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In view of the shortcomings of low search efficiency and many path turning points of Probabilistic Roadmaps (PRM), a
bidirectional search PRM global path planning algorithm is proposed. The algorithm improves the search connection rules by
using the positive and negative directions to search the path alternately, so that the connection of unnecessary nodes reduces,
thereby speeding up the efficiency of path planning. Besides, the algorithm incorporates cubic spline interpolation. That will
increase the smoothness of path planning and ensure that the mobile robot can realize the path planning task more smoothly
and safely. The simulation results show that the improved algorithm can effectively improve the convergence speed and path
smoothness of the algorithm. Finally, the improved algorithm is applied to the actual mobile robot navigation experiment. The
experimental results have proven that the path planning strategy was able to a superior advantage over traditional PRM in
path quality and computational time.

1. Introduction

Recently, the technological development of mobile robots
has made great progress, and the development of path plan-
ning technology has become an important research field of
mobile robots [1, 2]. Nowadays, path planning technology
has been extensively used in industry, service industry,
entertainment industry, and so on. Effective and feasible
path planning technology can make mobile robots more
secure and reliable to complete the tasks required by human
beings. The traditional path planning algorithms include
Dijkstra algorithm, A∗ algorithm, and artificial potential
field method [3–7]. A series of intelligent bionic algorithms
gradually emerge with the increase of the complexity of the
working space of mobile robots, such as genetic algorithm,
particle swarm algorithm, artificial bee colony algorithm,
and so on [8–13].

In the early 1990s, Svestka et al. proposed the Probabilis-
tic Roadmaps (PRM) [14]. The PRM is based on random
sampling strategy. The difficulty of constructing effective
path graph in high-dimensional space is well solved because

of small calculation amount and good real-time performance
of the algorithm [15]. However, search efficiency will
decrease significantly in the case of narrow passages. More-
over, it is easy to fall into local optimum. In view of the
above problems, a variety of optimization methods is pro-
posed by domestic and foreign scholars. Reference [16] pro-
poses an improved PRM, by optimizing the sampling
strategy of traditional PRM, thereby increasing the number
of sampling points in narrow passages. The algorithm
increases search sampling efficiency. Velagić et al. change
the connection distance between sampling points, so that
the useless lines in the path network diagram are reduced.
This method improves the efficiency of the overall path
planning [17]. An improved PRM is proposed, which intro-
duces an artificial potential field method in PRM, so that the
point falling within the obstacle moves from the obstacle to
the mobile area by the repulsive force of the potential field,
thereby increasing the utilization rate of the sampling points
[18]. Reference [19] presents Lazy PRM, an improved PRM
that minimizes the number of collision checks performed
during the planning and therefore minimizes the running

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1632698, 12 pages
https://doi.org/10.1155/2022/1632698

https://orcid.org/0000-0003-3046-0844
https://orcid.org/0000-0001-9703-2276
https://orcid.org/0000-0002-4965-3972
https://orcid.org/0000-0001-7808-1259
https://orcid.org/0000-0002-6346-6815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1632698


time of the planner. Reference [20] presents improved con-
nectivity of the roadmap by connecting previously generated
connected components. PRM∗ an optimal variant of the
original PRM algorithm is presented in [21]. Reference
[22] addresses the problem of generating navigation road-
maps for uncertain and cluttered environments represented
with probabilistic occupancy maps, proposed the topology-
informed growing neural gas algorithm that leverages esti-
mates of probabilistic topological structures computed using
persistent homology theory. Reference [23] presents a K-
order surrounding roadmap path planner which constructs
a roadmap in an incremental manner to produce high-
quality roadmaps. Reference [24] proposes method using a
layered hybrid Probabilistic Roadmap and the Artificial
Potential Field method for global planning. In [25], the main
PRM methods are analyzed through a huge set of simula-
tions with a robot into complex statics environments. Refer-
ence [26] presents a guidance mechanism that encourages
the rapid construction of well-connected roadmaps with
PRM methods. It leverages a topological skeleton of the
workspace to track the algorithm’s progress in both covering
and connecting distinct neighborhoods, and employs this
information to focus computation on the uncovered and
unconnected regions. Reference [27] proposes a new
approach that combines the technique of particle swarm
optimization with PRM to improve both the utilization rate
of sampling points and the success rate of narrow passages
path planning. The above algorithms can speed up the effi-
ciency of path search. However, path smoothness is also an
important index of path planning task. In [28], spline inter-
polation is applied to robot navigation algorithm, and a fast
search random tree algorithm based on spline is proposed,
which ensures the continuity of curvature along the path
and eliminates the sharp change of control in traditional
RRT. In [29], the proposed method combines the classic
bidirectional RRT algorithm with the cubic Ferguson’s
spline technique to generate trajectories that directs smooth-
ness and continuation without any computation. In [30],
Cubic Bezier curves are applied to PRMs to shepherd non-
holonomic robots to the target while maintaining the whole
configuration. In [31], to generate such trajectories, combi-
nation of the cubic spline technique based on cubic Fergu-
son’s curve with the PRM method, which eases the
production of smoothened curved trajectories for wheeled
mobile robots.

