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The emergence of federal learning makes up for some shortcomings of machine learning, and its distributed machine learning
paradigm can effectively solve the problem of data islands, allowing users to collaboratively model without sharing data.
Clients only need to train locally and upload model parameters. However, the computational power and resources of local
users are frequently restricted, and ML consumes a large amount of computer resources and generates enormous
communication consumption. Edge computing is characterized by low latency and low bandwidth, which makes it possible to
offload complicated computing tasks from mobile devices and to execute them by the edge server. This paper is dedicated to
reducing the communication cost of federation learning, improving the communication efficiency, and providing some privacy
protection for it. An edge federation learning architecture with a privacy protection mechanism is proposed, which is named
PPEFL. Through the cooperation of the cloud server, the edge server, and the edge device, there are two stages: the edge device
and the edge server cooperate to complete the training and update of the local model, perform several lightweight local
aggregations at the edge server, and upload to the cloud server and the cloud server aggregates the uploaded parameters and
updates the global model until the model converges. The experimental results show that the architecture has good performance
in terms of model accuracy and communication consumption and can well protect the privacy of edge federated learning.

1. Introduction

The rapid development of machine learning (ML) [1] has led
to more and more intelligent IoT devices around people.
Services such as Internet of Vehicles [2], recommendation
systems, and smart cities require devices to collect a large
amount of user privacy data, and people are often reluctant
to share personal private data to complete ML. Many secu-
rity and privacy issues are exposed by traditional ML frame-
works. Therefore, federated learning [3] (FL) is proposed,
which is a method to collaboratively train shared models
without direct access to the raw data. It can solve the prob-
lem of data silos very well. In the current mainstream feder-
ated averaging algorithm [4] (FAVG), an ML model is
trained locally with the user’s private data, and then the
model parameters are uploaded. The central server aggre-
gates the uploaded parameters and updates the global model.

The attacker cannot directly access the user’s private data,
which can protect the user’s private data to a certain extent.

Unfortunately, federated learning incurs huge communi-
cation overhead [5]. First, there are too many communica-
tion rounds. In order to achieve the required model
accuracy, hundreds of communications are required, which
will result in huge data transmission from the local devices
to the cloud server. Second, the resources of the edge devices
may not be able to withstand the heavy computational
demands of local training. Faced with these problems, some
people use data compression [6] to solve them. However, the
disadvantage of this method is that information is lost,
resulting in reduced model accuracy.

As a distributed computing framework, edge computing
[7] distributes the centrally processed data to edge nodes,
which significantly improves the processing and transmis-
sion speed of data. Deploying FL on the distributed
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architecture of edge computing can make full use of the fea-
ture that edge servers can connect to cloud servers and edge
devices, reduce the computing pressure on cloud servers
and edge devices, and improve the communication efficiency
of FL.

Deploying federated learning in an edge computing
environment still needs to address some challenges. One is
to adopt the edge federated learning architecture, which does
not change the current edge computing paradigm, but off-
loading all calculations to the edge server will lead to insuf-
ficient computing resources of the edge server [8]. Second,
in edge federated learning, when parameters are exchanged
between edge devices and edge servers, there is a risk of
parameter leakage [9–11]. To address this issue, it is neces-
sary to add additional privacy-preserving schemes for edge
federated learning.

In order to reduce the communication cost of edge fed-
erated learning and find a balance between communication
efficiency, edge device computing pressure and privacy pro-
tection, in this paper, we propose an edge federated learning
architecture with a privacy protection mechanism (PPEFL).
It optimizes hierarchical edge federated learning and applies
the split learning idea to local training to reduce communi-
cation overhead. A privacy protection module is added to
the edge client to effectively protect data privacy. In this
way, the communication overhead is reduced and the pri-
vacy protection is unified. The contributions of this paper
are summarized as follows:

(1) An optimized edge federation learning framework is
proposed, where users do not need to upload local
data but only need to train the model on the client-
side and upload parameters, avoiding leakage of the
user’s own information and without modifying the
existing edge computing paradigm

(2) To reduce the calculation amount of edge devices,
complex computing tasks are offloaded to edge
servers for calculation, which can effectively improve
the computing efficiency of edge devices, and a light-
weight local aggregation method is proposed to
effectively reduce communication overhead

(3) A lightweight encryption algorithm is used to improve
privacy protection when passing model parameters

The rest of this paper is organized as follows. Section 2
describes some related work. Section 3 describes the system
framework. Section 4 describes the process of implementing
PPEFL, and Section 5 discusses the effectiveness of PPEFL
by conducting an experimental evaluation. Finally, Section
6 gives the conclusions.

