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Ride-sharing services, such as ride-hailing and carpooling, have become attractive travel patterns for worldwide users. Due to the
high dynamic topology, heterogeneous wireless communication mode, and centralization, the Internet of Vehicles (IoV) is much
more vulnerable to security issues such as privacy theft, single point of failure, data island, and unauthorized access, resulting in
great security risks, while ride-sharing services provide convenience. Blockchain technology used to solve the security problems of
the IoV has become a current research hotspot, including authentication and privacy protection. Nevertheless, the existing
algorithms still face challenges such as large amount of computation, low throughput, low scalability, consensus, and node
security. Achieving an efficient, lightweight, and scalable secure blockchain–based IoV system still needs to be solved urgently.
In this paper, we propose an effective consensus algorithm called Modified Proof of Reputation (MPoR). Firstly, by using the
average network access time of the whole network nodes as the filtering threshold, the number of consensus nodes can be
controlled adaptively. Then, a new multiweight reputation algorithm is proposed to quantify the reputation value of nodes, so
as to detect and eliminate malicious nodes in the consensus node pool. Theoretical analysis and extensive simulation
experiments reflect that under the IoV scenario, MPoR can adaptively select the number of consensus nodes, to effectively
improve the consensus efficiency. When malicious nodes are less than 1/3 of the total nodes in the network, MPoR can
effectively resist latent attack and collusive attack and has strong robustness.

1. Introduction

IoV is a typical application scenario for IoT technology. As
an emerging concept, IoV is considered to help realize the
vision of intelligent transportation system (ITS). Vehicles
are equipped with high-tech equipment, such as GPS and
radar, which can help realize the interconnection between
vehicle and everything (V2X) through a variety of commu-
nication methods, to form a self-organizing network called
Vehicular Ad-Hoc Network (VANET). With the develop-
ment of the sharing economy and VANET, ride-sharing ser-
vices such as ride-hailing and carpooling have become a
common travel method. Drivers can find and provide driv-
ing services either to passengers with requirements precisely
or to passengers with similar travel plans. The ride-sharing
service has significant social efficiency: it can not only allevi-

ate traffic congestion but also reduce the economic burden of
people, as well as achieve environmental gain by reducing
vehicle emissions and noise [1]. Currently, almost all ride-
sharing service platforms are designed and operated on cen-
tralized systems, which rely on a trusted third party to store
and process user travel information and transactions. Man-
agement is not transparent; the central node has all the con-
trol rights to decide policies and service conditions [2]. Once
the central node has been attacked, the whole system will no
longer ensure security. It is reported that many safety issues
have occurred: carpool data was leaked to unauthorized and
untrusted third party through Elastic Compute Service. A
company has been exposed to serious violations of using
the cloud platform to collect and disclose users’ private data
to certain organizations. Various facts indicate that existing
service platforms have potential safety hazards. Blockchain
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is a novel exploration of network world operating rules and
technologies [3]. After a new typical cryptocurrency, Bitcoin
was proposed [4], and scholars have noticed the advantages
of blockchain in the realization of distributed security. In
blockchain-based networks, data is stored in the form of dis-
tributed ledger. Each trusted node has its own copy and
cooperate with each other to maintain secure operation of
the network. A lot of blockchain-based researches have been
carried out in order to achieve the vision of realizing the
smart city, including P2P transaction [5], medical care [6],
supply chain management [7], smart grid [8], federal learn-
ing [9], and IoV [10]. In IoV network, with the help of
blockchain technology, each node can save a copy of travel
transaction records. The central system decentralizes the
control tight, so that passengers and vehicles can communi-
cate directly, decreasing the management cost. Transaction
records are kept in the chain and can ensure security. Mean-
while, it can greatly improve the performance of the ride-
sharing system in terms of computational and communica-
tion overhead. In ride-sharing system in existence, passen-
gers send riding request to the central management
platform, which helps matching passengers with appropriate
drivers. After the matching, both the passenger and the
driver will receive detailed information of each other, includ-
ing pick-up location, planned route, expected delivery time,
and total amount. When the sharing service is completed,
passenger pays to the central system and then transfers to
the driver’s wallet account. It can be seen that there are mas-
sive issues existing. The central node has all the information
from passengers and drivers, which makes it easy to suffer
from a single point of failure. The opacity of matching and
charging operations makes it prone to information monop-
oly or information island. Meanwhile, the system is compu-
tationally intensive and inefficient. There are unresolved
challenges for the blockchain-based ridesharing network
model as follows:

(i) Blockchain is essentially a circular system, with
nodes accessing to the network, uploading transac-
tion records to blocks, block consensus, and block
chaining. Adaptability can monitor the major
changes in each cycle of the system and take actions
to implement the decision [11], so as to reduce
management complexity, dynamically adjust opera-
tion process, and increase robustness. The data
communicated in V2X include not only individual
information, such as transaction information and
service rating, but also traffic events, such as obser-
vation of serious traffic events. Before making emer-
gency response, it is necessary to conduct consensus
verification at the edge layer, evaluating the severity
and site status of the event on the premise of ensur-
ing the authenticity and accuracy of the event. In
this case, the algorithm that can help adaptively
adjust the size of the consensus group is meaningful
and essential. Existing consensus algorithms are
either to find a single miner (such as Proof of Work,
Proof of Stake, and Proof of Elapsed Time) or to
find a group of miner that meet certain conditions

(such as Practical Byzantine Fault Tolerance and
zyzzyva). The size of the consensus group is not
controllable; therefore, the system cannot dynami-
cally balance efficiency and security

(ii) Most of the existing consensus filtering mechanisms
are based on information that can be eavesdropped,
such as the distance traveled [12] and the number of
digital signatures [13]. If there are collusive adver-
saries who can exchange information with each
other in the network, these adversaries can share
and unify information they have got and try to get
selected in a consensus simultaneously and then
implement destructions

(iii) The consensus algorithm based on simple stochastic
filtering may reduce the initiative of honest users to
participate in consensus (some participants may
have been stochastic filtered several times without
receiving any benefits). At the same time, current
consensus algorithms have low selection rate
mostly. In the selection stage, it will cause plenty
of waste of computing power and, consequently,
reduce the desire of users to participate. How to
improve the initiative of legitimate users under the
premise of ensuring security remains an unresolved
issue

