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With the advancement of technology, it has become easier to modify or tamper with digital data effortlessly. In recent times, the
image hashing algorithm has gained popularity for image authentication applications. In this paper, a convolutional stacked
denoising autoencoder (CSDAE) is utilized for producing hash codes that are robust against different content preserving
operations (CPOs). The CSDAE algorithm comprises mapping high-dimensional input data into hash codes while maintaining
their semantic similarities. This implies that the images having similar content should have similar hash codes. To demonstrate
the effectiveness of the model, the correlation between hash codes of semantically similar images has been evaluated.
Subsequently, tampered localization is done by comparing the decoder output of the manipulated image with the hash of the
actual image. Then, the localization ability of the model was measured by computing the f 1 scores between the predicted
region and the original tampered region. Based on the comparative performance and receiver-operating characteristics (ROC)
curve, we may conclude that the proposed hashing proposed algorithm provides improved performance compared to various
state-of-the-art techniques.

1. Introduction

Recent developments in sophisticated image editing tools have
made it very convenient for an impostor to tamper or forge the
image contents. These tools allow us to add or remove content
from an image very easily. The identification of manipulation
becomes very important to establish image validity [1, 2]. In
general, perceptual image hashing strategies resolve this prob-
lem. These techniques are used to extract the most important
features from an image for calculating a hash. The hash codes
may be produced by traditional hashing algorithms [3–5] like
MD5 or SHA-256. However, these techniques are susceptible
to the data, i.e., any bit changes result in different hash codes.
This behavior is undesirable because digital images are
constantly subjected to unintended improvements such as
compression and enhancement. The objective of perceptional

hash algorithms is to generate hash codes that take only
changes in the district region into account. In contrast to image
hashing algorithms, few other techniques such as watermark-
ing [6], cryptography [7], and image encryption [8–10] have
been developed to transmit data through a secured channel or
hide it. However, with such methodologies, it is difficult to
detect and localize the tampered region. The effectiveness of a
perceptual hash can bemeasured by its robustness against var-
ious content preserving operations and its sensitivity to differ-
ent malicious content removing or adding functions [11–14].

Autoencoders have been found as a very effective tech-
nique for unsupervised learning of image hash functions
due to their ability to discover the essential features from
unlabeled data. Most of these are fully integrated forward
feed networks with a code layer regularization that allows
the model to understand data collections rather than only

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1645658, 17 pages
https://doi.org/10.1155/2022/1645658

https://orcid.org/0000-0003-1553-7380
https://orcid.org/0000-0002-2341-341X
https://orcid.org/0000-0003-2780-1652
https://orcid.org/0000-0002-6949-4614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1645658


copying the input into the output. This motivated us to use a
convolutional stacked autoencoder to tackle the issue of cre-
ating a hash with a perceptual image that is robust against
enhancement and compression changes in the image while
being sensitive to the content removing operations.

Recently, machine learning and deep learning techniques
have been employed in various fields of image processing
[15, 16]. Similarly, the autoencoder utilized in this article is
based on an artificial neural network (ANN). The network
is trained hierarchically to represent input images in the
latent space having 1024 dimensions and mapping the same
back to the dimensions of the input image. We rely on the
ability of the autoencoder to learn the underlying features
of the dataset without the need for labeled data. L2 regular-
ization is applied to the hash code layer to help the model to
better generalize the training dataset and to prevent the
model from learning an identity function. The network is
influenced by two effects of the L2 regularization that was
chosen. Firstly, the hash code deletes unnecessary compo-
nents by using the smallest combination to solve the prob-
lem of learning. Secondly, it eliminates the impact of static
noise to improve the generalization of the model. Tamper-
ing detection is done by comparing the correlation between
the initial image hash code and the hash code of the manip-
ulated image with a typical threshold set to 0.98. Both of
these hash codes are generated by the proposed model.
Any image having a correlation less than the threshold is
considered to tamper. The decoder part of the proposed
model then compares the decoder outputs generated from
the respective hash codes to create the probably tampered
region in the images.