In this paper, a bidirectional PRM search algorithm is
proposed in dealing with the problem of low search effi-
ciency and excessive number of paths turning points in
PRM algorithm. The search strategy of PRM is improved.
Firstly, the initial node and the target node of the traditional
PRM are searched simultaneously, which reduces the time
waste of unnecessary node connection in the search process
and effectively improves the search efficiency and safety per-
formance of the algorithm. Moreover, the cubic spline curve
smoothing processing is proposed to ensure that the mobile
robot can work effectively and realize the path planning task
more smoothly and safely.

This paper is structured as follows. Section II explains
the basic principle of PRM. In section III, a bidirectional

PRM search algorithm is generated. Section IV introduces
the basic principle of the cubic spline interpolation and pre-
sents bidirectional PRM algorithm combined with cubic
spline interpolation. The simulation and experimental
results are demonstrated in Section V. Section VI concludes
this paper.

2. Basic Principle of PRM

The traditional PRM is an algorithm based on graph search,
which constructs an undirected path network diagram by
screening and selecting random sampling points, and then
selects the most suitable path. Its basic idea is to use a ran-
dom network diagram to represent the trajectory planning
of mobile robot, and use a probability map to show the undi-
rected cycle property of the diagram. The undirected path
network diagram is represented by G = ðX, FÞ, where G
denotes the optimal path, X is set of nodes, and F denotes
a path set between nodes. The path set represents the local
feasible path. Then using heuristic search algorithm to find
the optimal path, such as Breadth first algorithm, A∗ etc.

The PRM can be completed in two phases, namely the
offline learning phase and the online query phase. Offline
learning phase mainly establishes an undirected path net-
work diagram. Online query phase mainly selects an appro-
priate path in the undirected path network diagram
according to the start node and the target node.

2.1. Offline Learning Phase. Offline learning phase primarily
constructs an undirected path network diagram G = ðX, FÞ.
Firstly, Sampling in the map and there are obviously two
possible outcomes. One is that the sampling point is on the
obstacles, the point is discarded. The other is that the sam-
pling point is in the free area, the point is constructed into
the node set X. After that, the local planner is used to find
the next-door node for connection in X, and the path set F
is obtained [32, 33]. The specific process is shown in
Figure 1.

As can be seen from the above flow chart, in the offline
learning phase of PRM, first of all, the initial work is carried
out to create the point set X, the path set F, and the uniform
random sampling point ni. Secondly, the validity of the sam-
pling point ni is judged. If the sampling point ni is on the
obstacle or not in the built map, the sampling point is dis-
carded, otherwise it is the available point, which needs to
be added to the X point set to facilitate the connection of
the points in the point set. Then, it is judged whether the
path of the two-point connection encounters an obstacle. If
so, the path is discarded, otherwise the available path is
stored in the path set. An undirected network graph G ðX,
FÞ is created in this way.

For the undirected path network diagram building, the
continuous workspace is transformed into a discrete work-
space. Then, executing path planning, so that the complexity
of the algorithm only depends on the complexity of the
search path, which reduces algorithm complexity. The opti-
mal path is taken by the random sampling points of PRM
and the collision detection of these points. When construct-
ing the network map, it starts from the nearest sampling
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point of the start node and spreads to the surrounding sam-
pling points. If the two sampling points can be connected
without touching obstacles, then the path is added to the
network path set, otherwise, the path is discarded, as shown
in Figure 2. Among them, the upper left corner is the start
node and the lower right corner is the target node.
Figure 2(a) is a sampling diagram. Figure 2(b) is a network
path set and the line is the path.