In view of the above-mentioned challenges, we propose a
new consensus algorithm for secure ride-sharing service,
called Modified Proof of Reputation (MPoR). When design-
ing MPoR, we consider the following features: (1) all nodes
in the network have opportunities to participate in the con-
sensus; (2) absolute fairness for miners in the selection stage;
(3) lightweight and low computation overhead; and (4) high
scalability. In summary, our specific constructions mainly
include as follows:

(i) Proposed a new consensus algorithm called MPoR
for the consortium blockchain-based ride-sharing
network system. Use the hash value as the quantiza-
tion standard for stochastic filtering, which signifi-
cantly reduces the amount of consensus nodes, as
well as achieves self-adaptive control of the size of
consensus pool. Compared with existing algorithm,
MPoR is fairer and more scalable

(ii) Designed a new reputation rating algorithm based
on multifactors, including miles traveled as estab-
lished route, observation of interactions, service rat-
ing by passengers, and accumulated reputation of
validate blocks. Multiweight reputation algorithm
can make up for the deficiency of single-factor eval-
uation criteria, improve the performance of the
algorithm, eliminate low reputation nodes (could
be adversaries or broken nodes), therefore optimize
the consensus node pool, and encourage nodes to
provide positive activities for the system

(iii) Implemented MPoR systematically in GoLand. Sev-
eral simulation experiments and security analysis
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are carried out, indicating that the proposed algo-
rithm is effective, is efficient, and has higher security
and scalability

2. Related Work

Due to the high mobility, frequently changing topology, and
open and diverse communication environment, compared
to other IoT network models, IoV needs more edge comput-
ing to assist content delivery. Roadside unit (RSU) and vehi-
cle can be considered edge nodes. Instead of uploading data
to a cloud server, they can directly participate in data verifi-
cation and transmission, so as to realize decentralization,
lower delay, and utilization of idle resources. A large number
of researchers have conducted relevant research on edge
computing in lightweight [14, 15], efficiency [16], and
improving QoS [17, 18].

The characteristics of blockchain include decentraliza-
tion, irrevocability, traceability, transparency, autonomy,
and anonymity, which can meet the requirements for imple-
menting edge computing in IoV. In an effort to achieve secu-
rity, scalability, and efficiency, a cohort of scholars has
proposed new blockchain-based IoV application methods
based on the research directions of validation, consensus,
and reputation. The MPoR consensus algorithm proposed
in this paper is applied to consortium blockchain-based
IoV network; the study involved consensus mechanism
and reputation-based incentive mechanism.

For blockchain-based secure ride-sharing service model,
Wang and Zhang [24] proposed a secure data sharing
scheme based on the consortium blockchain, guarantee the
confidentiality and privacy of data interaction through the
attribute-based proxy reencryption algorithm, and reveal
the true identity of malicious users through the reputation
rating. Renu and Banik [25] implement the minimum
matching algorithm to match the ride-sharing request
through the smart contract. Li et al. [26] use the blockchain
to assist in fog calculation to store carpool records. Zhang
et al. [27] proposed a smart contract-based secure billing
protocol to negotiate pick-up location, route, and price in
advance. Li and Wang [19] proposed a location privacy pro-
tection scheme called MinHash to hide the user’s actual geo-
graphical location and optimize the similarity between user
and driver feature vectors. The disadvantage of the above
methods is that the consensus adopts traditional PoW or
PoS, which is inefficient.

In [12], the authors proposed a new consensus algorithm
Proof of Driving (PoD), which is applied to the VANET.
This algorithm can ensure the security of the system on
the premise that the penetration attacker is less than 1/3
and the total reputation of honest nodes is greater than the
total reputation of malicious nodes, but it cannot resist col-
lusive attacks. Meanwhile, because the reputation resets to
zero after each block generation, the system lacks an incen-
tive mechanism and continuity.

Suo et al. [13] proposed a Proof of Travel (PoT) certifica-
tion protocol based on Verifiable Vehicle Miles Traveled
(VVMT). It is mainly aimed at the early deployment stage
of IoV network, where there are not enough benign vehicles.

Vehicles obtain VVMT by interacting with RSU during driv-
ing, and vehicles whose reputation values exceed the thresh-
old can participate in consensus, thus increasing the attack
cost of malicious vehicles. The inadequacy is that vehicles
maintaining VVMT require a massive amount of communi-
cation overhead, and the feasibility of PoT depends on
whether the RSUs are densely distributed.

To ensure security through reputation, Wang et al. [20]
designed a reputation evaluation model based on blockchain
to solve the security vulnerabilities and privacy problems in
Autonomous Vehicle Social Network (AVSN) and stimulate
the legal behavior and content delivery of vehicles. In [21],
Yang et al. proposed a system to evaluate the credibility of
vehicle network data based on blockchain. The reputation
value is based on its historical information rating. Both
scheme adopted PoW consensus, which is inefficient, so
there are obstacles in the implementation.

In [22], Yuan and Wang proposed a contract-based
security block verification incentive mechanism, which can
encourage more miners to participate in block verification.
The weighted subjective logic model is used to introduce a
safe and efficient reputation management scheme, improve
the DPoS consensus, and reduce collusion between stake-
holders and mining candidates. This scheme can prevent
attacks by less than 1/3 malicious miners. The disadvantage
is that the accuracy of weight allocation is not considered.

In [23], the authors proposed a reputation system
applied in ITS. Users interested in traffic information are
regarded as the main participants of the architecture. Data
are verified by crowd-sourcing and securely shared among
legitimate users. The consensus is verified by cluster, and
the consensus threshold is set. The disadvantage is that the
network has a lower scalability and the consensus delay will
increase significantly as the number of nodes increases.

The summary of related works based on several factors is
listed in Table 1. We can see from the above summaries and
Table 1 that existing works still have deficiency on incentive,
performance optimization, or security optimization.
Through MPoR consensus and multiweight reputation, our
study can achieve improvements on the above concepts.

