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In general, the azimuth estimation in array signal processing is derived under the assumption of uniform white noise, whose
covariance matrix is a scaled identity matrix. However, in practice, the noise can be nonuniform with an arbitrary unknown
diagonal covariance matrix. In this paper, the estimation of the noise covariance matrix is formulated into a solution to the
semidefinite optimization problem which can obtain a more accurate sensor noise covariance matrix. In the proposed
algorithm, the estimated nonuniform noise is subtracted from the sample covariance matrix. The simulation results show that
the proposed algorithm can significantly improve the performance of the sparse spectrum fitting algorithm in nonuniform
noise case, while the classic SpSF algorithm is used under uniform white noise assumption. The water pool experiments show
that there are indeed significant differences in the noise covariance of the sensors.

1. Introduction

Determining the direction-of-arrival (DOA) of incoming
signals is an important research problem in array signal pro-
cessing, which is widely used in radar, sonar, navigation,
wireless communications, and acoustics [1–7]. Under the
uniform white noise assumption, several high resolution
DOA estimation approaches are well known to provide high
accuracy and excellent asymptotic performance, such as
multiple signal classification (MUSIC) [8] and estimation
of signal parameters via rotational invariance technique
(ESPRIT) [9]. According to the assumption, sensor noises
are presumed to be a zero-mean Gaussian process with the
covariance matrix σ2I, which is the unknown uniform noise
variance, and I is the identity matrix [10].

The sparse spectrum fitting (SpSF) [11] algorithm is
another high resolution DOA estimation algorithm, which
is based on the sparse signal model of the array and com-

pressive sensing theory. SpSF is formulated by applying L1
-norm penalization to the spatial sparse model of the sample
covariance matrix. It is similar to Lasso-type algorithms
[12–15] which utilize compressive sensing theory with L1
-norm replacing L0-norm. However, the SpSF algorithm still
assumes the sensors noise is uniform Gaussian white noise.
In fact, the sensor noise may be nonuniform [16–18], spa-
tially correlated [19–24], or block-correlated [25–28]. In
particular, in the field of underwater acoustic signal pro-
cessing, the noise of different hydrophones tends to be
nonuniform due to inaccuracy in the manufacture of
hydrophones.

In this paper, as usual, we still assume that the noise
entering the sensor is Gaussian noise, but the noise variances
of sensor are nonidentical across the array, and then we pro-
pose a new DOA estimation algorithm with sparse spatial
spectral fitting based on nonuniform noise estimation
(NN-SpSF). The NN-SpSF algorithm significantly improves
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the performance of DOA estimation under nonuniform
noise compared with the SpSF algorithm.

The paper is organized as follows. The signal model is
formulated in Section 2. The SpSF algorithm based on non-
uniform noise estimation is developed in Section 3. Simula-
tion results are presented in Section 4. The results of the
water pool experiment are shown in Section 5. Conclusions
are provided in Section 6.

2. Signal Model

Consider a uniform linear hydrophone array of M elements
with its steering vector denoted by aðθÞ. Suppose that KðK
<MÞ far-field narrow-band signals impinge on the array
from the unknown DOAs θ = ðθ1,⋯,θKÞ, then the signal
observed of the array at time t is given as

x tð Þ = A θð Þs tð Þ
+ e tð Þ, t = 1,⋯, L,

ð1Þ

where AðθÞ = ½aðθ1Þ,⋯,aðθKÞ� is the steering matrix of the

array, and amðθÞ = ½1, ejφ⋯,ejðM−1Þφ�T is the steering vector
[29]. In a uniform linear array (ULA) with half-wavelength
interelement spacing, the mth entry of amðθÞ is given by

φ = 2πΔ
λ

sin θ, ð2Þ

where sðtÞ = ½s1ð1Þ,⋯,sKðnÞ� and eðtÞ are the signal and
noise vectors, respectively. They are assumed to be uncorre-
lated. L is the number of snapshots. Then, the array output
covariance matrix can be expressed as