2.2. Online Query Phase. The main objective of the online
query phase is to select an appropriate path between the start
node and the target node based on the previously generated
undirected path network diagram in the offline learning
phase. For this purpose, the well-known A∗ algorithm is
used. Specific for the following three steps.

(1) Connect two points in the map nearest to the start
node and the target node, respectively

(2) Search the path by using A∗ algorithm

(3) Smoothen the route and get the final path

The results are shown in Figure 3.
It can be known from the principle of PRM that the algo-

rithm has good real-time performance and small amount of
calculation, but there is still shortcoming for its efficiency.
Therefore, this paper proposes an optimization algorithm
to improve the efficiency of PRM.

3. PRM Optimization

In the offline learning phase, the traditional PRM makes the
sampling points evenly distributed in the map and then con-
structs an undirected path network diagram by connecting
each sampling point. Finally, the A∗ algorithm is used to
query the optimal path. In the whole process of PRM, the
offline learning phase takes much less time than the online
query phase. Therefore, for the efficiency of online query
phase, this paper proposes a bidirectional PRM search
algorithm.

3.1. The Bidirectional PRM. The basic idea of the bidirec-
tional PRM is that the search strategy is divided into positive
and negative directions after obtaining sampling diagram.
The forward search starts from the start node and the
reverse search starts from the target node. The two paths will
meet at the intermediate node, respectively, and their inte-
gration is a final path. This method not only improves the
path security, but also further accelerates the search effi-
ciency, which greatly decreases the time waste of connection
between unnecessary paths. However, there are two
completely unrelated paths in the real path planning of
mobile robot. They are emitted from the start node and
the target node, and end at the target node and the start
node, respectively. These two paths may not meet in this
process.

Therefore, in order to solve the above problems, a bidi-
rectional PRM proposed in this paper will use the positive
and negative alternate search method. The specific process
is as follows: The search starts from the start node. When
the forward PRM searches from the start node to the next
node, the reverse PRM starts the reverse search from the tar-
get node. When the reverse search catches a sampling node,
the forward search starts again, and then alternately. In this
way, the overlapping nodes in the middle are found, and
then the optimal path is sought.

The improvement of PRM significantly accelerates the
path search efficiency. In Figure 4, there are black obstacles,
a start node (s) and a target node (g) after rasterizing the
map. In order to prevent confusion, the positive search uses
the solid line display, and the negative search uses the dotted
line display. The specific search process is shown in Figure 4.

In Figure 4, firstly, the bidirectional PRM searches the
sampling points in the positive direction, and then starts to
search the next sampling point. Four sampling points, a1,
a2, a3, and a4 will be searched at the same time. If these four
paths hs, a1i, hs, a2i, hs, a3i, and hs, a4i are all effective paths
that conform to the search path rules, so these four paths can
be stored in the path set F, as shown in Figure 4(a). Then,
the feasible sampling points are b1, b2, b3, and b4 in the
reverse direction. Similarly, if the four paths hg, b1i, hg, b2i
, hg, b3i, and hg, b4i meet the requirements of the search
path rules, so these four paths are also added to the path
set F, as shown in Figure 4(b). Then continue to switch for-
ward search and find nodes c1, c2, c3 etc. Determines
whether hs, c1i, hs, c2i, hs, c3i etc. meet the path set require-
ments. Corresponding paths are stored in the path set F, as
shown in Figures 4(c) and 4(d). In this way, if the overlap-
ping node d in the middle is found and the forward PRM
finds out overlapping positions as well as the reverse PRM,
which means that the bidirectional PRM finds a complete
path. As shown in Figures 4(e) and 4(f).

4. Path Generation Using Cubic Spline Curve

The bidirectional PRM meaningfully increases the path
search efficiency. However, there are still too many inflection
points, which is obviously a shortcoming in the algorithm.
Therefore, this paper adopts the cubic spline interpolation
method to make the path smoother [34, 35]. The cubic

Discard ni

Add the path to the path
set F

Establish an undirected path
network diagram G (X,F)

Obtain an optimal path No path

Whether G (X,F) is
NULL?