3. Basic Concept and Initial Setting for
Blockchain-Based Ride-Sharing Network

3.1. System Components. Firstly, we clarify our purpose
again: design a self-adaptive consensus algorithm for consor-
tium blockchain-based ride-sharing network system. The
key point is that the system can adaptively adjust the con-
sensus scale according to the importance and requirements
of event to be validated, so as to reach the balance of security
and efficiency. We adapt a typical VANET distributed net-
work model, including trusted authority (TA), road-side
unit (RSU), vehicle node (full node), and passenger node
(lightweight node). These infrastructures and devices com-
municate with each other through dedicated short-range
communication (DSRC), long-term evolution (LTE), 4G,
5G, and other communication methods to share informa-
tion. Figure 1 shows the composition and connections of
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the network between various components. The components
are described in detail as follows.

TA: TA is a kind of infrastructure to ensure security,
whose main responsibility is system initialization. Its func-
tions include registration, certificate issuance, and key man-
agement. When RSU/users enter the network for the first
time, it submits the registration request through secure
channels (such as offline), and then, TA will generate a
public-private key pair and digital certification. Users save
the key pair and use their private keys to sign all transactions
in a subsequent process. TA stays immune to all kinds of
attack, and the contents given are reliable and trustworthy.

Most of the time, TA remains offline. Only when the net-
work finds malicious behaviors, TA will disclose the true
identity of those nodes.

RSU: RSU is responsible for providing trustworthy iden-
tification as well as helping create communication between
all vehicle nodes and passenger nodes under its coverage. It
has sufficient computing power, network communication
capability, and storage space and is well equipped with a
Trusted Execution Environment (TEE). When the system
needs to generate blocks, RSU will broadcast consensus invi-
tation to the vehicle nodes within its coverage to participate.
In our scheme, RSU remains trustworthy and participates in

Table 1: Summarize of related works.

Reference Consensus Incentives Performance optimization Security optimization

[19] PoW — — Location privacy

[12] PoD — Scalability Expect collusive attack

[13] PoT Travel distance — Several kinds of attacks

[20] PoW+PoS Reputation — User privacy

[21] PoW Reputation Efficiency —

[22] DPoS Reputation — 1/3 malicious nodes

[23] PBFT — — External attack

Our study MPoR+PBFT Multiweight reputation Scalability, latency Several kinds of attacks
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Block
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Block
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Figure 1: Overview of blockchain-based ride-sharing network.
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the whole consensus process, recording the access time-
stamp of all nodes, giving security identification, putting for-
ward consensus requirements, storing and updating
reputation ratings, and providing incentives.

Vehicle node: vehicles are equipped with an advanced
communication device, wireless transmission module, and
TEE and have rational computing power to execute simple
calculations, such as verifying digital signatures and calculat-
ing travel routes. Vehicles work as full nodes for storing dis-
tributed ledger of blockchain. Vehicles use positive activities
to accumulate reputation; when the system generates new
blocks, vehicles can be selected for consensus as candidate
miners based on its reputation and then improve their reputa-
tion ratings and obtain corresponding rewards through
election.

Passenger node: passengers use applications in portable
Internet-enabled devices to obtain ride-sharing services.
These devices belong to the lightweight node and cannot
save the distributed ledger. In this system, passenger nodes
can only demand for ride-sharing service as well as give ser-
vice rating after the ride is completed, unable to participate
in consensus as candidates.

Consortium blockchain: blockchain stores individual
pseudonyms, transaction records, and event information in
the network. Under the ride-sharing service model, content
stored in the block includes detailed ride records, transaction
bills, and vehicle reputation values. After registration, any
user can view nonprivate information on the block and
obtain services [12].

Ride-sharing service platform: ride-sharing service plat-
form implements as a decentralized application based on
blockchain. It is an interface for both vehicles and passen-
gers to transact automatically, including service matching
and QoS rating.

3.2. Threat Model. Assuming that adversaries work as a
group and driven by interests, its main purpose is to gain
economic benefits through various means and ruin the secu-
rity of the system comes second. Whether it is an internal
attacker with credentials or a controlled broken node, if they
enter the final step of consensus, they would send forged
information and give opposite validation results to do evil.
Meanwhile, it is assumed that those adversaries are econom-
ically rational; that is, they will pay attention to their attack
cost. They will not spend massive cost to do evil for a long
period, and due to the self-check security of the system
model, adversaries will be found immediately after doing
evil. Depending on the means and purpose used, adversaries
can

(i) control most vehicles to control the entire network
using overwhelming computing power

(ii) eavesdrop the communication channel between the
target vehicle and RSU, record the information con-
tent, and then modify its own information to the
range of normal nodes to penetrate the system

(iii) collude with other malicious vehicles, exchange
each other’s vouchers and valid information, and

obtain the same identification through same net-
work behavior, through the stochastic filtering,
enter the final consensus step, and then break the
system as their wishes

(iv) lurk in the system, behave as normal nodes, and
provide positive activities to accumulate reputation.
Only after being selected into the consensus group
will it start to do evil in order to gain benefits

In Section 4.5, we will describe in detail the impact of
various attack methods of adversaries and give the defense
methods of our algorithm as well.

3.3. Reputation Calculation Model. The reputation rating of
each vehicle node can be composed of multiple factors,
which are recorded in each communication with RSU as a
part of vehicle status information. In this paper, we use miles
traveled as established route, observation of interactions, ser-
vice rating by passengers, and accumulated reputation of
validate blocks as the value of vehicles’ reputation. Only a
part of vehicles with large reputation values are eligible to
participate consensus. The specific description of each repu-
tation factor is as follows:

Miles traveled as established route: when providing a
ride-sharing service, the vehicle will report its location infor-
mation in the continuous communication process with the
RSU. The RSU checks whether the vehicle travels as the
established route and then quantifies mileage into reputation
value. With the same mileage, vehicle passes more RSUs will
gain more reputation. The advantage of using mileage as
reputation rating factor is that it can promote the network
participation of vehicles. Disadvantages arise because it does
not take into account that legal vehicles may have a short
travel route due to practical factors and cannot obtain many
reputation values, and malicious nodes can easily accumu-
late a large amount of reputation by this means.