R = E x tð ÞxH tð Þ� �
= APAH +Q, ð3Þ

where Ef⋅g and ð⋅Þ represent the mathematical expectation
and Hermitian transpose, respectively. P = EfsðtÞsHðtÞg is
the signal covariance matrix, and Q = EfeðtÞeHðtÞg is the
noise covariance matrix. For uncorrelated sources, P is a
diagonal matrix. In this paper, the sensor noise is considered
to be nonuniform and can be modeled as a spatially and
temporally uncorrelated zero-mean random process, and
then Q is also a diagonal matrix having the form

Q = diag σ21,⋯,σ2
M

� �
, ð4Þ

where σ2
1,m = 1,⋯,M are the sensor noise variances, and

diag f⋅g denotes a diagonal matrix. In practical applications,
the array covariance matrix is usually estimated as R̂ = 1/L
∑L

t=1xðtÞxHðtÞ.

3. The Proposed SpSF Algorithm with
Nonuniform Noise Estimation (NN-SpSF)

The SpSF algorithm is formulated by applying l1-norm
penalization of fitting the source covariance model to the
estimated spatial covariance, which applies the vectorization
operation [30–32] to R̂, and it can obtain the following rela-
tion:

r = ANθ
p∘ + σ2vec Ið Þ, ð5Þ

where r = vecðR̂Þ, vecðÞ, is the vectorization operation; ANθ

= ½avðθ1Þavðθ2Þ⋯ avðθNθ
Þ� is the array manifold matrix, in

which avðθÞ = vecðaðθÞaHðθÞÞ, and Nθ is the number of
search angles for θ. According to the Formula (5), the noise
entering the array is assumed to be uniform Gaussian white
noise. However, if the noise is nonuniform, (5) can be
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Figure 1: Comparisons of SpSF and NN-SpSF for DOA estimation.
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Figure 3: Comparison of the success probability of DOA estimation versus SNR.

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SNR (dB)

RM
SE

 o
f D

O
A

 es
tim

at
io

n 
(D

eg
)

SpSF
NNSpSF
CRB

Figure 2: Comparison of the DOA estimation RMSEs versus SNR.
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rewritten as

r = ANθ
p∘ + vec Qð Þ, ð6Þ

where Q is a diagonal matrix, but the elements are not equal;
therefore, the bearing estimation performance of the SpSF
algorithm will be significantly reduced. In the case of non-
uniform Gaussian white noise, we need to remove the non-
uniform noise information from Q by the following
operations:

Q‐QNð Þ⟶ λ ⋅ I: ð7Þ

To get the nonuniform diagonal matrix QN = diag fσ′21,
⋯,σ′2Mg, and σ′21 ≠ σ′22 ≠⋯ ≠ σ′2M , we can convert it to the
following semipositive definite optimization problem, as
shown in Formula (8):

max 〠
M

m=1
σ′2m,

s:t: R̂
�� �� −QN ≥ η ⋅ I,

QN ≥ 0,
η =min diag R̂

� �� �
:

ð8Þ

When QN is obtained, the DOA estimator of the SpSF
algorithm in the nonuniform noise situation (written as

NN-SpSF) can be given as

p∗ = arg min
p,μ

vec R̂ −QN

� �
‐ANθ

p
�� ��2

2 + μ pk k1,

s:t:pi ≥ 0, i = 1,⋯,Nθ:

ð9Þ

Formula (8) and (9) can be solved with the convex opti-
mization tool like CVX [33], which is used to solve the semi-
positive definite optimization problem. Here in formula (9),
the variable μ takes the value of 0.8.

4. Simulations

In this section, a series of numerical experiment results
under different conditions are conducted to validate the per-
formance of the proposed NN-SpSF algorithm. The experi-
ments are performed with a uniform linear array (ULA)
with M = 12 sensors and half-wavelength space. Three
equally powered independent narrowband signals impinge
on the array from directions -8°, 0°, and 8° respectively.
The noise is assumed spatially nonuniform and indepen-
dent, which has the following covariance matrix:

Q = diag 10:2 5:6 8:5 11:2 7:8 9:5 8 4:8 9 6:1 7:2 2½ �: ð10Þ

The signal-to-noise ratio (SNR) is defined as

SNR = 10 log 10 σ2
n

σ2s
∑M

i=1σ
2
i

 !
, ð11Þ

where σ2s denotes the power of source signal.
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Figure 4: Comparison of the DOA estimation RMSEs versus the number of snapshots.
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In the first simulation, the number of snapshots is 500,
and 10 independent experiment runs for SNR = 0dB are per-
formed. The comparison performance of the proposed NN-
SpSF algorithm with the SpSF algorithm is shown in
Figure 1.

