
Research Article
EtherFuzz: Mutation Fuzzing Smart Contracts for TOD
Vulnerability Detection

Xiaoyin Wang ,1,2,3 Jiaze Sun,1,2,3 Chunyang Hu,4 Panpan Yu,1 Bin Zhang,1

and Donghai Hou1

1Xi’an University of Posts & Telecommunications, Xi’an Shaanxi 710121, China
2Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an Shaanxi 710121, China
3Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an Shaanxi 710121, China
4Hubei University of Arts and Science, 441053 Xiangyang Hubei, China

Correspondence should be addressed to Xiaoyin Wang; wangxiaoyinxy@126.com

Received 2 June 2022; Revised 17 July 2022; Accepted 30 July 2022; Published 26 August 2022

Academic Editor: Ruinian Li

Copyright © 2022 Xiaoyin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of Internet of Things technology, the use of Internet of Things is expanding, and its security risk will
become an important factor restricting the development of Internet of Things technology. The application of blockchain
technology in the security field of the Internet of Things can improve security problems, and the blockchain has immutable
characteristics. Therefore, it is particularly important to ensure the security of blockchain smart contracts. However, the order
of transaction in smart contracts is easy to be operated by miners, and there is a relative lack of tools to detect TOD
(transaction-ordering dependent) vulnerabilities. The current smart contract vulnerability detection methods have the
problems of low efficiency and low accuracy. Therefore, based on the study of TOD vulnerability principle, this paper
creatively highlights a mutation fuzzy testing method EtherFuzz to specifically detect TOD vulnerability in smart contracts.
Use the intelligent contract ABI (application binary interface) to generate test cases, test the byte code of the intelligent
contract, use TOD to test oracle to detect TOD vulnerabilities, and then, mutate the tested data to generate new test cases.
Finally, the behavior of smart contract operation is recorded, and the fuzzy test process is controlled until the vulnerability is
detected. The experimental results show that when 987 token contracts are selected as Ethereum test objects, the false-positive
rate, detection time overhead, and detection storage overhead of EtherFuzz are reduced by 74.4%, 30.1%, and 28.1%,
respectively. Therefore, EtherFuzz has high speed, efficiency, and accuracy in detecting TOD vulnerabilities and has excellent
application value.

1. Introduction

With the development of blockchain [1, 2] technology,
blockchain is used in more and more scenarios. The emer-
gence of Ethereum smart contract [3] has further expanded
the scope of application. At present, smart contracts have
been widely used in many fields, including digital payment
[4], financial asset disposal, and cloud computing [5]. Due
to the immutable nature of smart contracts, the security of
smart contracts faces great challenges [6, 7]. The current
definition of smart contract vulnerabilities has not yet
formed a broad consensus. NCC group [8] concluded that
there are 10 types of vulnerabilities which occur most fre-

quently in smart contract, and these vulnerabilities contain
reentrancy, TOD (transaction-ordering dependent), access
control, arithmetic issues, unchecked return values for low
level calls, denial of service, bad randomness, timestamp
dependence, short address attack, and unknown unknowns.
TOD is a kind of vulnerability occurring frequently in smart
contracts, which has attracted wide attention.

The TOD is a common vulnerability in smart contracts.
The transaction logic of Ethereum processing is that miners
view the transactions they receive and select which transac-
tions are included in the block according to who has paid
a sufficiently high gas [9] price, and when the transactions
are sent to the Ethereum network, they will be forwarded