Observation of interactions: when in the process of driv-
ing, vehicles will share each other’s information with adja-
cent vehicles through V2V channel, including but not
limited to driving status, road condition status, and adjacent
geographic information, such as gas stations. Adjacent inter-
actions will evaluate the status of the vehicle nodes during
communications and then upload it to RSU. RSU will obtain
the vehicle node observation rating using the subjective logic
model [28]. Since it is impossible to predict whether the
vehicles with which the current node interacts are malicious,
the node may have incorrect ratings. Although the malicious
nodes can be found after consensus immediately, it still has
the risk of being attacked.

Service rating by passengers: passengers will rate vehicle
service quality after each ride-sharing service. Since the rat-
ing is highly subjective, it is not advisable to use the service
rating alone as a standard for evaluating reputation.

Accumulated reputation of validate blocks: after each
round of block generation, the RSU will reward the nodes
in the final consensus group with reputation points. This
factor could incentivize nodes to participate consensus.
The disadvantage is that since the selection of consensus
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miners is based on stochastic filtering, if a node is randomly
filtered out several times at previous rounds of block gener-
ation, even if it is selected in the subsequent block generation
stage, it will still be shaved because it does not have enough
accumulated reputation. Therefore, using this as a sole factor
is not advisable as well.

It can be seen that all kinds of current reputation evalu-
ation have limitations in quantitative standards. Therefore,
in this paper, we accumulate and normalize the overall rep-
utation of vehicles through the four factors mentioned
above; see Section 4.3 for specific algorithm.

3.4. System Model

3.4.1. System Initialization. Vehicle and passenger nodes that
join the system for the first time submit their identity infor-
mation to the TA. After TA validates their identity, it issues
pseudonym, digital certificate, and generate private-public
key pair through elliptic curve to complete identity registra-
tion. The details of the nodes are stored in the ledger of the
blockchain in the form of {public key | private key | pseudo-
nym | network access time | hash value| signed (public key
|private key|pseudonym|network access time|hash value)}
as a transaction.

3.4.2. Joining the System for the First Time. Whenever any
node enters the current RSU coverage, it communicates with
RSU; sends its pseudonym, current timestamp, and travel
record; and signs it. When the RSU receives the message, it
verifies the signature. After confirming the identity informa-
tion of the vehicle node, it assigns a unique ID to it as the
sole special mark in the consensus stage. Meanwhile, it gen-
erates a block to record the information of nodes.

3.4.3. Activities in the Network. The activities of nodes in the
network can be divided into three parts, including (1) vehicle
and passenger nodes record their travel records, including
departure and arrival location, time, driving route, and
transaction amount. In addition, passenger nodes will also
rate the service quality when service has finished. (2) When
a vehicle observes events like traffic jams, traffic accidents,
and improper behaviors of other vehicles, it records and
then broadcasts the information to RSU and other nearby
vehicle nodes. (3) When a vehicle node is about to leave
the current RSU coverage, it communicates with the current
RSU, records its activities within the coverage of the RSU,
and records including ride-sharing service, consensus partic-
ipation, and accumulated reputation. RSU signs and replies
after verification. When the node enters coverage of new
RSU, it communicates to the current RSU and RSU verifies
the signature and then assigns a new unique ID to vehicle
node.

3.4.4. Miner Selection. When the system collects enough
records and needs to generate a new block, the RSU broad-
casts the invitation to the vehicle nodes within its coverage,
and vehicle nodes that respond within a limited time will
become miner candidates. All mining candidates use the
improved scheme proposed in this study to select the final

consensus miners. The details of the algorithm will be given
in Sections 4.2 and 4.3.

3.4.5. Consensus and Block Generation. The final consensus
uses PBFT as the basic protocol. After the miners are
obtained through MPoR, the PBFT protocol is used to gen-
erate and broadcast blocks. When the generation is com-
plete, the reputation of the miners will be updated based
on the contribution. Reputation will have an impact on the
next mining selection. The specific implementation process
of PBFT algorithm is also given in Section 4.4.

3.4.6. Termination. There are two type of terminations,
including (1) network will reset reputation values of all
nodes every time after several blocks generated (the number
depends on the network status). The purpose of a reset is to
prevent malicious nodes from accumulating reputation
values and to promote the continuity of legal behaviors. His-
torical reputation values will be retained on the blockchain
and can be used as currency to participate in real transac-
tions to reward positive activities. (2) No matter whether a
vehicle node goes off autonomously or is found to be a faulty
node and forced to go off by the system in the consensus. At
this time, its key pair and digital certificate must be revoked,
and the node cannot participate in network activities. When
a node wants to reenter the network, it needs to reregister
with TA. Vehicle information will be permanently retained
on the blockchain.

4. Design of Modified Proof of
Reputation Algorithm

4.1. System Specific Settings. The data communicated in V2X
include not only individual information, such as transaction
information and service rating, but also traffic events, such
as observation of serious traffic events. Before making emer-
gency response, it is necessary to conduct consensus verifica-
tion at the edge layer, evaluating the severity and site status
of the event on the premise of ensuring the authenticity
and accuracy of the event. In this case, the algorithm that
can help adaptively adjusting the size of the consensus group
is meaningful and essential. Our proposed algorithm MPoR
can encourage nodes to accumulate reputation through
legitimate activities in the network to compete for nomina-
tions on the premise of ensuring fairness and randomness.
Everyone in the network is eligible to participate in miner
competition, but only nodes chosen by MPoR can partici-
pate in consensus. The size of miner’s pool of consensus is
adaptively adjusted by MPoR, balancing efficiency, and
accuracy according to the event state. MPoR includes two
parts: stochastic filtering and reputation optimization.
Figure 2 shows the processes for implement MPoR; specific
process is discussed in Sections 4.2 and 4.3 separately.
Firstly, we clarify the initial assumptions and settings of
MPoR algorithm as follows:

(i) In our proposed system, TA and RSU are trustwor-
thy and will not be attacked. In this scheme, the
security of RSU will not be considered. The secure
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consensus of RSU will be the subsequent research
goal

(ii) Assuming that the transmission efficiency of all
transmission channels are 100%, all information
sent by each node can be reliably transmitted, and
adversaries can only eavesdrop and cannot modify
the broadcast information

(iii) The identification vehicle node obtained from RSU
must be accurate and unique. It is stored in the
TEE and cannot be modified by anyone