As can be seen from Figure 1, the NN-SpSF algorithm
has higher accuracy of azimuth estimation and lower side-
lobe in nonuniform noise case.

Next, we set the number of snapshots to 800 and evalu-
ate the performances of the proposed algorithms at different
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Figure 5: Success probability of DOA estimation versus the number of snapshots.
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Figure 6: Averaged noise variances of sensors.
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SNR levels. The root-mean-square error (RMSE) of the esti-
mated DOA of the sources is defined as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K ∗Nm
〠
Nm

p=1
〠
K

k=1

bθk pð Þ − θk
	 
2vuut , ð12Þ

where bθkðpÞ is the estimate of θk for the pth Monte Carlo
trial, K is the number of sources, Nm is the number of the
Monte Carlo trials, and Nm = 200 in all the following simu-
lations. The RMSE and success probability of DOA estima-
tion versus SNR are shown in Figures 2 and 3. The SNR
varies from -12 dB to 12 dB with 2 dB step size.

It can be seen from Figures 2 and 3 that the NN-SpSF
algorithm has lower RMSE and higher success probability
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Figure 7: RMSE versus SNR for noise variance estimation.
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Figure 8: Comparison of SpSF and NN-SpSF algorithm for DOA estimation of pool experiment.

6 Wireless Communications and Mobile Computing



than the SpSF algorithms when the signal-to-noise ratio
changes. Figures 4 and 5 show the RMSE and success prob-
ability of DOA estimation versus snapshots, which varies
from 200 to 3200 with 200 step sizes.

It can be found that, as the snapshots increasing, the
NN-SpSF algorithm has the similar performance with
Figures 2 and 3. Besides the performance of DOA estima-
tion, we also evaluate the performance of the proposed
NN-SpSF and SpSF algorithm for noise variance estimation.
Figure 6 depicts the estimated noise variances averaged from
500 Monte Carlo trials at SNR = −8 dB. Figure 7 shows the
RMSE of noise variance estimation of all sensors versus
SNR; the SNR varies from -12 dB to 12 dB with 2 dB step
size.

It can be seen that the RMSE of noise variance decreases
rapidly with the increase of the SNR, and the proposed algo-
rithm can still estimate the nonuniform noise with a lower
deviation at a lower SNR, such as the -8 dB case in Figure 6.

5. Water Pool Experiment

The algorithm in this paper was verified by pool experiments
in an anechoic pool. The water pool is 20m long, 8m wide,
and 7m deep. The receiving array is a vertical uniform linear
array with 10 array elements, and the first hydrophone was
placed at a depth of 0.7m. The transmitting transducer is
7m away from the receiving array, and its transmitting sig-
nal is a CW pulse with a frequency of 3 kHz. The CW pulse
signal has a length of 400ms and a period of 1 s.

The results of the DOA estimation of the water pool
experiment for the NN-SpSF algorithm is shown in
Figure 8, and it can be observed that the NN-SpSF algorithm
has lower sidelobe. The noise variance estimation of all sen-
sors of the array is shown in Figure 9. In the actual situation,
there are indeed some differences in the noise background of

the sensors in the array due to manufacturing, installation,
and other reasons.

6. Conclusion

In this paper, a new noise variance estimation algorithm of
all sensors in an array in nonuniform noise for DOA estima-
tion is proposed. The estimation of the noise covariance
matrix is formulated into a solution to the semidefinite opti-
mization problem which can obtain a more accurate sensor
noise covariance matrix. Simulation results show that sub-
tracting the estimated nonuniform noise from the sample
covariance matrix can significantly improve the perfor-
mance of the SpSF algorithm. The water pool experiments
show that due to manufacturing and other reasons, nonuni-
form noise of the sensor does exist, but independent nonuni-
form noise in the sensor array is the simplest assumption. In
future, we will study the noise covariance matrix estimation
algorithm closer to the real situation to improve the perfor-
mance of azimuth estimation.
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