The robustness of the hash codes is evaluated by measur-
ing the true-positive and false-positive rates for different
CPOs on the image. The localization ability of the proposed
model is evaluated by computing the f 1 scores between the
raw difference of both the real and the tampered image
and the raw difference of the decoder outputs of the original
image and the tampered image.

2. Related Work

2.1. Local and Global Feature-Based Hashing. In the last few
decades, several research works have been done in the field
of image hashing. In 2005, Monga and Evans [1] utilized
both visually significant features and used probabilistic
quantization features to construct the robust image hash,
and the disadvantage associated with this method is that it
does not allow the exploration of alternative image recogni-
tion and representation based on pseudorandom signals.
Later on in 2007, Monga and Mihçak [3] utilized the non-
negative matrix factorization (NMF) method for generating
image hashes. However, the primary disadvantage of this
approach is its computational time. In this method, the time
taken for hash extraction was 2.03 seconds when the hash
length was 300 bits. Likewise, in 2006, Swaminathan et al.
[2] also proposed a new algorithm based on Fourier trans-
formation and supervised randomization for the generation
of an image hash. This technique suffers from the limitation
of randomized quantization.

In 2009, Wu et al. [4] built a Radon and wavelet
transform-based printed-scan-resistant image hashing algo-
rithm. In the same year, a virtual watermark detection-
based image hashing technique was proposed by Khelifi
and Jiang [5]. However, these techniques failed to address
various geometric attacks such as shearing and were unable
to provide adequate performance. In 2010, Ahmed et al.
[17] added a hidden key for modulating pixels dynamically,
leading to transformed space. The picture hash is then com-
puted using the key-dependent transformed function space.
A 4-bit quantizing scheme to reduce the hash is also pro-
posed; however, the drawback of this approach is that it does
not resist other criteria such as brightness changes, contrast
improvement, and tampering that involves smooth changes
in gray level values.

2.2. Transform-Based Hashing. In 2011, Lei et al. [11] incor-
porated the Radon transform (RT) along with DFT for
constructing the robust image hash. In 2011, Tang et al.
and Choi and Park [12, 13] suggested a method for creating
image hashes based on a lexicographically structured archi-
tecture. Dictionary development and upkeep, as well as hash
production, are two aspects of the scheme, but the short-
coming of this method is that it does not address issues such
as image rotation, color features, more complex dictionary
creation, and mechanisms related to maintenance. To build
the image hash, in 2012, Li et al. and Lv and Jane Wang
[14, 18] presented a solid hash function dependent on dith-
ered lattice vector quantization and random Gabor filtering.
In 2013, Tang et al. [19] discussed a method that produces a
hash by transforming the original image into a normalized
version, i.e., by separating the image into sections and
obtaining the entropies based on rings. Afterward, in 2014,
Tang et al. [20–24] developed another effective image hash
using a ring partition and an NMF. But the drawback of this
technique is that it is not rotation-invariant. Moreover, it
cannot address issues such as detection of tampering in
small areas, localization of tampering, and effective extrac-
tion of color attributes.

In 2015, Sebastian et al. [25] proposed a technique for
hashing images that use Haralick and modified local binary
pattern features, as well as luminance and chrominance
channels. In the same year, Ouyang et al. [26] utilized log-
polar and Quadrature DFT transform for the generation of
image hash, but both these algorithms are sensitive to geo-
metric operations. In 2016, various image hashing methods
were developed based on invariant vector distance and ring
partition [27], adaptive and local feature extraction [28],
quaternion Fourier-Mellin transforms (QFMT) [29], block
truncation coding (BTC) [30], local linear embedding
(LLE) with DCT [31], Canny operator with color vector
angle [32], center-symmetric local binary patterns [33], pro-
jected gradient nonnegative matrix factorization (PGNMF),
and ring partition [34]. However, all these techniques are
unable to provide adequate performance in terms of tamper
localization and content recovery. In 2017, Tang et al. [35]
introduced multidimensional data scaling (MDS) in produc-
ing robust image hash for data analysis and object retrieval.
In this same year, Karsh et al. [36] used the singular value
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decomposition (SVD) method to find a low-rank matrix
followed by discrete wavelet transform (DWT) to generate
a robust image hash and failed to detect color forgery and
is more sensitive to translation.