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1565007, 8 pages
https://doi.org/10.1155/2022/1565007

https://orcid.org/0000-0001-6091-5024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1565007


to each node for processing. A block contains a collection of
transactions, and the execution order of transactions belong-
ing to the same block is uncertain (only miners can deter-
mine). Therefore, the status of the block is uncertain,
resulting in TOD vulnerability. There is a TOD vulnerability
in ERC20 token standard [10] for the approval and trans-
mission of two-step transactions. Since most smart contracts
comply with ERC20 standard, it is necessary to verify
whether the contract contains TOD vulnerabilities through
automated means. This vulnerability is obviously caused by
the impossibility triangle of the blockchain: security can no
longer be satisfied on the premise of decentralization and
scalability. To put it more bluntly, it must take a certain
amount of time for transactions to reach a consensus among
many distributed nodes. In this long period of time, in order
to improve the service throughput of the blockchain net-
work, it is certain to receive multiple transactions in one
block. However, there is no way to guarantee the specific
transaction time sequence received by different nodes.
Therefore, there is no way to guarantee the sequence of
transactions executed in a block. Therefore, if several trans-
actions based on the same contract occur in the same block,
there is no way to determine the status of the contract.

Oyente [11] uses the dynamic symbol execution method
[12] to detect TOD vulnerabilities. First, the Z3 solver [13] is
used to search and mark the path containing the ether flow,
return a group of traces and the corresponding ether flow of
each trace, and check whether two different traces have
different ether flows. If such trace air is included in the
contract, Oyente reports it as a TOD contract. However, as
the path depth increases, the constraints become more com-
plex. Constraints are a challenge for constraint solvers to
find solutions, which leads to high overhead and low execu-
tion efficiency.

Securify [14] uses the formal verification method [15] to
detect TOD vulnerabilities, analyze the dependency graph of
the contract, and extract accurate semantic information
from the code. It then verifies TOD vulnerabilities by check-
ing compliance and violation patterns. The compliance
mode requires that the number of ethers sent by the call
instruction is independent of the storage status and the
balance of the smart contract account, which means that
reordering transactions will not affect the amount sent by
the call execution. The conflict mode checks whether the
number of call instructions is determined by the value read
from the store and whether the value can be updated. A
TOD vulnerability exists if the conflicting mode is met. If
the compliance mode is met, there is no TOD vulnerability.
Since formal verification is a static detection method [16], a
large number of false positives will be obtained. Therefore,
the current TOD vulnerability detection methods have high
false-positive rate and high overhead.

Fuzzy testing is a technology that can automatically and
quickly generate test inputs and run them against the target
program to find security vulnerabilities. Because of its
simplicity and practicality, fuzzy testing has become one of
the main methods of software testing [17]. Fuzzy testing of
smart contract is an automatic testing technology, which
uses random, unexpected, or invalid data as the input of

the contract [18]. These input data are expected to lead to
the detection of some unnecessary behaviors, such as
crashes, some function failures, and permission errors. Sun
et al. [19] used the fuzzy testing method based on the
contract ABI and the user-defined method to detect TOD
vulnerabilities, Wang et al. [20] used the smart contract
control flow graph to design corresponding constraints and
then used a feedback adjusted fuzzy testing method to detect
gas-related vulnerabilities in smart contracts.

Mutation fuzzy test [21] is very simple and effective. It
can improve path coverage without constraint solver and
other overhead. At the same time, because fuzzing dynami-
cally executes test data, the false-positive rate of vulnerability
detection is low. Therefore, fuzzing can effectively solve the
problems of high false-positive rate and high overhead [22].

In this paper, we propose EtherFuzz, a mutation fuzzing
framework, to detect TOD vulnerability in smart contracts.
EtherFuzz detects the TOD vulnerability according to the
defined test oracle for TOD vulnerability through mutation
amplification test data. At the same time, the test oracle for
TOD vulnerability is defined as follows: the last two func-
tions in the smart contracts are exchanged to generate the
tested smart contracts with two different functions calling
sequences.

If the smart contracts under test with different function
call orders send different Ether, there exists TOD vulnerabil-
ity. When the scale of the smart contract is large, the calling
sequence of each function needs to be replaced when detect-
ing the TOD vulnerability, and numerous different function
calling sequences are generated, where its detection time is
expensive and inefficient. Through studying the smart
contract on Etherscan, it can be obtained that the first few
functions in the smart contract mainly do some initialization
operations, and most transfer operations exist in the last few
functions. Subsequently, in order to reduce the detection
time cost, only the last two functions in the smart contract
are replaced in the test oracle defined. Mutation fuzzing
smart contracts for TOD vulnerability detection proposed
in this paper not only integrates the characteristics of low
false-positive rate and low cost of fuzzing but also generates
different function calling orders by changing the last two
functions. In other aspects, this method can reduce the time
cost of TOD vulnerability detection dramatically.