N

Y

NN

Y

Y

Start

Establish a node set X, a path set F, and uniform
random sampling points ni

Whether ni is in the obstruction
or not on the map?

Add ni in node set X

Connect xinit to xgoal in X

Whether the path between two
points hits an obstacle?

Discard the path End

Figure 1: Flow diagram of PRM offline learning phase.
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spline interpolation forms a smooth curve through a series
of cubic multitype piecewise interpolation. Fitting the path
lines of the mobile robot with the cubic spline interpolation
method will make the line segments of the path smoother,
meanwhile, ensure the high efficiency of the mobile robot
and avoid the damage to its hardware caused by the sudden
stop or sudden turn when moving.

4.1. Basic Principles. Definition: set [a, b] had equal interpo-
lation nodes, a = x0 < x1 <⋯ < xn = b, corresponding for the
cubic spline function f ðxÞ. If function values satisfy the fol-
lowing two conditions, f ðxÞ is called cubic spline interpola-
tion function.

(1) Requirement of f ðxÞ only in each subinterval
[xi−1,⋯, xi] (i = 1, 2,⋯, n) and determine a cubic
polynomial, set to

f i xð Þ = ai + bi x − xið Þ + ci x − xið Þ2 + di x − xið Þ3: ð1Þ

Among them, ai, bi, ci, and di are undetermined
coefficients.

(2) f ðxÞ, f ′ðxÞ, f ″ðxÞ is continuous on [a, b] and to sat-
isfy it:

f x0ð Þ = y0,⋯⋯ , f xn+1ð Þ = yn+1, ð2Þ

f xið Þ = f + xið Þ = yi, i = 1, 2, 3,⋯, n, ð3Þ

f ′ xið Þ = f + ′ xið Þ = yi, i = 1, 2, 3,⋯, n, ð4Þ

f ′′ xið Þ = f + ′′ xið Þ = yi, i = 1, 2, 3,⋯, n: ð5Þ

From the above definition, the cubic polynomial f ðxÞ
has 4n + 4 undetermined coefficients because there are n +
1 cells on [a, b], with 4 undetermined coefficients above each
interval. Therefore, 4n + 4 interpolation conditions must be
needed in order to determine the cubic polynomial f ðxÞ
according to Equation (2), it can be seen that there are n +
2 interpolation conditions. According to Equation (3), f ðxÞ
is continuous at the interpolation node and has n conditions.
Equations (4) and (5) represent that the first and second
order derivatives of f ðxÞ are continuous at the interpolation
node, with 2n interpolation conditions. Therefore, 4n + 2
interpolation conditions can be obtained from the above def-
inition. However, two boundary conditions are required to
deal with the cubic spline interpolation function. The com-
monly used boundary conditions are as follows:

(1) Natural boundary conditions. The second order
derivative at the two endpoints is zero, namely:

f ″ x0ð Þ = f ″ xnð Þ = 0: ð6Þ

(2) Clamped boundary conditions. The first order deriv-
ative at the first and last node is specified, namely:

f0 ′ x0ð Þ = A, f n−1 ′ xnð Þ = B: ð7Þ

(3) Non-twisting boundary conditions. The third order
derivatives of the splines at the first node are the same as
at the second node. The third order derivatives at the last

(a) Sampling diagram (b) Network path diagram

Figure 2: Offline learning phase.

Figure 3: Online query phase.
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node are also equal to it at the penultimate node, namely:

f0 ′′′ x0ð Þ = f1 ′′′ x1ð Þ, f n−2 ′′′ xn‐2ð Þ = f n−1 ′′′ xn−1ð Þ: ð8Þ

4.2. PRM Optimization Algorithm Combined with Cubic
Spline Interpolation. On the optimal path searched by the
bidirectional PRM algorithm, interpolation algorithm is car-
ried out according to the position of random path nodes.
Spline interpolation is distributed interpolation in the

searched node set. The specific algorithm process is as
follows:

(1) Store key nodes. The first step in our algorithm is to
build a txt file, which is used to store each inflection
point in the PRM path, namely, the key node. Store
these key nodes in the form of a file to facilitate later
process of spline interpolation algorithm