2.3. Statistical Feature-Based Hashing. Later in 2018, several
new techniques based on image features for the hashing
algorithm were developed, which include extraction of
structural features from color images [37], dual-cross
pattern-based textural features [38], progressive feature
point selection [39], and a geometric correction-based tech-
nique using local and global features to counter the rotation
scaling translation (RST) attacks [40]. However, these algo-
rithms are unable to verify the validity of all types of images
from all across the globe. Similarly, in 2019, Tang et al. [41]
developed a new methodology on the basis of tensor decom-
position. In that year, Qin et al. [42] integrated local texture
and color angle characteristics in generating a robust image
hash. However, these methods cannot be applied to video
hashing. Recently, to improve the performance of image
hashing, various researchers have proposed different tech-
niques such as a Binary Multi-View Perceptual Hashing
(BMVPH) [43], a Gray-level cooccurrence matrix-based
hashing [44], Fourier-Mellin transform and fractal coding-
based technique to create a fingerprint image [45], fractal
image coding and ring partition-based hashing [46], quad-
tree structure and color opponent component- (COC-)
based technique for forging detection and tampering local-
ization [47], and a Laplacian pyramid-based hashing
technique [48]. However, these algorithms fail to provide ade-
quate performance against some attacks like rotation invariant.
Additionally, these techniques are also unable to provide satis-
factory performance in case of tamper localization.

Apart from the above categories, some other hashing
algorithms have also been proposed. These are based on
deep ordinal hashing [49], deep-network-based hashing
[50], deep transfer networks (DTNs) [51, 52], image fusion
[53, 54], etc. Some of the hashing algorithms [49, 50] have
utilized the t-Distributed Stochastic Neighbor Embedding
(t-SNE) technique for visualization of the learned hash fea-
tures. The t-SNE is a technique for dimensionality reduction
that is particularly well suited for the exploration and visual-
ization of high-dimensional data into low-dimensional
space, and it finds the patterns in the data based on similar-
ity of data points. Most of the above-stated works are
concerned with making hash values more robust, and others
concentrated on localizing the tampered areas. Our objective
is to train a single-layered convolutional autoencoder to pro-
duce hash values resistant to various geometric attacks while
detecting and localizing tampered regions.

2.4. The following Are the Contributions of the Proposed
Algorithm

(1) Existing literature suggests that although most of the
methods are robust to content preserving operations,
however, the techniques are very sensitive to geo-
metric operations. In this work, an autoencoder-

based image hashing algorithm has been developed
to overcome this problem

(2) The proposed image hashing algorithm is capable of
detecting and localizing minor tampering portions in
the images, unlike most of the existing algorithms

(3) Experimental results suggest that the presented algo-
rithm is capable of proving improved performance
irrespective of types of images from various data-
bases. For instance, experiments were performed on
CASIA Tampered image detection evaluation
database [55], NITS Image hashing database [56],
USC-SIPI Image database [57], and Ground Truth
Database [58] for tampering detection and localiza-
tion to check the ability of the proposed algorithm

(4) A comparative analysis with different state-of-the-art
techniques suggests the competitiveness of the pro-
posed algorithm. The performance parameters such
as the area under the ROC curve (AUC), true-
positive rate (TPR), and false-positive rate (FPR)
[59–63] are utilized to evaluate the algorithms

The remaining part of the paper has been structured in
the following manner. Section 2 discusses the relevant liter-
ature. Section 3 presents the method being developed, the
model architecture, the proposed approach, and implemen-
tation details. The experimental results and discussions have
been presented in Section 4. The comparison with existing
works has been discussed in Section 5, while the whole work
has been concluded in Section 6.