2. TOD Contract Mutation Fuzzer

In this section, we first gave an overview of our EtherFuzz
tool. Then, we proceed to present the design of each core
component of the tool in detail.

2.1. An Overview of EtherFuzz. An overview of EtherFuzz
describing its workflow is illustrated in Figure 1. EtherFuzz
is mainly made up of a preprocessing module and TOD
vulnerability mutation fuzzing module. The preprocessing
module mainly includes four steps: (1) compile the smart
contract under test to generate the smart contract bytecode
[23] and an ABI (application binary interface) [24]. (2) Gen-
erate test data based on the ABI of smart contracts [25].
(3) Instrument the original tested smart contract bytecode

2 Wireless Communications and Mobile Computing



and the tested smart contract bytecode after replacing the
last two functions. (4) Deploy the smart contract under
test. TOD vulnerability mutation fuzzing module contains
three steps: (1) mutate the existing test data to produce
new test data. (2) Monitor the fuzzing execution process
of the contract under test to log the path coverage infor-
mation, the value of the sent ether, and running result.
(3) Analyze TOD vulnerability: if the running result is
abnormal, the consequence of detecting TOD vulnerability
will be outputted. If the running result is not abnormal,
judging whether the test data cover the new branch or
not, if the test data cover the new branch, the test data
are saved and the mutation fuzzing is repeatedly executed.

2.2. Preprocessing Module. In this section, we will introduce
the four steps of the preprocessing module in detail.

Step 1. Compile the smart contract to be tested, generate
bytecode and ABI, and the bytecode is expressed in hexa-
decimal form, and it consists of three parts: deployment
code, smart contract code, and smart contract encryption
fingerprint.

Step 2. EtherFuzz generates test data by algorithm according
to the user-defined smart contract, as shown in Algorithm 1.
The input of the test data generation algorithm is interface.
It is the ABI of the contract under test and then analyzes
the interface to extract the data type of each functional
parameter (line 1). If the data type of the smart contract
function parameter is the address type, it is very important
to generate a dedicated smart contract pool for the interface.
Since the smart contract pool stores the addresses of all
smart contracts called by functions in ABI, the addresses
stored in the smart contract pool are randomly selected as
test data (lines 2 to 5). If the function parameter type is a
fixed size type, we can randomly select a set of values from
the fixed size field of the parameter as test data (lines 6 to
8). If the function parameter type is nonfixed size, it will
randomly generate a positive number as the length and

randomly select a group of values from the randomly gen-
erated number field of the parameter as the test data (lines
9 to 12).

Step 3. Generate the tested smart contract with different
function call sequences by exchanging the last two functions
in the smart contract. After replacing the last two functions,
we insert the bytecode of the smart contract in the original
test and the smart contract in the test. We define that the
trace_cov records an array of covering information of the
current test data. And the virgin_cov records an array of
global covering information, which represents the coverage
information of all the test data that have been executed.

Step 4. The EVM (Ethereum virtual machine) [26] creates
smart contract account and runs two deployment codes to
test the smart contract after piling. In addition, it stores
the smart contract code and the encrypted fingerprint of
the smart contract on the blockchain. At the same time, it
assigns their storage addresses to the code hash field in the
smart contract account.

TOD vulnerability mutation 
fuzzing modulePre-processing module

Smart contract 
under test

Compile the tested smart contract to generate the ABI and 
bytecode of contract under test

Generate the test data based on the ABI

Instrument the bytecode of contract 
under test 

Deploy the contract under test

TOD vulnerability analysis

Monitor the generation process of
the contract under test

Mutated generate new test data

Figure 1: EtherFuzz overview.