(2) Presuppose sampling point. The linspace function is
used to generate the linear spacing vector, and the N-
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Figure 4: Path optimization process of bidirectional PRM.
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point row vector between x1 and x2 is generated. N
represents the number of samplings point between
two sampling points. In this paper, the sampling
point is set to 50 at the beginning. Then, the sam-
pling points are set to 100 and 150, respectively.
The optimal combination of PRM algorithm and
bidirectional PRM algorithm will be confirmed
according to different data information obtained
and simulation results

(3) Ensure f ðxÞ Spline interpolation obtains a cubic
polynomial y = f ðxÞ by analyzing the function equa-
tion. The cubic polynomial will measure discrete
data breakpoints (x, y) in the manner of approxima-
tions. According to the theorem, it can be known
that only one line can be determined between two
points. However, it is not limited to one for the cubic
polynomial. Therefore, in this paper, apply non-
twisted boundary conditions to obtain the exact
expression of the cubic polynomial. The cubic spline
interpolation is used to calculate the value of the uni-
tary function y = f ðxÞ determined by vector x and y
at the interpolation point xx. Confirm the value of
yy after finding xx. Match each column of y matrix
with x and get interpolation point function value
yy matrix

(4) Set the return value. Return the coefficient matrix of
piecewise spline polynomial determined by vector x
and y for the calculation of other commands, and
then draw the function curve after cubic spline
interpolation

From the above path optimization process, it can be
seen that the number of turning points of the smoothed
path is less, and the path is smoother, which can reduce
the turning times of the mobile robot in navigation, make
the mobile robot move more flexible in the working envi-
ronment, reduce the loss of running time and energy
consumption of the mobile robot, and improve work
efficiency.

In this paper, the flow diagram is used to show the whole
optimization process according to the path optimization
method of bidirectional PRM described above and the inter-
polation method of integrating cubic spline, as shown in
Figure 5.

As can be seen from the above flow chart, in the path
optimization process of cubic spline bidirectional PRM algo-
rithm, firstly, initial work is carried out to create point set X
and path set F. Then, the bidirectional PRM search path is
used, that is, the positive direction and the negative direction
are alternately searched. The path points are connected in
turn, and the path connection points are added to the F path
set. When the middle coincident nodes are searched in both
positive and negative directions, the optimal path has been
found, otherwise continue the cycle. Finally, according to
the path set obtained by bidirectional PRM, the four steps
of the above interpolation algorithm are used to smoothen
the path and obtain the final path.

5. Simulation and Experimental Verification

5.1. Simulation Verification. In this paper, adopt a computer
with a processor of Rui Long R4800H, a display card of
RTX2060, and a memory size of 16GB to carry out simula-
tion experiments in order to verify the feasibility of the bidi-
rectional PRM and the effectiveness of the cubic spline
smoothing curve. The operating system is Windows 10,
and the simulation platform is Matlab2020. The experimen-
tal results of PRM algorithm, bidirectional PRM, and bidi-
rectional PRM with cubic spline interpolation are
simulated, respectively. In the simulation process, use differ-
ent grid maps to carry out simulation experiments to ensure
that different positions of obstacles can also bring about the
comparative effect of experimental data, so as to make the
experimental results more convincing.

In this paper, three different map environments are
selected for simulation experiments, as shown in
Figures 6–8, where the map size is 500 × 500. Coordinate
(10, 10) is the start node of the mobile robot, and coordinate
(490, 490) is the target node. The black part is the obstacle
part, and the white part is the free action area of the mobile
robot. The broken line is the path diagram without the
fusion of cubic spline interpolation. The curve is the path
diagram with the introduction of cubic spline interpolation.
The sampling point N = 100.

The above simulation results show that the search time
and path length of three algorithms are different. Therefore,

Start

End

Build a point set X and a path set F

Whether the node searched in the positive
direction reaches the target

point?

Whether the node searched in the reverse
direction reaches the target

point?

Join the start node to this node and join the path set F

Join the target node to this node and join the Path set F

Whether the full path is
searched?

A cubic spline interpolation method is
introduced to smooth the path

N

Y

Y

N

N

Y

Figure 5: Flow diagram of path optimization of cubic spline
bidirectional PRM.
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based on a large number of simulation experiments, this
paper makes data statistics on the time and path length
obtained by the three algorithms, and takes the average as
a reference. The specific data is shown in Table 1.