3. Proposed Model Architecture

The model is built on stacked convolutional autoencoders.
In this model, the encoder network maps input images into
latent space, and it is decoded and recreated into the original
image. Our network of encoders includes five numbers of
convolutional autoencoders followed by a fully connected
network whose activations are subjected to L2 regulariza-
tion. This is the layer generating the hash code. Each convo-
lutional autoencoder comprises conv-relu-batch norm-max
pooling in the encoder and upsampling-batch norm-conv
in the decoder part. The architecture of the proposed model
is shown in Figure 1, whereas the visualization of the learned
hashing features with Gradcam and Gradcam++ technique
of original host image is presented in Figure 2. Similarly,
the visualization of the learned hashing features for a tam-
pered image is also done and demonstrated in Figure 3. It
is observed that the heatmap generated and Gradcam tech-
nique gave identical results. Hence, the effectiveness of the
proposed method has been proved by the visualization of
feature activation shown by Gradcam.

3.1. Convolutional Autoencoder. M convolutional layers
make up the network, with a completely connected layer in
the middle providing the hash code. Then, the output given

by the encoder can be given by xi Є RW
i
XH

i
XC

i, where I denote
the ith level of the encoder network. Here, W and H indicate
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(a) Original host image
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Figure 2: Visualization of the learned hashing features with Gradcam and Gradcam++ technique of original image.
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Figure 1: Architecture of the proposed model.
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the image width and height, and C indicates the channel num-

ber. In the decoder part, the reconstructed yi Є RW
i
XH

i
XC

i
denotes the ith level of the decoder. The input and the output
images are denoted by x0 and y0. The activations of the Kth

layer are given by max-pool ðΩðXk−1 ∗W + bÞÞ in the
encoder and (upsample ðYk−1Þ ∗W’ + b’) in the decoder part.
Here, upsampling refers to the bilinear interpolation done to
the image, after which convolution is done in the decoder part.
ðW, bÞ and ðW’, b’Þ refer to the weights and biases of the
convolution layer in the encoder and the decoder network,
respectively. The activation function used in our case is ReLu
(rectified linear unit). This is used everywhere in the middle
of the network except in the fully connected middle layer,
where the sigmoid activation function is used. The max-pool
refers to the max pooling operation with a stride of 2. The
parameters of the model are learned by using the Adagrad
optimizer. The model learns by minimizing the mean square
error among the input x0 and the output y0:

minimize l1 =
1
N

〠
N

j=1
W ,b

xj0 − yj0
�
�
�

�
�
�

2
, ð1Þ

where N is the total number of samples in the dataset.

3.2. Fully Connected Autoencoder. Both the encoder and the
decoder network, a completely connected autoencoder, is
placed to reduce the size of the hash code much more. It
consists of three fully linked layers. The coding for the
images is provided by the hidden layer. We test both a totally
stacked and a fully linked autoencoder. It is also simpler to
train and refine the completely convolutional encoder.
Because of weight distribution in the convolutional layers,
it is, therefore, less capable of approximating. The same
MSE loss Equation (1) is used to train completely convolu-
tional and convolutional plus fully connected layers.

(a) Original host image
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Figure 3: Visualization of the learned hashing features with Gradcam and Gradcam++ technique of tampered image.
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3.3. Approach. The convolutional layer is trained on input
images having dimensions of (128, 128, 3). The model is
trained on the USC-SIPI dataset [57]. The model is trained
on 40000 input images. Noisy images are given to the model
as input, and the corresponding denoised images are given
as output to train the model. The noisy images in this con-
text refer to the original images which have undergone any
one of the following operations, viz., changes in brightness,
contrast, gamma correction, adding of Gaussian, salt and
pepper, and speckle noise, image scaling, rotation, and com-
pression. The input images are passed through 5 convolu-

tional units, which make the encoder network. Each of
these convolutional units comprises a convolutional layer
having 16 filters, a batch-normalization layer, which is
accompanied by a max-pooling layer with a filter scale of
(3, 3) and a stride of 2. This is passed to a fully connected
autoencoder which generates the hash code of (1, 48) dimen-
sions. The activations of the middle layer of this fully con-
nected autoencoder are subjected to L2 regularization. This
is then passed to a decoder network that attempts to recon-
struct the image. The decoder has five convolutional units,
each of which comprises an upsampling layer [60]. Each of

Original image

Encoder Encoder

Decoder Decoder

Hash code layer Hash code layer

Compute hash correlation

Tampered image

If hash
correlation >

threshold = 0.98

If yes classify the
image as not tampered

If no predict tampered region

Classify image as tampered

Compute f1 score

Figure 4: Flowchart for the entire process.