Input: Sinterface:the ABI of the contract under test
Output:test data
1: dataType=analyze(Sinterface);
2: if parameterType==addresType then
3: contractPool=GeneratePool(Sinterface);
4: testdata=ranselectAddress(contractPool);
5: end
6: if parameterType==fixedType then
7: testdata=ranselectData(fixedSize);
8: end
9: if parameterType==nonfixedType then
10: length=randomNumber();
11: testdata=ranselectData(length);
12: end

Algorithm 1: Test data generation algorithm.

3Wireless Communications and Mobile Computing



2.3. TOD Vulnerability Mutation Fuzzing Module. Ether-
Fuzz uses a user-defined TOD vulnerability mutation fuzzy
algorithm to detect TOD vulnerabilities in smart contracts.
As shown in Algorithm 2, the inputs of TOD vulnerability
mutation fuzzy algorithm are existing test data seeds and
smart contracts deployed under test P. First, traverse and
mutate the existing test data and the smart contracts
deployed under the test to generate new test data (lines 3
to 4).

The mutation operations used are shown in Table 1, and
they mainly include three types of mutation operations
including the first type of mutation operation which is to flip
bits or bytes, the second type of mutation operation which
increases a randomly selected 1/2/4 bytes by a constant,
and the third type of mutation operation which is to replace
bytes according to different data types. Then, the deployed
smart contract under test P executes new test data to log
the path coverage information, the value of the sent ether,
and running result (line 3).

Therefore, running result is obtained according to the
defined TOD vulnerability test oracle. If the running result
is TOD vulnerability and the test data triggering the TOD
vulnerability is found, the detection result of “TOD vulnera-
bility found” will be outputted (lines 4 to 6). Finally, it ana-
lyzes the coverage information of the recorded test data. If
the test data cover a new branch, it will be added to the test
data set, and the coverage information will be updated (lines
8 to 10). The process is repeated within the user-defined
detection time.

3. Experiment and Result Analysis

In this section, we evaluate EtherFuzz through multiple
experiments. The experiments are intended to confirm the
following research questions (RQ).

RQ1: what is the efficiency of the TOD vulnerability
detection method that only exchanges the last two functions?

RQ2: what is the false-positive rate of EtherFuzz in
detecting the TOD vulnerability? Compared with existing
vulnerability detection tools, is the false-positive rate of
EtherFuzz reduced?

RQ3: what is the detection costs of EtherFuzz for detect-
ing the TOD vulnerability? Is EtherFuzz’s TOD vulnerability
detection cost less than the existing detection methods?

Our test subjects include the 987 ERC20 token contracts
which we have crawled from Etherscan. All experimental
results reported below are obtained on an Ubuntu 18.04.1
LTS machine with Intel Core i7 and 16GB of memory.
EtherFuzz firstly performs static analysis on each contract
to develop the private contract pool for each ABI interface
and to extract the ABI functions. With the test data genera-
tion algorithm, EtherFuzz proceeds to generate input data.

3.1. Analyze the TOD Vulnerability Detection Method That
Only Exchanges the Last Two Functions

3.1.1. Experiment I. We compared two methods of TOD
vulnerability detection in the exchange order for functions.
The first is the TOD vulnerability detection method used

in EtherFuzz that only exchanges the last two functions,
and the second is the TOD vulnerability detection method
that exchanges all functions (simply change the TOD vul-
nerability detection method in this paper to reverse the order
in which all functions are called, and we can get the second
detection method). In this experiment, depending on the
two TOD vulnerability detection methods, we detected the
987 ERC20 token contracts. It is assumed that we generate
m groups of test data and n contracts under test. The first
detection method generated two groups of smart contracts
under test, so the time complexity of the TOD vulnerability
detection algorithm is OðmÞ. And the second detection
method generated n! groups of contracts under test; there-
fore, the time complexity of the TOD vulnerability detection
algorithm is Oðm ∗ n!Þ. The time complexity of the original
detection algorithm is much lower than that of the second
detection algorithm. Table 2 displays the correct detection
number, false-positive numbers, and the total detection
time. Meanwhile, TW represents the correct detection num-
ber, and FW represents the false-positive number.