(iv) RSU will adaptively adjust the size of the miner’s
pool for the next time of consensus according to
the current generation status. Adjustment condi-
tions involve time, computing power, event cover-
age, and degree of impact. Our scheme will not
discuss how it implement, but only the possibility
that the proposed algorithm can adaptively adjust
the size of the consensus miner’s pool

(v) There are latent adversaries in the system. Their
goal is to participate in consensus and then obtain
economic benefits through giving false information.
If the economic benefit is less than the cost
incurred, the attack will be abandoned at once

(vi) There are malicious nodes in the system. Their goal
is to destroy the system. Since our scheme still
adopts PBFT as the consensus underlying algo-
rithm, it is assumed that the number of malicious
nodes should not exceed 1/3 of the total nodes. In

subsequent section, we will theoretically prove that
when the total number of attackers in the network
does not exceed 1/3, the number of malicious nodes
in the final consensus group will not exceed 1/3 as
well, meeting the premise of safe operation of PBFT

The key notations used in this paper are listed in Table 2.

Annotation

1. Authentication when accessing the network.

2. Ride-sharing service matching.

3. Activities, accumulate reputation.

4. Broadcast for block generation, respond.

5. First step of MPoR - stochastic filtering.

6. Verify identities on the blockchain and query the 
reputation value so far.

7. Second step of MPoR - reputation optimization.

8. Broadcast chosen miner nodes.

9. Consensus of chosen miner nodes.

10. Reach a consensus, add block to blockchain.

Content of block
Accoun information

Carpool matching records
Transaction records
Reputation values

RSU PassengersVehicle nodes

Consortium
blockchain

1 12 2
3

4

3

3

4

5 7

6

8

6

2 29

10
3

3

Figure 2: Frameworks for ride-sharing services based on MPoR.

Table 2: Key notations.

Notation Definition

PKRSUi
, SKRSUi

Public-private key pair of RSUi

PKvi
, SKvi Public-private key pair of vi

Addi Wallet address of vi
Hash xð Þ Hash function of x

M xf g Digital signature of x

U idi Unique identification of vi

N ,Na,Nn Amount of all/adversary/normal nodes

α
Percentage of nodes required for

block generation

Ti, Tave
Timestamp/average timestamp of

accessing the network

Labs, Lsf , Lchosen List of certain pool

di, oi, si, pi Reputation value

σ, ρ Normalization factor

γ, ϵ, ζ, η, τ Weight factor
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4.2. First Step of MPoR: Stochastic Filtering. When the vehi-
cle node Vi enters the current RSU coverage, it communi-
cates with the RSU and provides status information Sit at
the access time t, which is defined as follows:

Sit = PKRSUi
PKvi

�� ��Addi hash Sið Þk kM PKRSUi
PKvi

�� ��Addi hash Sið Þj� �
:

ð1Þ

PKRSUi
can be ignored if it is the first communication

after accessing the network firstly or network reset. Sit
includes the historical cumulative reputation and the real-
time reputation of vi. After the RSU verifies Sit , a special
identification U idi corresponding to vi is generated accord-
ing to the timestamp and access order when entering the
network. There is no association between any two U idi , and
it cannot be derived.

At certain time, RSU broadcasts the block generation
request to all nodes within its coverage, and vehicle nodes
that reply within a limited time will become miner candi-
dates. RSU then calculates the average network access time
Tave,

Tave =
∑i∈NT
N

, ð2Þ

and the percentage α of miner required for this time of gen-
eration in all candidate miners as the target threshold of sto-
chastic filtering, that is,

Targethash = Hash Tave αkð Þ: ð3Þ

HashðÞ denotes hash function, which transforms any
length of input into fixed length of output, and output is
the hash value. Hash function is a kind of compressed map-
ping, and it is impossible for an attacker to obtain the spe-
cific contents of the input content from the hash value. In
this paper, we adopted SHA256 (Secure Hash Algorithm

256) as the hash function. SHA256 transforms plain content
to a 32-byte hash value. Then, we can quantizes hash values
for comparison.

The number of miners required is determined according
to the content of the block. As adversaries cannot control all
online vehicles and RSU is secure, neither Tave nor α can be
predicted; that is, adversaries cannot know the target thresh-
old of stochastic filtering.

Next, RSU calculates the hash value of U idi , then quan-
tizes HashðU idiÞ and Targethash into a computable number,
compares the difference, records the absolute value of the
difference, and stores it in Labs in an ascending order. Then,
select the first α part of vehicle nodes in Labs according to the
required amount and stored in Lsf . This part of the nodes
will participate in the next step, while other nodes will end
this selection time. It can be seen that the complexity of
the stochastic filtering scheme is OðNÞ. The pseudocode of
this step is provided in Algorithm 1.

Assuming the total number of malicious nodes f not
greater than ð1/3ÞN , so number of honest nodes a is N − f .
Because filtering is completely stochastic and Targethash
cannot be predicted by any node, the probability Pf of
selecting malicious nodes is ð f ∗Nsf Þ/N , which is less than
ð1/3ÞNsf . Therefore, when malicious nodes in the network
do not exceed 1/3 of the total participating nodes, the secu-
rity of the system can be guaranteed.

4.3. Second Step of MPoR: Reputation Optimization. When
the stochastic filtering is completed, calculate the reputation
value of the nodes in Lsf and select half of the nodes with the
larger reputation value, so as to maximize the total reputa-
tion value of the final consensus group by limiting the num-
ber of nodes. Selected nodes will be acting as miners and
generate block through PBFT. The pseudocode of this step
is provided in Algorithm 2.

The reputation value can be composed of multiple fac-
tors. It is recorded in each communication with RSU as a
part of vehicle status information and can be accumulated
across different RSUs. After verification by the consensus
group, it is added to the blockchain as a transaction. After
the RSU completes several generations (recorded as one
round), the system will reset the reputation value of each
vehicle node so far (the reputation that has been added on
the blockchain will be permanently retained as the historical
reputation value) and start accumulating again.