The search time is set as the running time of the algo-
rithm, which can be determined by time function in
MATLAB. Set the path length unit as the map size unit step
size. In Table 1, the bidirectional PRM is optimized com-
pared with the traditional PRM in time of the average search
and in length of the shortest path. The data show that the

average search time of bidirectional PRM is shortened by
24%, 10%, and 31% compared with traditional PRM, and
the shortest path optimization is improved by 2%, 2%, and
4%. That exhibits the improvement of the bidirectional
PRM is not obvious in the path length, but the search effi-
ciency has been greatly improved. The time optimization
results of 31% and path optimization results of 4% in map
3 show that the bidirectional PRM has more obvious effect
with the increase of map complexity. Similarly, the cubic
spline bidirectional PRM algorithm has improved the

(a) PRM (b) Bidirectional PRM diagram

(c) Cubic spline bidirectional PRM

Figure 6: Comparison of experimental results of the three algorithms under Map 1.

(a) PRM (b) Bidirectional PRM diagram

(c) Cubic spline bidirectional PRM

Figure 7: Comparison of experimental results of the three algorithms under Map 2.
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average search time and the shortest path length compared
with the traditional PRM algorithm. From map 1 to map
3, the average search time is reduced by 14%, 9%, and
28%, and the shortest path is optimized by 1%, 4%, and
12%. Although the bidirectional PRM with cubic spline
inevitably loses a certain search time, it has obvious
improvement compared with the traditional PRM algo-
rithm, as shown in Figures 6(c), 7(c), and 8(c). Smooth opti-
mization makes the broken route smoother, so that the
mobile robot walking will be safer and more stable.

The value of sampling point N is crucial to the search
efficiency of the algorithm. At present, the setting of this
parameter is basically determined by experimental data
and empirical values. In this paper, the values of N are set
to 50,100, and 150, respectively, to obtain the experimental
data of the improved algorithm path finding time and path
length, so as to determine the optimal value of N . The spe-
cific experimental data are shown in Table 2.

In Table 2, the path length decreases with the increase of
N , but the corresponding search time increases due to the
increase of calculation amount in the search process. After
selecting the appropriate N , it can be clearly seen that the
original broken line path will be smooth, and the smooth
curve is helpful for the path walking of the mobile robot.
In this paper, a large number of experimental results show
that when N = 100, the bidirectional PRM has the highest
profit ratio when searching the optimal path.

In summary, the bidirectional PRM has faster conver-
gence rate, higher path planning efficiency than traditional
PRM. More, the obtained path quality is the best. After
introducing the cubic spline algorithm, the path is
smoothed, so that the actual walking of the mobile robot is
more stable and safer.

5.2. Experimental Validation. In order to verify the effective-
ness of the improved algorithm and smoothing process, the
experiment applies the bidirectional PRM and the smooth-
ing processing algorithm after inserting the cubic spline to
the actual robot navigation based on ROS. The mobile robot
used in the experiment is a four-wheel walking wheeled
robot with two rear wheels and two front wheels. The rear
wheel is the driving wheel and the front wheel is the passive
wheel. Figure 9 shows:

(a) PRM (b) Bidirectional PRM diagram

(c) Cubic spline bidirectional PRM

Figure 8: Comparison of experimental results of the three algorithms under Map 3.

Table 1: Comparison of experimental results of different maps.

Map model
Average search time/s Average optimal path length

PRM Bidirectional PRM Cubic spline bidirectional PRM PRM Bidirectional PRM Cubic spline bidirectional PRM

Map 1 1.85 1.41 1.60 742.19 726.56 734.38

Map 2 1.72 1.54 1.56 732.18 718.75 710.94

Map 3 1.73 1.18 1.24 984.38 945.31 867.18

Table 2: Comparison of experimental results of different N values.