As shown in Table 2, the accuracy of the first detection
method and the second detection method is 12.4% and
12.9%, respectively, among which the false-positives of the
two detection methods are 2.38% and 2.29%, respectively,
and the average detection time of the two methods is 2.5 s
and 3.3 s, respectively.

The results of this experiment show that the accuracy of
the first method decreased by 3.8%, and the false-alarm rate
increased by 3.9%; however, the average detection time of
the first method decreased by 24.2%. Therefore, the experi-
mental data shows that the efficiency of the former method
was greater than of the second detection method; thus, we
use the first method that exchanges the last two functions
in EtherFuzz.

3.2. Analysis on False-Positive Rate of Smart Contract TOD
Vulnerability Detection

3.2.1. Experiment II. We compared EtherFuzz with Oyente
and Securify on the detection of the 987 ERC20 token

Input: Seeds:the existing test data
P:deployed smart contract under test
Output:result:detect result
1 foreach seed ∈ Seeds do
2 foeach p ∈P do
3 newseed=Mutation(seed);
4 (trace_cov,ether,result)=Execute(P,newseed);
5 end
5 if testResult==hasTod then
6 result=“TOD vulnerability found”;
7 end
8 if hasNewCov(trace_cov,virgin_cov) then
9 Seeds=Seeds ∪ {newseed};
10 update(vrigin_cov,trace_cov);
11 end
12 end

Algorithm 2: TOD vulnerability mutation fuzzing algorithm.

4 Wireless Communications and Mobile Computing



contracts, and the detection time is set to 150 minutes.
Table 3 shows the correct detection number and the false-
positive number.

Shown in Table 3 is Securify’s smart contract TOD vul-
nerability detection for the most number of correct detection
and the most false-positive. The number of EtherFuzz’s
smart contract TOD vulnerability detection false-positives
is the lowest. Through calculation, the false-positive rate of
the three tools is illustrated in Figure 2.

As shown in Figure 2, Oyente, Securify, and EtherFuzz
have alarmed rates of 4.8%, 9.4%, and 2.4%. Securify has
the highest false-positive rate, and EtherFuzz has a signifi-
cantly lower false-positive rate.

This experiment shows that EtherFuzz can effectively
reduce the false-positive rate of TOD vulnerability detection,
and the false-positive rate decreases by 74.4%.

3.2.2. Experiment III. According to the detection results of
987 smart contracts under test by EtherFuzz, we select a con-
tract under test with TOD vulnerability and a contract under
test without TOD vulnerability. As the detection time is
240 s, the two contracts are detected in EtherFuzz, and the
number of the covering branches of the two contracts at a
different time is reported as shown in Figure 3.

As shown in Figure 3, the number of covering branches
of the smart contract under test with TOD vulnerabilities
gradually increases within 100 s-180 s, and it remained stable
within 180 s-240 s. The number of covering branches of
smart contracts without TOD vulnerabilities gradually
increased within 100 s-220 s and stabilized within 220 s-
240 s. Because of EtherFuzz’s TOD vulnerability mutation
fuzzing algorithm to mutate the test data, if TOD vulnerabil-
ity is not detected, it will continuously generate test data cov-
ering the new branch. We note that EtherFuzz could detect

this vulnerability in 180 s, so it will no longer mutate to gen-
erate additional test data from 180 s to 240 s. The branch
coverage of the test data slightly increased.

Because TOD vulnerability mutation fuzzing algorithm
generates new test data to continuously cover new branches
through mutation and dynamically executes the smart con-
tract under test, therefore, it is effective for EtherFuzz to
reduce the false-positive rate.

The above two experiments show that EtherFuzz can
effectively reduce the false-positive rate of TOD vulnerability
detection, and the false-positive rate is reduced by 74.4%.