2. Related Work

The advent of federated learning allows users to complete
collaborative training without uploading local data, but only
uploading model parameters for aggregation, enabling “data
availability and invisibility” [12]. However, it will cause huge
communication consumption, and to address this problem,

Wang et al. proposed a framework to reduce the communi-
cation overhead of federated learning, CMFL [13], where the
client checks whether its updates match the feedback pro-
vided by CMFL to the client to avoid transmitting irrelevant
updates to reduce the communication overhead. Paragliola
and Coronato proposed a novel federated learning approach
TFedAvg [14], which reduces the communication overhead
by evaluating two learning strategies, the FullNet strategy
and the PartialNet strategy, to reduce the communication
cost. Due to its distributed architecture and edge servers
close to the device, edge computing can relieve certain com-
puting pressure for edge devices. Wang et al. applied federa-
tion learning to edge computing to propose in-edge AI [15].
Through federated learning, to intelligentize edge comput-
ing, near-optimal performance can be achieved with rela-
tively low learning overhead. Paragliola and Coronato
proposed an efficient communication federated learning
method for vehicular edge computing in 6G communication
networks, namely, FedCPF [16]. It improves the conver-
gence speed through a customized local training strategy.
The communication cost is reduced by uploading partial
training results, and a flexible aggregation strategy is pro-
posed to further reduce the communication overhead. Ye
et al. proposed an edge federated learning (EdgeFed) [17],
which uses a segmentation technique to offload part of the
computation from the mobile client to the edge server,
reducing the computation cost for the user and also reducing
the global communication overhead.

Federated learning has some privacy-preserving efficacy
due to its locally trained architecture, which can avoid direct
data sharing. But when information is shared between cli-
ents and servers, it still leads to privacy leaks. In modern
society, people attach great importance to the security of pri-
vate information, such as identity, data, location, and other
private information, and the leakage of these data may lead
to extremely serious consequences. Thence, to solve the
problem of gradient leakage due to user uploaded data in
federation learning, M.A.P., Chamikara et al. proposed a dis-
tributed perturbation algorithm DISTPAB [18], which per-
turbs the data locally before the edge devices have to
perform federation learning to achieve improved privacy-
preserving performance by disturbing the original data. In
addition, some authors have used differential privacy to
improve the privacy-preserving performance of federation
learning. Wei et al. [19] proposed a differential privacy-
based framework that adds artificial noise to the client’s
parameters before aggregation and later proposed a user-
level differential privacy algorithm [20], which can effec-
tively improve the training efficiency. Wang et al. proposed
a three-plane framework [21] and adopted local differential
privacy on the user plane to solve the problem of user-level
privacy leakage under the cross-silo federated learning
framework and designed a data reconstruction algorithm
on the edge plane, which makes it impossible for malicious
attackers to directly access or infer user data. Asad et al. pro-
posed a noninteractive zero-knowledge proof homomorphic
cryptosystem (NIZKP-HC) [22] for protecting local gradient
updates. Chen et al. [23] proposed a mutual information-
based federation learning parameter aggregation algorithm
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that can effectively resist malicious node attacks. Federated
learning enables users to train locally due to its unique archi-
tecture, reaching the point where uniform model training
can be accomplished across multiple mobile devices without
aggregating users’ original data and avoiding attacks on
mobile users’ information during delivery by collecting
users’ uploaded model gradients or weights. The data link
between the edge server and edge devices in edge computing
is short, with sufficient bandwidth resources and relatively
fast data transmission speed. Therefore, combining the
advantages of both, some authors propose edge federated
learning. Zhang et al. proposed a federated learning frame-
work supporting mobile edge computing, FedMEC [24],
which achieves differential privacy by adding Laplacian ran-
dom noise to locally trained data features to provide privacy
protection, but this will reduce the accuracy of the model,
while adding additional communication overhead. In order
to reduce the communication overhead as much as possible,
reduce the computing cost at the device, improve the privacy
protection capability of federated learning, and make it bet-
ter applied to real-world scenarios, we propose PPEFL, an
edge federated learning framework with a privacy protection
mechanism.