Table 1: TPR and FPR scores for “operations Indonesia, Italy, Japan ”.

Operation
True-positive score

(Indonesia)
False-positive score

(Indonesia)
True-positive
score (Italy)

False-positive
score (Italy)

True-positive
score (Japan)

False-positive
score (Japan)

Brightness 0.916 0.083 0.863 0.136 0.867 0.133

Compression 1 0 1 0 1 0

Gamma 0.875 0.125 0.93 0.068 0.9 0.099

Rotation 0.177 0.823 0.1704 0.829 NA NA

Speckle 1 0 1 0 1 0

Watermark 0.99 0.009 0.936 0.045 1 0

Gaussian 0.993 0.006 1 0 1 0

Scaling 0.99 0.009 0.954 0.0454 1 1
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these units uses ReLu as an activation function. The model
finally learns by optimizing the following.

minimize l1 =
1
N

〠
N

j=1
W,b

xj0 − yj0
�
�
�

�
�
�

2
+

α

N
〠
N

j=1
hj

�
�

�
�
2
2, ð2Þ

where α is the regularization coefficient and khjk22 is the
squared L2 norm of hj which are the activations of the hash

code layer for the jth image. For our experiments, we take
the hash code layer to have 48 dimensions.

3.4. Implementation Details. To construct the model, we
used the Keras library with a Tensorflow backend. The
model is trained using the online Google-Colab deep learn-
ing platform and uses Tesla K80GPU for training. Each of
the weights of the convolutional layer is taken from a
glorot-uniform distribution which is the default setting for
Keras. The bias for each of these layers is set to 0. We train

Table 2: Operations that preserve content for various parameters.

Software Manipulation Parameter Parameter values Image pairs

Stir Mark JPEG compression Quality factor 30, 40, 50, 60, 70, 80, 90, 100 10

Stir Mark Watermark embedding Strength 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 12

Stir Mark Scaling Ratio 0.5, 0.75, 0.9, 1.1, 1.5, 2.0 8

Stir Mark Rotation Rotation angle in degree ±5, ±15, ±30, ±45, ±90 12

Photoshop Brightness adjustment Photoshop scale ±10, ±20 8

Photoshop Contrast adjustment Photoshop scale ±10, ±20 8

Matlab Gamma correction γ1 0.75, 0.9, 1.1, 1.5 6

Matlab 3 × 3 Gaussian low pass filter Standard deviation 0.4−1 (with step size 0.1) 10

Matlab Salt and pepper noise Density 0.001–0.01 (with step size 0.001) 12

Matlab Speckle noise Variance 0.001–0.01 (with step size 0.001) 12

Total 74 parameter values 98

(a) Airplane (b) Baboon (c) House

(d) Lena (e) Woman (f) Statue

(g) Church (h) Boy (i) Boat

Figure 5: Standard images used for testing.
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a model using input images with sizes of 512 × 512 × 3 and
128 × 128 × 3. The model trained on 512 × 512 × 3 image
input has a faster convergence time and appears to have
oscillatory precision and loss curves, while the model trained
on 128 × 128 × 3 image input appears to have comparatively
smooth curves. We used Adagrad for the optimization of
Equation (2).

The aforementioned dataset [58] comprises the follow-
ing: “scenery_bmp,” “animals,” “aerials,” “Indonesia,”
“Japan,” “Italy,” “operations Italy,” “operations animals,”
“operations Indonesia,” “operations scenery.” The folders
having the name “operations” as their prefix contain the
results of the different content preserving operations done
on the original image. For example, the “animals” folder
comprises the original images, while the “operations-
animals” folder contains the tampered images produced by
the different content preserving operations for each image

in the “animals” folder. The first three “animals,” “scenery_
bmp,” and “aerials” and their corresponding “operations_”
folders are used for training the model, while the rest of
the dataset is used for testing the robustness of the model.
The model is tested on 18334 images from “operations
Italy,” “operations Japan,” and “operations Indonesia.”