3.3. Cost Analysis of TOD Vulnerability Detection

3.3.1. Experiment IV. We, respectively, selected the smart
contracts with correct detection of TOD vulnerability of
each tool in Experiment II, in which 120 TOD smart con-
tracts correctly detected by Oyente, 135 TOD vulnerability
contracts correctly detected by Securify, and 122 TOD vul-
nerability contracts correctly detected by EtherFuzz. Then,
we marked them as a smart contract under test A, B, and
C and detect them separately in the corresponding detection
tool. Then, we recorded the total detection time and total
memory cost. The TOD vulnerability detection time and
memory cost of the three detection tools are shown in
Table 4.

As shown in Table 4, the detection cost of EtherFuzz
is significantly reduced. The detection time cost and
memory cost of EtherFuzz are reduced by 30.1% and
28.1%, respectively.

3.3.2. Experiment V. In this experiment, firstly, we analyze
the 120 contracts that can be detected by the three tools,
including 7 combinations which contains 6 contracts with

Table 1: Mutation operations.

Mutation operations Detail

singleFlipBit, twoFlipBit, and fourFlipBit
Flip a randomly selected

1/2/4 consecutive bits

singleFlipByte, twoFlipByte, and fourFlipByte
Flip a randomly selected

1/2/4 consecutive bytes

singleIncrease, twoIncrease, and fourIncrease
Increase a random selected

1/2/4 bytes by a constant

singleSubstitute, twoSubstitute, and fourSubstitute Replace randomly selected 1/2/4 bytes with special constants

overwriteWithDictionary Replace a value at random with a constant from the smart contract

overwriteWithAddressDictionary
Replace the address and balance in the test data with the randomly generated

address and balance

Table 2: TOD vulnerability detection results of two detection
methods.

Method TW FW
Total detection
time (min)

Exchange the last two functions 123 3 41

Exchange all the functions 128 3 54

Table 3: TOD vulnerability detection results of three detection
tools.

TOD detection tool TW FW

Oyente 120 6

Securify 135 14

EtherFuzz 122 3

5Wireless Communications and Mobile Computing



2 transactions, 16 contracts with 3 transactions, 18 contracts
with 4 transactions, 21 contracts with 5 transactions, 19 con-
tracts with 6 transactions, 22 contracts with 7 transactions,
and 18 contracts with 8 transactions. At the same time, they

are marked as A2, A3, A4, A5, A6, A7, and A8, respectively
(the transactions selected in smart contract under test do not
include the function with “return,” because the function with
“return” does not change the state of the smart contract, so
there is necessary to detect it). Then, we use three tools to
detect 7 combinations, respectively, and record their detec-
tion time. The average detection time of 7 combinations is
shown in Figure 4.

As shown in Figure 4, when the number of transactions
in the contract is small (the number of transactions is less
than 4), the detection time gap between the three tools is
small, but with the increase of the number of contracts,
the detection time gap among the three tools gradually

4.8

9.4

2.4

9

8

7

6

5

4

3

2

1

0

Th
e r

at
e o

f f
al

se
 p

os
iti

ve
s (

%
)

Oyente Securify EtherFuzz
Vulnerability detection tools

Figure 2: The false-positive rate of the three tools.

100 120 140 160 180 200 220 240
Time (s)

20

25

30

35

40

Th
e n

um
be

r o
f c

ov
er

in
g 

br
an

ch
es

The contract under test with TOD vulnerability
The contract under test without TOD vulnerability

Figure 3: The number of the covering branches of two smart contracts under test.

Table 4: Analysis of detection cost of the three tools.

TOD vulnerability
detection tool

Time cost (s) Memory overhead (MB)

Oyente 732 1272

Securify 702 1215

EtherFuzz 512 915

6 Wireless Communications and Mobile Computing



increases, and the detection time of EtherFuzz is significantly
lower than that of the other two detection tools. At the same
time, because EtherFuzz uses TOD vulnerability detection
algorithm which only replaces the last two functions, it can
be seen from the figure that with the increase of the number
of contract transactions, the detection time of Oyente and
Securify increases rapidly, while the detection time of Ether-
Fuzz increases relatively smoothly.

