DMF can be improved
smoothly using this query strategy. The reason is
that the UNID strategy combines global uncertainty
and information density, which makes it possible to
choose instances that are more informative and
representative

Table 5: Comparison results of each query strategy (mAcc ± std).

Feature sets UNID UNGD QUIRE LAL ALEC

F10 0:8965 ± 0:0491 0:9019 ± 0:0239 0:8282 ± 0:0851 0:9026 ± 0:0322 0:7394 ± 0:0163
F20 0:9359 ± 0:0103 0:9320 ± 0:0125 0:8944 ± 0:0418 0:9339 ± 0:0113 0:9173 ± 0:0053
F30 0:9383 ± 0:0106 0:9300 ± 0:0174 0:9118 ± 0:0188 0:9364 ± 0:0103 0:9187 ± 0:0052
F40 0:9451 ± 0:0159 0:9395 ± 0:0164 0:9256 ± 0:0173 0:9443 ± 0:0560 0:9189 ± 0:0008
F50 0:9460 ± 0:0115 0:9427 ± 0:0112 0:9245 ± 0:0103 0:9455 ± 0:0050 0:9184 ± 0:0010
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(3) The density-based query strategy performs better
than UNSM. Although using the same input (e.g.,
L , feature set, and classifier), the UNID and UNGD
outperform the UNSM in Figure 8, because the
density-based query strategy can search the most
informative and representative instances for DMF
classifier to train. Therefore, our strategy allows
DMF classifier to learn the most knowledge with
the least training cost

(4) The higher the dimensionality of the feature set, the
fewer query numbers are required to achieve the pre-
set mAcc value. This phenomenon shows that the
informativeness and representativeness contained
in the instance itself affects the query results. In gen-
eral, the higher the performance achieved by the
more informative feature set for the same query cost,
but not absolutely, e.g., F40 under UNSM. In prac-
tice, it is necessary to balance the size of the feature
set and the number of queries

(5) Density-based methods has overall higher mAcc
values than other methods, as shown in Table 5,
when setting the same number of queries. As the
dimensionality of the feature set increases
(10 <m ≤ 50), UNID outperforms all advanced algo-
rithms in mAcc and stability. Therefore, the density-
based methods we proposed has better superiority

5. Conclusion

In this paper, we design a lightweight framework for TLS
encrypted malicious traffic detection named AS-DMF. It
selects the representative features by feature selection mech-
anism. The AS-DMF takes an uncertainty sampling and
density-based query strategy to search the most informative
and representative instances of the unlabeled samples and
train the DMF classifier with a pool-based active learning
approach. We evaluate our methods on feature sets of differ-
ent dimensions and draw the following conclusions: (1) the
feature selection mechanism effectively reduces the feature
complexity and the computational overhead of the DMF
model; (2) UNID query strategy avoids getting into subopti-
mal queries by combining global uncertainty and local infor-
mation density; (3) UNGD strategy combines global
uncertainty and graph density to move queries in the direc-
tion of higher density; (4) both the UNID and UNGD query
strategies can query for informative and representative
instances; (5) AS-DMF framework enables DMF classifier
to achieve lightweight detection at both feature and data
levels with 1/40 labeling cost and less than 5% mAcc loss.
In the future, we will investigate active learning lightweight
methods under unbalanced data.
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