The robustness of the hash codes produced is tested on
the basis of the two metrics “true-positive rate” (TPR) and
“false-positive rate” (FPR) scores which are defined below.
We take the TPR and FPR scores for different operations
on the image for the three “operations folders,” i.e., “Indone-
sia,” “Italy,” and Japan. A typical value of 0.98 is taken as the
threshold for hash correlation. During the testing phase,
both the original image and the tampered image are passed
through the model, which produces their respective hash
codes. If the correlation between the hash codes is less than
that of the threshold, the tampered image is classified as
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Figure 6: f 1 scores for different tampered images.
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Figure 7: Continued.
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being “false-positive” or otherwise “true-positive.” This
process is repeated for all the images and for all the afore-
mentioned operations.

The model is then tested for its tampering localization
ability.

PTPR =
nsame
NSimilar

, ð3Þ

PFPR =
ndifferent
Ndifferent

: ð4Þ

In Equations (3) and (4), nsame and ndifferent are same
image pairs that are detected and different image pairs that
are mistakenly detected; Nsimilar and Ndifferent are total pairs
of similar images and total pairs of different images.

During the tampering-localization test, the model
receives the tampered image and the hash code of the origi-
nal image as the input. This hash code was generated when
the corresponding original image was put in through the
encoder network of the model. The tampered image is
passed through the encoder and then the decoder network
to give the reconstructed tampered image n1. The hash code
of the original image is passed through the decoder to pro-
duce n2. Then, the tampered region is in

R sð Þ = i, jð Þsuch that n1 i, jð Þ − n2 i, jð Þj j < 0:5f g: ð5Þ

The predicted tampered region R is compared with the
actual tampered region T using the f 1 score in

f 1 R, Tð Þ = n R ∩ Tð Þ
n Tð Þ : ð6Þ

Here, nðR ∩ TÞ refers to the total number of tampered
pixels that are detected by the model, and nðTÞ refers to
the total number of tampered pixels in the image. T is the
set containing the indexes of all the tampered pixels corre-

sponding to that image. The entire process is represented
in Figure 4.

4. Experimental Results

In the following subsections, the training procedure and
results have been presented. We also compare the localization
ability of the proposed model by comparing the f 1-scores of
the proposed model against the cutting-edge methods.

4.1. Training. The autoencoder is trained in a layer-wise
fashion. Here, we freeze the weights of all convolutional
units except a single one and train the model for 50 epochs.
This entire process is repeated for all the convolutional units
in both the encoder and the decoder network before being
fine-tuned as a whole. The model is trained during the tun-
ing process in 100 epochs with a small size of 400 images
each of 128 × 128 × 3 size. The λ coefficient of L2 regulariza-
tion is kept to 0.01 for the entire duration of the training.

4.2. Hash Robustness Test.We test the robustness of the hash
codes produced by the encoder on the “operations Indone-
sia,” “operations Italy,” and “operations Japan” folders of
our custom dataset [58]. The true-positive rate and the
false-positive scores are shown in Table 1. The true-
positive rate refers to the fraction of the total testing images
which are untampered and are classified to the untampered
by our model. Similarly, the false-positive rate refers to the
untampered images which are classified to be tampered by
our model. In this test, the hash correlation threshold is
taken as 0.98. Content preserving operations for various
parameters are shown in Table 2. Few standard images used
for the robustness test are shown in Figure 5.

From Table 2, we should conclude that the proposed
model is completely immune to all the operations listed
except “rotation operations” on the image, which shows a
lower value of true positive rate in comparison to all the
other operations. The hash correlation for different
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Figure 7: Robustness test based on the standard images.
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operations corresponding to the three testing folders is
shown in Figure 6. The robustness test based on standard
images is shown in Figure 7.