3. System Structure

3.1. Federated Learning Based on Edge Computing. The
PPEFL architecture combines federal learning with edge
computing, which is designed on the basis of edge comput-
ing. It is a 3-2-2 model architecture, which consists of three
layers: cloud server, edge server, and edge device; two-tier
aggregation, local training by edge devices and edge servers,
federated learning model by edge servers and cloud servers;
two-layer encryption, the key is composed of the key of the
edge device and the key of the cloud server; and complete
decryption requires two decryptions, as shown in Figure 1.

The architecture includes a cloud server, L edge servers
and K edge devices, where the edge server is denoted by l,
the edge device is denoted by Cl

i, where 1 ≤ i ≤ K , the edge
client contains the distributed dataset Dl

i; use D
l to represent

the aggregated data set under server l, wl
iðtÞ to represent the

model parameters of user i, xr to represent the output of the
layer r, and loss function to be represented by FðwÞ. As the
control center, the cloud server initializes the weights and
parameters of the global model, broadcasts the calculation
tasks to the clients participating in the training, aggregates
the new information uploaded by the local clients, updates
the global model, and then assigns it to the edge equipment
participating in the training. Deployed in an environment at
the edge of the network, edge servers are servers between the
cloud and edge devices, such as routers, microbase stations,
or microclouds in regional data centers, which are used to
transmit data, storage, computing, etc. The edge device is
the user’s mobile device which stores a large number of user
privacy data.

3.2. Threat Model. In PPEFL, it is assumed that edge devices
are credible, while cloud servers and edge servers are honest
but curious; that is, all entities can complete the calculation

process of federated learning well, but they will try to reason
for the private information of the training data. In response
to this assumption, the designed architecture should be able
to protect the information of the participants during the
transmission process, and at the same time, have good accu-
racy and efficiency.

4. Scheme Realization

The basic idea of PPEFL is that the edge server and the edge
device are trained together to complete the training and
update of the local model. After the edge server completes
several local model aggregations, it is uploaded to the cloud
server to complete the global model aggregation and updat-
ing. For the benefit of enhancing the privacy protection
capability during transmission, a lightweight encryption is
added to encrypt the data to protect the data.

By jointly completing local training on edge devices and
edge servers, the computational overhead on the client can
be effectively reduced. At the same time, an optimized hier-
archical edge federated learning mechanism is proposed,
which is essentially a cycle strategy, that is, adding several
local updates and aggregations before transmitting to the
cloud server, reducing the number of communications
between the edge server and the cloud server, and reducing
communication overhead.

4.1. Local Training. PPEFL selects a convolutional neural
network as the model framework. Due to the high computa-
tional overhead of complete CNN training, training directly
on edge devices may lead to excessive training time and
insufficient edge device resources. Compared with edge
devices, edge servers have more powerful computing and
storage resources, as well as a more stable power supply.
The data link between the edge server and the edge device
is short, the bandwidth resources are sufficient, and the data
transmission speed is relatively fast. Offloading some tasks to
the edge server can reduce the computing cost of edge
devices and improve communication efficiency.

A complete neural network consists of many hidden
layers, and the input of each hidden layer can be regarded
as the output of the previous layer. Therefore, these layers
can be divided into two parts by using model segmentation
technology, namely, the edge device area and the edge
server area, which are called C-CNN and E-CNN, respec-
tively, are shown in Figure 2. Among them, C-CNN
includes the convolutional layers of the local CNN, and E-
CNN includes the rest.

The front-end part of the CNN structure is deployed on
edge devices to facilitate feature extraction from raw data
and local training. The rest of the CNN structure is deployed
in the edge server area to perform forward and backward
propagation procedures in order to update the model
parameters. In this way, the edge device and the edge server
can work together to complete the training. Here, C-CNN
includes the first convolutional layer and pooling layer,
and after the raw data is processed through C-CNN, the out-
put is sent to the edge server. In order to reduce the amount
of data transmission, O clients are randomly selected, and
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the selected clients transmit the encrypted data to the edge
server to complete E-CNN. Dividing the complete CNN into
two parts and computing them in different devices can effec-
tively reduce the computation of the edge client. The algo-
rithm of the C-CNN part is as follows.

4.2. Model Aggregation.We take inspiration from the hierar-
chical federated averaging algorithm (HierFAVG) [25] and
propose an optimized edge federation algorithm to further
reduce the communication energy consumption. The edge
server is used as an intermediate parameter aggregator to
reduce the communication overhead between the edge
server and the cloud server and avoid excessive communica-
tion delay. The basic idea is that after the edge client com-
pletes τ1 local updates, the edge server aggregates the
model, and after completing τ2 edge aggregation, the edge
server uploads it to the cloud server for aggregation.