In this study, we limit the range of values of each reputa-
tion value to normalize to [0,1], and the overall reputation of
the vehicle can be calculated as

Ri = σ ∗ γdi + ϵoi + ζsi + ηpið Þ, ð4Þ

where σ is the normalization factor, γ, ϵ, ζ, η is the weight fac-
tor, and di, oi, si, pi represent miles traveled as established
route, observation of interactions, service rating by passengers,
and accumulated reputation of validate blocks separately.

Miles traveled as established route adopts Verifiable
Vehicle Miles Traveled (VVMT) proposed in [13]. The vehi-
cle moves along the predetermined path, obtains the

Input: List of vehicles LN , Percentage parameter α
Output: List of vehicles after stochastic filtering Lsf
1: Calculate average timestamp from Equation (2)
2: Calculate target hash from Equation (3)
3: for i = 0 ; i <N ; i + + do
4: Calculate hash of Vi:

HashVi =HashðTkUidi
Þ

5: Calculate absolute difference value between
Targethash and HashVi

6: Add in list Labs
7: end for
8: Sort Labs in ascending order
9: for i = 0 ; i < αN ; i + + do
10: Add LabsðiÞ into Lsf
11: end for
12: Broadcast chosen result
13: return List Lsf

Algorithm 1: Stochastic filtering.
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location certificate with digital signature from each RSU, and
then quantifies the reputation through the location signature
chain. The specific calculation is shown as follows:

di = f LSTi , n
� �

= ρ〠
t

= 1Td lsti − 1, lsti
� �

+ 1 − ρð Þ n
nmax

�d, ð5Þ

where ρ is the quantization factor, set to 0.5; d is the Euclid-
ean distance; n is the total number of location signatures in
the proof set lsti held by vi; nmax is the maximum number
of location signatures that the vehicle can obtain in a certain
area; and �d is the average distance.

Observation of interactions adopts the subjective logic
model proposed in [28]. The interactive vehicle vj adjacent
to vi will evaluate according to the state of vi during commu-
nication and then broadcast it to RSU. RSU obtains the
observation rating of vi through the subjective logic model
combined with the observation opinions. Subjective logic
uses a tuple wj:i to denote the degree of belief from j to i,
defined as

wj:i ≡ bj:i, dj:i, uj:i

� �
, ð6Þ

wherebj:i, dj:i, uj:i ∈ ½0, 1�represent nodej’s belief, disbelief,
and uncertainty on nodei.

Suppose RSU receives x interaction opinions on vi; δx
identify the weight factor of the recommender x, for each
recommender x ∈ X, as follows:

δx =
bRSU:j · cj:i

∑x∈XbRSU:x · cx:i
, ð7Þ

where cj:i = bj:i + dj:irepresents the degree of familiarity thatj
is withi.

According to δx , subjective opinions of different recom-
menders are combined into a single opinion, which is called
observation of interactions. First, calculate the interaction
opinions of vi:

bintx:i =
1

∑x∈Xδx:i
〠
x∈X

δx:ibx:i,

dintx:i =
1

∑x∈Xδx:i
〠
x∈X

δx:idx:i,

uintx:i =
1

∑x∈Xδx:i
〠
x∈X

δx:iux:i:

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

Then, calculate the final observation rating of vi by

oi = bintx:i + κuintx:i , ð9Þ

where κ is the uncertainty influence level, set to 0.5.
The initial value of service rating is 0. After the vehicle

completes a ride-sharing service, passengers will rate the ser-
vice quality as sqn. The rating is uploaded to RSU and broad-
cast to all nodes after verification. When generating a new
block, calculate the average value of all ratings obtained so
far as the service rating:

si =
∑n∈Nsqn

N
: ð10Þ

Accumulated reputation of validate blocks of vehicle vi is
the reward for successfully generating blocks in each round
of consensus, reflecting the positive contribution of vi to
the network. Denote m as the number of participants in vi,
and Nm is the total number of miners, and Bm is the total
reward. The accumulated reputation pi is the sum of the
rewards obtained from all activities of the block generation
that the node participated in the current round. The calcula-
tion is as follows:

pi = 〠
m∈M

τiBm

Nm
, ð11Þ

where τi is the weight factor that is related to whether vi is a
miner or a leader, set to 0.8 or 0.2.

After completion of the selection of Lsf , RSU calculates
the total reputation value Rsum according to the nodes in
Lsf and selects ð1/2ÞRsum as the target reputation threshold.
Order the reputation value from high to low, select the node
until the total reputation value of the selected node exceeds
the target reputation threshold, and the selected node is
stored in Lchosen, which is the consensus group for the cur-
rent block generation.

It can be formulated as a Bayesian game when the adver-
saries and normal vehicles run in the network as two groups,
and each group has incomplete acquaintance about the
resource other group uses for defense. Assume that the

Input: List Lsf , Weight factor γ, ϵ, ζ, η
Output: List of vehicles after reputation optimization

Lchosen
1: for i = 0 ; i < lenðLsf Þ ; i + + do
2: Calculate di, oi, si, pi From equation (5), (9), (10), (11)
3: Calculate normalized reputation from Equation (4)
4: Add Ri into List Lrep
5: Rsum + = Ri
6: end for
7: Sort Lrep in descending order
8: Calculate target reputation TargetSum
9: for i = 0 ; i < lenðLrepÞ ; i + + do
10: if Sumcurrent > TargetSum then
11: break
12: else
13: Sumcurrent + = Ri
14: Add vi into Lchosen
15: end if
16: end for
17: Broadcast Lchosen to all nodes
18: return List Lchosen

Algorithm 2: Reputation optimization.
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strategy space of the adversary group follows a uniform dis-
tribution Sadv ~Uð0,NaÞ, Na represents the maximum
number of adversaries. Similarly, normal vehicles follow uni-
form distribution Snor ~Uð0,NnÞ and Nn denotes the max-
imum number of normal vehicles that respond to participate
in the selection.