The value of N Path search time/s Path length

50 0.46 823.32

100 1.33 808.90

150 3.07 798.08
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In this paper, a complete mobile robot control plat-
form is built, which is mainly composed of laser radar,
core control board STM32F103ZET6 (hereinafter referred
to as STM32), grating encoder, motor driver, brushless
DC motor, battery module, front and rear wheels, and
multiple interfaces. ROS sends out the encoder query
instruction. The STM32 transmits the encoding informa-
tion to ROS by serial communication. According to the
information, ROS sends the topic of/cmd_vel to help fea-
ture pack subscribe topic information, then sends the
speed instruction to STM32. After receiving the instruc-
tion, STM32 sends it to the DC brushless motor driver
in the form of PWM pulse wave. The rotation of the
motor is controlled by the voltage of the driver. After
the motor rotates, the grating encoder will work. Pulse sig-
nal obtained by the information of the rotation is trans-
mitted to STM32, which is integrated into the encoding
information for ROS query. This loop realizes autonomous
navigation of mobile robot. The overall structure is shown
in Figure 10.

In Figure 10, Industrial Personal Computer (IPC) is the
decision-making unit. As the upper computer, IPC carries
all instructions send and receive by ROS. STM32 is con-
nected to IPC through the USB line. Upper computer sends
control and query instructions to STM32 and STM32 can
also send encoder values and corresponding messages to
upper computer.

In order to ensure the reliability of experimental data,
this paper will take the laboratory map as the working envi-
ronment. The traditional PRM, the bidirectional PRM, and
the cubic spline bidirectional PRM are, respectively, carried
out the physical experiment. The results are shown in
Figures 11 and 12.

The actual path walking data of mobile robots are shown
in Tables 3 and 4, where N = 100.

Set the path length unit in the table to the map size unit
step. The search time is the algorithm running time and can
be determined using a time function in the ROS script. The
walking time is the time taken by the robot from the starting
point to the end point. Tables 3 and 4 are the experimental

Router

LIDAR

Caster

Motor driver IPC STM32

Driver
wheels

Ultrasonic

Figure 9: External and interior figures of real mobile robot chassis.

Industrial personal computer (IPC)
Linux/ROS LIDARRouter

USB

STM32F103ZET6

Motor driver

Emergency
stop switch
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IMU

Left and right drive wheels

Grating encoder

BMS

GPIO

Timer

PWM pulse
signal,

direction,
and

enable

Two timer

Rotate

Serial port

Two timer

The
positive

and
negative
direction

Voltage
signal 

Serial port

Serial port

Figure 10: Hardware architecture of mobile robot.
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data comparison of traditional PRM, the bidirectional PRM,
and the cubic spline bidirectional PRM in the case of same
environment and same conditions. In Table 3, in the case
of target node 1, compared with traditional PRM, the path
length of the bidirectional PRM is shortened by 8.5%, and
the pathfinding time and walking time are reduced by

27.9% and 9.7%, respectively. The path length of the cubic
spline bidirectional PRM is shortened by 19.0%, and the
path searching time and walking time are reduced by
12.5% and 15.3%, respectively. Table 4 shows that in the case
of target node 2, compared with PRM algorithm, the path
length of the bidirectional PRM is reduced by 6.3%, and

(a) PRM (b) Bidirectional PRM diagram

(c) Cubic spline bidirectional PRM

Figure 11: Comparison of three algorithms under target node 1.

(a) PRM (b) Bidirectional PRM diagram

(c) Cubic spline bidirectional PRM

Figure 12: Comparison of three algorithms under target node 2.
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the pathfinding time and walking time are reduced by 29.7%
and 4.7%, respectively. The path length of cubic spline bidi-
rectional PRM is shortened by 12.5% and the efficiency of
path finding time and walking time are improved by 8.3%
and 13.7%, respectively.

According to the above analysis, compared with tradi-
tional PRM, the path length searched by cubic spline PRM
is better, and the path search time and robot walking effi-
ciency are higher. Therefore, the optimization algorithm in
this paper is an effective and feasible path planning
algorithm.

6. Conclusion

In order to solve the shortcomings of the traditional PRM
with slow convergence speed and large number of turning
points in path optimization, a cubic spline bidirectional
PRM algorithm is proposed in this paper. Firstly, the
improved bidirectional PRM uses the alternate search
method of positive and negative directions to save time
and improve the convergence speed of the algorithm. Sec-
ondly, the cubic spline interpolation method is integrated
to improve the smoothness of the path and ensure that the
mobile robot can work more safely. Finally, through the sim-
ulation experiment and the physical experiment, the results
show that the cubic spline bidirectional PRM not only has
a better execution time, but also has better path length than
other methods. Moreover, the improved PRM can effectively
solve the path planning task of mobile robot.
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