To sum up, when compared with Oyente and Securify,
the time cost and memory cost of EtherFuzz to test TOD
vulnerabilities are significantly reduced. Among them, the
average time cost is reduced by about 31.1%, and the average
memory cost is reduced by about 29.2%. Moreover, the
detection algorithm in EtherFuzz has significant advantages
in terms of detection time for the larger smart contracts.

4. Conclusion

In this paper, we propose a variant fuzzy framework Ether-
Fuzz to detect TOD vulnerabilities in smart contracts. In
the smart contract, only the last two function call sequences
are exchanged, and the mutation generates new test data,
covering the new branch. The experimental results show that
EtherFuzz can identify TOD vulnerabilities more accurately
than other tools. Among them, the average time cost is
reduced by about 31.1%, and the average memory cost is
reduced by about 29.2%. Therefore, EtherFuzz can signifi-
cantly reduce the false-positive rate and detection cost and
can detect larger smart contracts more effectively. At the
same time, it can also effectively defend and deal with secu-
rity issues in the Internet of Things. Our future work will
focus on tool optimization: (1) more seed variant designs.
Designing more complex seed mutation functions can better
detect vulnerabilities in smart contracts. (2) More efficient

seed priority scheduling. The scale and storage structure of
seed mutation still need to be optimized to further improve
the efficiency. Optimize the detection algorithm in Ether-
Fuzz to reduce the false-positive rate of TOD vulnerabilities,
and try to use this tool to detect more related vulnerabilities
in smart contracts.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared as the data contains private data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China (Grant No. 61876138), the Key R&D
Project of Shaanxi Province (2020GY-010), the Key Indus-
trial Chain Core Technology Research Project of Xi’an
(2022JH-RGZN-0028), and the Special Fund for Key Disci-
pline Construction of General Institutions of Higher Learn-
ing from Shaanxi Province.

References

[1] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A
survey on blockchain interoperability: past, present, and
future trends,” ACM Computing Surveys (CSUR), vol. 54,
no. 8, pp. 1–41, 2022.

[2] Z. Liu, N. C. Luong, W.Wang et al., “A survey on blockchain: a
game theoretical perspective,” IEEE Access, vol. 7, pp. 47615–
47643, 2019.

[3] Z. Zheng and X. Chen, “An overview on smart contracts: chal-
lenges, advances and platforms,” Future Generation Computer
Systems, vol. 105, pp. 475–491, 2020.

[4] X. Ye, K. Sigalov, and M. König, “Integrating BIM-and cost-
included information container with blockchain for construc-
tion automated payment using billing model and smart
contracts,” ISARC. Proceedings of the International Symposium
on Automation and Robotics in Construction, vol. 37,
pp. 1388–1395, 2020.

[5] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and
A. Bani-Hani, “Blockchain smart contracts: applications, chal-
lenges, and future trends,” Peer-to-peer Networking and Appli-
cations, vol. 14, no. 5, pp. 2901–2925, 2021.

[6] W. Xiong and L. Xiong, “Data trading certification based on
consortium blockchain and smart contracts,” IEEE Access,
vol. 9, pp. 3482–3496, 2020.

[7] S. Rouhani and D. Ralph, “Security, performance, and applica-
tions of smart contracts: a systematic survey,” IEEE Access,
vol. 7, pp. 50759–50779, 2019.

[8] NCC Group, “Decentralized application security project top
10 of 2018,” Jul. 2018. https://dasp.co/.

[9] S. M. Werner, P. J. Pritz, and D. Perez, “Step on the gas? a
better approach for recommending the Ethereum gas price,”
in Mathematical Research for Blockchain Economy, pp. 161–
177, Springer, Cham, 2020.

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2 3 4 65 7 8
Transaction number

Ti
m

e (
s)

Oyente
Securify

EtherFuzz

Figure 4: The detection time of the four contracts under test by
three tools.

7Wireless Communications and Mobile Computing

https://dasp.co/


[10] R. Rahimian, S. Eskandari, and J. Clark, “Resolving the
Multiple Withdrawal Attack on ERC20 Tokens,” in 2019 IEEE
European symposium on security and privacy workshops
(EuroS&PW), pp. 320–329, Stockholm, Sweden, 2019.