In our algorithm, assuming the worst case, the malicious
node makes a part in Lchosen and then becomes the final con-
sensus groupmember or even the leader node through reputa-
tion optimization. The malicious node must have at least a
reputation value greater than the average reputation. Assum-
ing that the acquisition and contribution of all four factors of
reputation value are linear. The contribution value is denoted
as θ for each factor to gain the same reputation value, and the
cost of each θ is Cm. If the reputation threshold of Lchosen is Rt ,
the contribution of malicious vehicles in this round of consen-
sus election is at least Rt/θ. As the first step of filtering is sto-
chastic, α can be seen as the probability of being selected.
The total cost of adversary group can be computed as follows:

Cadv =
Na · Cm · Rt

θ · α
: ð12Þ

According to the PBFT rules, if the adversary group col-
ludes and destroys the system, Na must be greater than 1/3
of the total number N in the network; that is, Na must be
greater than ð1/2Þ/Nb. At this time, the total profit Uadv of
the adversary group is

Uadv = Badv Sn < 2Sa,

Uadv = −Cadv otherwise:

(
ð13Þ

Badv denotes as the reward for successful attack. Sn and Sa
represent the total resources Nn and Na paid to win the game.
If attack is given up, the return of the adversary group is 0. If

participating in the consensus, the return depends on the dif-
ference between theBadvandCadv, that is,

E Uadv½ � =
ð2Sa
0
BadvdSn +

ðSn
2Sa

− CadvdSn: ð14Þ

To make E½Uadv� greater than 0, we have the total
resources paid by adversary group which is

Sadv >
Nb

2
−
α · θ · Badv
Rt · Cm

: ð15Þ

From Equation (15), we can see that when the number of
nodes in the network is fixed, we can control the size of the
consensus group α and the credit value of each contribution
θ to control the resources that the adversary group need to
pay, so as to defend the attack of rational adversaries.

4.4. Basic Consensus Protocol: Practical Byzantine Fault
Tolerance. Finally, the selected miner group Lchosen uses
PBFT to determine what transactions and information are
included in current block. All nodes in Lchosen become leader
node in turn, and others become verification nodes. The
complexity of PBFT is OðN2Þ. As the number of nodes
grows rapidly in the IoV, the complexity of the network
increases exponentially. Therefore, it is necessary to use
MPoR to adjust the size of the consensus group first.

4.5. Analysis of MPoR’s Security. In this section, we provide
theoretical proofs of capability against several kinds of
attacks of MPoR.

(i) Internal attack: when majority of the internal nodes
of the network are controlled by malicious adversar-
ies, adversaries will temporarily own more than half
of the computing power of the whole network, and
the consensus algorithm of the blockchain system
based on computing power (such as PoW) will be
damaged. Since the initial filtering of the algorithm
depends entirely on the specific timestamp and adap-
tive identification that are different every time, no one
can predict how many active nodes are in the net-
work. Therefore, even if adversary has more than half
of the entire computing power of entire network, it is
impossible to ensure that he will become a miner

(ii) External attack: when an adversary owns more than
50% of the total network stakes, the external adver-
sary can control the miner selection in this way (such
as PoS). Since the MPoR algorithm does not depend
on the node with the highest stake in the network
and the node with the highest stake cannot always
pass stochastic filtering, so the effect of the external
adversary by occupying majority stakes is futile

(iii) Collusive attack: in MPoR, whether through sto-
chastic filtering or not depends on vehicle’s individ-
ual ID, which is guaranteed unique, given by RSU.
As a result, malicious nodes cannot collude to
exchange information with each other to gain the

Table 3: Parameters of simulation.

Parameter Value

Number of vehicles N [20, 700]

Time interval of vehicles accessing the
network

[2 s, 60 s]

Proportion of miner adaptively selected α [15%, 50%]

Travel distance d [10 km, 50 km]

Maximum of location signatures obtained
nmax

10

Belief by normal/malicious vehicles bj:i [0.8, 0.9]/[0.4, 0.5]

Distrust by normal/malicious vehicles bj:i [0, 0.1]/[0.4, 0.6]

Uncertain by normal/malicious vehicles bj:i [0, 0.1]

Number of interacted vehicles 10

Number of ride-sharing services provided [1, 5]

Weight factor for reputation factor γ, ϵ, ζ, η 0.25

Proportion of malicious nodes f 1/3N
Times before reputation reset 10
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same identification, and they cannot be selected or
unselected at the same time. This completely avoids
the possibility of collusive attack

(iv) Latent attack: we have discussed in Section 4.3 that
the latent malicious node has no higher filtering
probability than other nodes. Even through filtering,
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Figure 3: Stochastic filtering simulation under latent attack. Set latent nodes as 1/3 of total nodes. (a) Fix α as 30%; set N from 20 to 700. (b)
Fix N as 200; set α from 15% to 50%.
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one needs a lot of positive contribution cost to enter
the final consensus group. Therefore, our algorithm
can alleviate the attack desire of the latent under
reasonable assumptions

5. Experimental Analysis

5.1. Basic Settings of Simulation. The simulation content
carries out reasonable parameter configuration according

to the research objectives. The feasibility, scalability, and
attack resistance of the algorithm are discussed and
answered through the simulation data and detailed analysis
of the simulation experiment. The experimental platform is
GoLand2020 3.4. The main parameters used in the simula-
tion are given in Table 3.

5.2. Security Analysis of Stochastic Filtering. First, we verify
the security of the stochastic filtering step. We assume two
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Figure 4: Stochastic filtering simulation under collusive attack. Set the collusive nodes as 1/3 of total nodes. (a) Performance of PoD under
collusive attack. (b) Performance of MPoR under collusive attack.
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different types of adversaries: latent attacker and collusive
attacker, simulate, respectively.

Latent attackers operate as legal vehicles, they complete
ride-sharing service, communicate with RSU and other
nodes normally, and accumulate reputation. Only after
entering the final consensus group will it start to do evil.
The simulation is carried out based on a different number
of vehicle nodes N or different proportion of miner adap-
tively selected α, as shown in Figure 3.

Figure 3(a) shows the stochastic filtering results of differ-
ent N , and α is 30%; In Figure 3(b), we fix the vehicle node
as 200 and then select different proportions of the number of
miners, from 15% to 50%. As can be seen in the figure, under
the two types of parameter configurations, the proportion of
stochastically filtered malicious nodes in the total number of
nodes after filtering is maintained at about 1/3, which is in
line with our mathematical theoretical expectations dis-
cussed in Section 4.2.