4.3. Localization Capability Test. The tampering ability is
tested on 763 tampered images [55]. These images are cate-
gorized into 3 “large-tampered,” “medium-tampered,” and

“small-tampered” folders, depending on the degree of tam-
pering that the image has undergone. There are 365 large-
tampered images, 198 medium-tampered images, and 200
small-tampered images. The tampering localization test pro-
cess can be summed up in the flowchart shown in Figure 8.
Each sample comprises three images, the first being the orig-
inal image, the second being a tampered version of that

Tempered image T (i,j) Hash code for original image

Encoder Encoder

Hash code layer Hash code layer

Decoder Decoder

Compute | ń1 - ń2 | = difference-map

Set all T (i, j) = 0 where difference-map
(i, j) < 0.05. This is the untampered

Set all T (i, j) = difference-map (i, j) where 0.05 < difference-map
(i, j) < 0.1. this corresponds to a highly probable tampered region.

Return T

Figure 8: Flowchart for tampering localization test.

(a) Original images (b) Tampered images (c) Tampered Localization

Figure 9: Localization of tampered regions.
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original image, and the third being the difference between
the original image and the tampered image. Figure 9 shows
some samples where our model has been successfully able
to detect all the tampered regions in an image.

4.4. Discernibility Test. Here, the proposed model is tested
for its ability to distinguish between two semantically dis-
similar images. We took 200 different images [56] and made
combinations of 2 images each, thereby making 200C2 sam-
ples. We tested the discerning capability of the model by

computing the true-positive rate scores and the false-
positive rate scores. The TPR shows the percentage of the
total samples which the model classifies to be different. If
the hash correlation between the hash codes produced by
the encoder network given the two different images of a
sample is greater than 0.98, then the model classifies the
two images to be semantically same, else different. The histo-
grams of the hash correlation of different image samples are
shown in Figure 10. Hash correlation between different
tampered image pairs is shown in Figure 11.
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Figure 10: Discernibility or discrimination test based on 200 different images.
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5. Comparison with Existing Work

This section compares the proposed algorithm results
against classical perceptual hash-producing algorithms. In
Table 3, Table 4, Table 5, and Table 6, the proposed
approach is compared to some of the existing perceptual
image hashing algorithms. It is observed from the table
that the hash codes produced by the proposed model
are robust against scaling, rotation, watermarking, jpeg
compression, gamma correction, and Gaussian low pass
filter. Table 1 shows true-positive rates for different
degrees of rotation. The true-positive rates here refer to
the total untampered, rotated images that the model clas-
sifies to be the same (i.e., the hash correlation between
the hashes of the original and the rotated image is less
than the threshold). From Table 1, it becomes evident
that the robustness of the hash codes produced by the
proposed approach is competitive with those produced
by the state-of-the-art approaches. Despite the fact that
we are not using any previously annotated data during
training, the proposed model performance is better or
comparable to the other conventional perceptual hashing

algorithms in execution time, area under ROC curve
(AUC), and average time. The ROC curve in Figure 12
consists of several points (TPR, FPR) with different
thresholds and is used to assess the equilibrium between
robustness and discrimination.

Table 3: A comparison of the performance of various hashing methods.

Reviewed
techniques

L. Chen
et al. [41]

X. Zhang
et al. [19]

R. K.
Karsh

et al. [40]

Q. Shen
et al. [64]

Z. Tang
et al.
[27]

R. K.
Karsh

et al. [36]

C. Qin
et al.
[42]

H.
Hamid
et al.,
[48]

Z. Tang
et al.
[35]

C. Qin
et al.
[30]

Proposed

Execution
time (s)

0.17 NA NA NA 0.61 NA 0.112 NA 0.22 1.1 0.6

AUC 0.9993 NA 0.9914 NA NA NA 0.9601 0.9264 0.9909 NA 0.999

Average
time (s)

0.3021 0.0164 0.3425 0.0617 0.2863 2.1 0.2213 0.6651 0.9966 0.8164 0.2234

Optimal TPR
when FPR = 0 0.9827 0.9998 NA 0.998 0.953 0.9823 0.991 NA NA NA 0.8162

Optimal FPR
when TPR = 1 9:4 × 10−3 4:13 × 10−6 NA 2:22 × 10−5 0.4749 0.0051 0.1273 NA NA NA 0.0621

Table 4: The main algorithms of the compared methods.