In each iteration of the optimization algorithm, the k
users participating in the training download the C-CNN

model from the edge server L to the local and entered the
local dataset it owns into the C-CNN to generate features
and then encrypted them. After encryption, it is transmitted
to the edge server to complete the E-CNN. In order to
reduce the number of communication rounds and reduce
the communication cost, an optimized edge federated learn-
ing mechanism is used instead of federated learning. Using
the edge server as the intermediate parameter aggregator,
after several local joint updates, the edge server is locally
aggregated several times and then uploaded to the central
server for aggregation, thereby greatly reducing the commu-
nication cost.

In order to further reduce communication consumption,
a local aggregation mechanism is designed in the local aggre-
gation stage to reduce the resource occupancy of the edge
server. The edge server aggregates all the models updated
on this server, which is called the edge model wlðtÞ. After
τ2 edge aggregations, it is uploaded to the cloud server for
aggregation to complete the update of the global model, that

Cloud server

Edge servers

Edge devices

E-CNN

C-CNN

Local
aggregation

Cloud
aggregation

Figure 1: PPEFL architecture.

Edge client Edge server

C-CNN E-CNN
Input Layer1 Layeri Layeri + 1 Layern Output

Figure 2: C-CNN and E-CNN.
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is, wcðtÞ, which means that the edge server and the cloud
server are locally updated every τ1 and τ2. The aggregation
algorithm is shown in Algorithm 2.

In the local aggregation stage, the local aggregation
mechanism is applied to the edge server to complete τ1 local
updates and aggregate the models several times. In order to
reduce the amount of computation, the edge server adopts
the local aggregation mechanism to randomly select a part
of the parameters according to the proportion θ in the
parameters updated by each edge device to complete the
aggregation of the edge model. The calculation formula of
local aggregation is as follows:

wl tð Þ = ∑i∈θ Dl
i

�� ��wl
i tð Þ

Dl
θ

�� ��
: ð1Þ

After τ2 local aggregations, the cloud server uploads the
model to the cloud server to complete global aggregation.
The calculation is as follows:

wc tð Þ = ∑L
l=1 D

l
�� ��wl tð Þ
Dj j : ð2Þ

After the cloud server completes the aggregate update, it
sends the updated model to the edge server to complete the
next round of updates until the model converges.

4.3. Lightweight Encryption. Federated learning can provide
some basic privacy protection for users’ original data due
to the attributes of local training. However, clients partici-
pating in training may still receive attacks from malicious
users, resulting in information leakage. Therefore, an
encryption mechanism is required to protect the participat-
ing users’;data privacy.

Homomorphic encryption (HE) can operate the calcula-
tion performed on the ciphertext intact on the plaintext,
which means that after homomorphic encryption of the cli-
ent’s data, it can still be inputted into the convolutional neu-
ral network to complete various calculations without losing
security and accuracy. Among them, ElGamal encryption is
a homomorphic encryption with a multiplication mecha-
nism, which has higher computational efficiency and stron-
ger encryption capability. In the traditional homomorphic
encryption algorithm, if the client leaks his private key to

the client or server with the ciphertext, the plaintext can be
easily inferred, resulting in information leakage. So this
paper alleviates this situation by introducing secret sharing
technology and double key. Using Feldman’s Verifiable
Secret Sharing (VSS) [26] to generate keys can successfully
and securely verify key sharing and key generation without
referring to a third-party trust organization. In order to
strengthen the ability of privacy protection, we modify the
traditional key generation and the number of keys and pro-
pose verifiable double-key encryption.

According to Feldman’s VSS combined with ElGamal
encryption [27], to complete the encryption of features, the
encryption method is as follows:

Parameter generation: generate three parameters p, q,
and g, where q is the prime order of cyclic group G; p is a
large prime satisfying qjp − 1, and g is the generator of G.