Then, we assume that there are 1/3 collusive nodes in the
network. Although they cannot predict the total number of
nodes in the network and the average driving distance or
access timestamp of the network, they can exchange infor-
mation with each other and obtain the same hash value in
the stochastic filtering step, so as to pass/not pass the sto-
chastic filtering at the same time. Once they completely pass
the stochastic filtering at a certain time, then there is a lot of
room and possibility to do evil.

The previous typical algorithm PoD [12] based on sto-
chastic filtering does not solve the problem of collusive
attack. In PoD, the travel distance is used as the standard
of the filter, and the network average travel distance is used
as the target hash threshold. Set N to 200 and the collusive

nodes to 66 (nearly 1/3). The nodes whose hash value of
travel distance is less than the target threshold pass stochas-
tic filtering. Collusive nodes share data with each other and
travel the same distance. 100 simulations were carried out,
of which 43 times collusive nodes were all selected after sto-
chastic filtering. The percentage of collusive nodes after ran-
dom filtering in all filtered nodes in the 43 simulations is
given in Figure 4(a). Under PoD, the number of nodes after
random filtering is completely related to the target hash
threshold and unpredictable, so the percentage difference is
large, but it can be seen that the proportion of collusive
nodes in all rounds exceeds 1/3. It can be proved that PoD
cannot resist collusive attack.

In MPoR, instead of using the information that can be
predicted and exchanged by the vehicles themselves as the
target hash threshold, we use the vehicle access timestamp
and access sequence order to generate a unique identifica-
tion, so as to prevent the possibility of collusive attack from
the source. We simulate 100 times as well, set simulation
parameters the same as PoD simulation, α set to 30% addi-
tionally. The results are shown in Figure 4(b). After MPoR
stochastic filtering, the proportion of collusive nodes is
maintained at about 33%, and the simulation is in line with
our theoretical proof. Thus, when the amount of data is large
enough, MPoR algorithm can resist collusive attack.

From the above simulation results for two types of
adversaries, stochastic filtering can filter a large number of
nodes on the premise of ensuring security. However, due
to inevitable accidents in randomness, simple randomness
is not enough to fully ensure the safe operation of the sys-
tem. Therefore, we need to optimize the consensus group
based on reputation.
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5.3. Security Analysis of Reputation Optimization. Here, we
verify the performance the second step of MPoR, reputation
optimization. Figure 5 shows the performance result under
different numbers of vehicle nodes N . α is still 30%, and

the reputation optimization selects half of the nodes with a
greater reputation value. It can be seen from the figure that
the size of the consensus group after reputation optimization
basically accounts for less than 1/2 of the size of the
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Figure 6: Reputation optimization simulation under 1/3 malicious nodes. (a) Fix α to 30%; set N from 20 to 700. (b) Fix N to 200; set α from
15% to 50%.
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consensus group after stochastic filtering, and there will be
no significant difference. The reason is that, whether it is a
normal node or a malicious node disguised as a normal
node, the cumulative reputation value difference is not obvi-
ous under our algorithm. Therefore, in this step of filtering,

it can be expected that the number of filtered nodes will basi-
cally remain below half. Meanwhile, through this reputation
calculation method, RSU can quickly find nodes with abnor-
mal reputation value (too high or too low) and pay extra
attention to check whether they are malicious nodes.
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Figure 7: Latency performance simulation. (a)Time overhead of MPoR and PoD under stochastic filtering. (b)Time overhead of MPoR and
PBFT to reach consensus.
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Then, we assume that there are 1/3 malicious nodes in
the network. The simulation is also carried out based on dif-
ferent vehicle nodes or different adaptive values, as shown in
Figure 6.

Figure 6(a) shows the results of different vehicle nodes,
and the proportion of miners is 30%; In Figure 6(b), we fix
N to 200 and then vary α from 15% to 50%. In the simula-
tion, the reputation value of malicious nodes is slightly lower
than that of normal nodes. As in our scheme, the malicious
node will be found at once when it does evil, so the cumula-
tive reputation of the block is lower. As can be seen in the
figure, under two types of parameter configuration, the pro-
portions of malicious nodes after reputation optimization
are always less than 1/3. According to the security proof in
Section 4.3, the main function of reputation optimization is
to increase the attack cost of malicious nodes so as to reduce
their attack desire. Through simulation, we can see that our
algorithm can filter a large number of consensus nodes
under reasonable fault tolerance and improve the efficiency
of consensus.

5.4. Latency Analysis. The time overhead of MPoR and PoD
is compared in Figure 7(a). α is set to 30%. Two experiments
of PoD are single round simulation (only complete one
round of hash comparison, and the size of the filtered con-
sensus pool cannot be controlled), and circular simulation
(stipulate that only when the proportion of miners after fil-
tering is 30%, it can be output). As can be seen from the fig-
ure, if we want to meet the adaptive selection of the number
of miners, the MPoR algorithm can greatly reduce the
latency. Meanwhile, in a single round of simulation, the
latency overhead of the MPoR algorithm is also relatively
better.

Then, we compare the time overhead between traditional
PBFT and consensus after MPoR filtered in Figure 7(b). α is
set to 30% as well; N ranges from 20 to 700. From the sim-
ulation results, it can be seen that after MPoR, the latency
required for the network to reach a consensus is greatly
reduced. This is because after filtering, the size of consensus
group can be significantly reduced on the basis of ensuring
fairness and security, so as to improve the efficiency of the
whole network.

6. Conclusion

Aiming at the security challenges existing in ridesharing ser-
vices, we propose a new consensus algorithm MPoR applied
to the consortium blockchain-based Internet of Vehicles.
MPoR takes the access time of network and order of vehicle
nodes as the evaluation standard of stochastic filtering and
sorts the nodes through the hash value, so as to realize the
adaptive selection of the size of the consensus pool. In the fil-
tering step, each node has the same selected probability,
which is fairer and more scalable than the existing consensus
algorithms. Meanwhile, in order to resist malicious attacks, a
reputation rating algorithm based on multifactors is designed
to eliminate the shortcomings of the existing single reputation
evaluation criteria. It can eliminate low-reputation nodes,
optimize the consensus node pool, and encourage nodes to

participate in consensus. Finally, we conduct a large number
of simulations and security analysis to prove the effective-
ness, scalability, and ability to resist various attacks of the
proposed algorithm.
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