[11] L. Loi and H. Aquinas, “Making smart contracts smarter,” in
Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 254–269, Vienna, Austria,
2018.

[12] Z. Tian, “Smart contract defect detection based on parallel
symbolic execution,” in 2019 3rd International Conference
on Circuits, System and Simulation (ICCSS), pp. 127–132,
Nanjing, China, 2019.

[13] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, “RA: hunting
for re-entrancy attacks in Ethereum smart contracts via static
analysis,” in 2020 IEEE International Conference on Blockchain
(Blockchain), pp. 327–336, Rhodes, Greece, 2020.

[14] T. Petar and V. Martin, “Securify: practical security analysis of
smart contracts,” in In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 67–82, Toronto, Canada, 2018.

[15] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on
formal verification for solidity smart contracts,” in Austral-
asian Computer Science Week Multiconference, pp. 1–10,
New York, 2021.

[16] F. Henglein, C. K. Larsen, and A. Murawska, “A formally
verified static analysis framework for compositional con-
tracts,” in International Conference on Financial Cryptography
and Data Security, pp. 599–619, Springer, Cham, 2020.

[17] S. Pani, H. V. Nallagonda, S. Prakash, R. Vigneswaran, R. K.
Medicherla, and M. A. Rajan, “Smart contract fuzzing for
enterprises: the language agnostic way,” in 2022 14th Interna-
tional Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 2022IEEE.

[18] M. Böhme and B. Falk, “Fuzzing: on the exponential cost of
vulnerability discovery,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pp. 713–724, New York, 2020.

[19] J. Sun, P. Yu, and B. Zhang, “Mutation fuzzy detection of TOD
vulnerability in smart contract,” in The International Confer-
ence on Natural Computation, Fuzzy Systems and Knowledge
Discovery, pp. 1687–1694, Springer, Cham, 2021.

[20] X. Wang, D. Hou, C. Tang, and S. Lv, “A fuzzy testing method
for gas-related vulnerability detection in smart contracts,” in
The International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery, pp. 407–418, Springer,
Cham, 2022.

[21] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Pro-
ceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 557–560, New York,
2020.

[22] J. Sun, J. Deng, Y. Li, and N. Han, “A BCS-GDE multi-
objective optimization algorithm for combined cooling,
heating and power model with decision strategies,” Applied
Thermal Engineering, vol. 213, article 118685, 2022.

[23] J. Huang, S. Han, W. You et al., “Hunting vulnerable smart
contracts via graph embedding based bytecode matching,”
IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 2144–2156, 2021.

[24] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the Internet of Things,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[25] G. Zheng, L. Gao, L. Huang et al., “Application binary interface
(ABI),” in Ethereum Smart Contract Development in Solidity,
pp. 139–158, Springer, Singapore, 2021.

[26] W. C. Yang and J. Peng, “Research on EVM-based smart
contract runtime self-protection technology framework,” in
Workshops of the International Conference on Advanced Infor-
mation Networking and Applications, pp. 617–627, Springer,
Cham, 2020.

8 Wireless Communications and Mobile Computing


	EtherFuzz: Mutation Fuzzing Smart Contracts for TOD Vulnerability Detection
	1. Introduction
	2. TOD Contract Mutation Fuzzer
	2.1. An Overview of EtherFuzz
	2.2. Preprocessing Module
	2.3. TOD Vulnerability Mutation Fuzzing Module

	3. Experiment and Result Analysis
	3.1. Analyze the TOD Vulnerability Detection Method That Only Exchanges the Last Two Functions
	3.1.1. Experiment I

	3.2. Analysis on False-Positive Rate of Smart Contract TOD Vulnerability Detection
	3.2.1. Experiment II
	3.2.2. Experiment III

	3.3. Cost Analysis of TOD Vulnerability Detection
	3.3.1. Experiment IV
	3.3.2. Experiment V


	4. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