Authors Main algorithms used

Z. Tang et al. [35] Multidimensional scaling (MDS)

L. Chen et al. [41] Tensor decomposition (TD)

R. K. Karsh et al. [40] Geometric correction

Z. Tang et al. [27] Ring partition and invariant vector distance (RP-IVD)

C. Qin et al. [30] Block truncation coding (BTC)

Q. Shen et al. [64] Color opponent component and quadtree structure

C. Qin et al. [42] Weber local binary pattern and color angle representation

R. K. Karsh et al. [36] DWT-SVD and spectral residual

X. Zhang et al. [19] Three-dimensional color structure features and luminance gradient

H. Hamid et al., [48] Laplacian pyramids

Table 5: Hash length comparison of various hashing algorithms.

Authors Hash length

Z. Huang et al. [44] 720 bits

C. M. Pun et al. [39] 262 digits

C. P. Yan et al. [28] 302 bits

Z. Tang et al. [20] 206 bits

F. Khelaifi et al. [46] 100 digits

H. Lao et al. [31] 316 bits

Q. Shen et al. [64] 452 digits

L. Du et al. [43] 512 bits

Proposed method 64 bits
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6. Conclusions and Future Scope

In this paper, a stacked convolutional autoencoder with an
L2 regularization has been proposed to produce hash values.
The hash values are not only robust against the enhance-
ment and geometric attacks but would also be robust against
various content preserving operations like image compres-
sion, the addition of Gaussian, speckle noise, scaling, and
watermarking. The convolutional units help us to learn
high-level semantic information from the data manifolds.
The investigative conclusion on the massive pairs of images
indicates that the system can detect and locate minor tam-
pering in the images. Moreover, it offers a more favorable
contrast between FPR and TPR. After training only for 100

epochs, the proposed model shows a competitive perfor-
mance with those of the state-of-the-art approaches in both
the hash robustness test and tampering localization test. It
may even localize tampering, in spite of tampering and
image rotation taking place at the same time, which is a sig-
nificant drawback of current approaches.

The future scope of this work will consist of pretrain-
ing the network’s weight matrices with stochastic and gen-
erative neural networks such as Boltzmann distribution to
accomplish quicker convergence, which helps to reduce
mean square error loss. The robustness of CPOs can also
be examined in Dense Nets. This method will be devised
in order to shorten the hash code while maintaining
machine performance.

Table 6: Geometric attack comparison of various hashing algorithms.

Name of the attack Parameter SIFT-SVD [65] SIFT-DWT [66] Proposed method

JPEG compression Quality factor 20−90 with step size 10 30 : 10 : 100 30−100 with step size 10

Watermark embedding Strength 30−80 with step size 10 30 : 10 : 90 10−100 with step size 10

Scaling Ratio 2−7 with step size 1 0:5 : 0:1 : 1:5 0.5−2.0 with step size 0.25

Rotation Rotation angle in degree ±5 to ±45 ±2, ±5, ±10, ±5,…. ±60 ±5, ±15, ±30, ±45, ±90
Brightness adjustment Photoshop scale ±10, ±30 −20 : 10 : 20 ±10, ±20
Contrast adjustment Photoshop scale ±10, ±30 −20 : 10 : 20 ±10, ±20
Gamma correction Gamma 0.6-1.5 with step size 0.1 0.85, 0.95, 1.05, 1.15, 1.25 0.75, 0.9, 1.1, 1.5

3 × 3 Gaussian low pass filter Standard deviation 0.6−1 (with step size 0.1) 0.3−1 (with step size 0.1) 0.4−1 (with step size 0.1)

Gaussian noise Variance 0.3−1 with step size 0.1 0.2−1 with step size 0.1 0.1−1 with step size 0.1

Median filter Filter size 2−7 with step size 1 1−8 with step size 1 1−9 with step size 1

By Y Chen [16]
By F Ahmed [6]
By Swaminathan [2]
By V Monga [3]

By Tang [20]
By R K Karsh [27]
Proposed Hashing
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Figure 12: ROC comparison of proposed approach with several state-of-the-art methods for robustness and discrimination trade-off.
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