Key generation: in the t-th round, each participating user
i generates a random polynomial f iðxÞ =∑t−1

j=0aijx
j, such that

s = zi = ai0 = f ið0Þ is the locally stored private key. Taking
sij = f iðjÞ mod p as a share, calculate and broadcast αij =
gaij mod p, i = 0, 1,⋯, t − 1; Pj verifies that gsij =Qt−1

i=0α
ji

ij

mod p, j = 1, 2,⋯, n. If the equation does not hold, then
the shared sij received by the user is invalid. When the shar-
ing of all collaborators is verified as valid, the collaborators
can calculate the secret s according to the Lagrangian poly-
nomial interpolation method. The specific recovery key cal-
culation method is as follows:

s = 〠
t

i=1
f i jð Þ

Y

1≤j≤t,j≠i

i
i − j

: ð3Þ

1: Procedure EDGE DEVICES
2: Initialized all clients with parameter w0
3: For t = 1, 2,⋯, T do
4: For each client i = 1, 2,⋯,N in parallel do
5: Train C-CNN
6: Encrypt xr and send features to edge servers
7: End for
8: End for
9: End procedure

Algorithm 1: C-CNN in edge devices.

1: Procedure AGGREGATION IN EDGE SERVERS
2: EVENT: Receive xr and features
3: For each edge l = 1,⋯, L in parallel do
4: Train E-CNN
5: wl

iðtÞ⟵wl
iðt − 1Þ − γ∇Fiðwl

iðt − 1ÞÞ
6: If tjτ1 = 0 then
7: wlðtÞ⟵ Local Aggregation
8: If tjτ1τ2 ≠ 0 then
9: For each client i ∈ Cl in parallel do
10: wl

iðtÞ⟵wlðtÞ
11: End for
12: End if
13: End for
14: End procedure
15: Procedure AGGREGATION IN CLOUD SERVERS
16: If tjτ1τ2 = 0 then
17: wcðtÞ⟵Global Aggregation
18: For each client i = 1, 2, ::,N in parallel do
19: wl

iðtÞ⟵wlðtÞ
20: End for
21: End if
22: End procedure

Algorithm 2: Aggregation in edge servers and cloud server.
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The server can generate a global public key by broadcast-
ing αi0 from all clients in equation (4), where x is the global
private key.

pki = αi0 = gzi mod pð Þ,

pk =
Y

i

pki = g
〠
i

zi

= gx mod pð Þ:
ð4Þ

The cloud server selects a random number r, r ∈ Z∗
p as

the cloud key ck = r, and the public key is pk = gxck mod p.
Encryption: encrypt message m, compute ciphertext c1

= gckðmod pÞ, c2 = mpkckðmod pÞ.
Decryption: decrypt the plaintext message m by for-

mula (5).

c2
c1

= mpkck

gck
À Áx = mgxck

gxck mod pð Þ ≡m: ð5Þ

Decryption can only be completed after the cloud
server and the edge device are decrypted separately. After
the server is aggregated, the decryption is performed, and
then part of the decrypted ciphertext is downloaded to
the edge server and edge device, and the edge device can
restore the plaintext after decryption. In this way, no one
can decrypt by holding the global private key.

Since EIGamal encryption is a homomorphic encryption
of a multiplication mechanism, the model aggregation in FL
performs an addition operation. In order to make the
encryption method better applied in FL, the encrypted mes-
sage m is transformed into m̂ = gmðmod pÞ. Through this
transformation, homomorphic encryption can be well
applied in FL, as shown in

Enc m1ð Þ ∗ Enc m2ð Þ = gm1key1∗gm2key2 mod pð Þ
= gm1+m2key1+2 mod pð Þ:

ð6Þ

When the plaintext is recovered, the discrete logarithm
problem is solved by Pollard’s rho algorithm adopted in
[27]. This can solve discrete logarithm problems in tens of mil-
liseconds on a moderately capable computer. It is worth not-
ing that the assumption is that the participants voluntarily
provide the labeled data to perform supervised learning, and
privacy in the labels is not expected, so the privacy in the labels
of the training data samples is not considered by us.

4.4. Security Analysis. Since edge servers and cloud servers
are honest but curious, this requires that the security
requirements of the proposed encryption scheme include
verifiability and privacy. Verifiability requires no proof as
the server always strictly enforces the program. In terms
of privacy, it is necessary to ensure data privacy security
and parameter privacy security. For data privacy, in
PPEFL, clients do not need to upload local parameters
and do not share them with other users. Model training
is always performed locally, which ensures the privacy

and security of user data. For parameter privacy, the proof
is given in Theorem 1.

Theorem 1. PPEFL meets the requirements of parameter
privacy.

Proof. During training, there is no additional information on
edge devices revealed except the output of a specific layer. If
the server tries to expose information, it needs to resolve gm.
However, information is protected in two ways. When ck is
obtained from gck , it is protected by the hardness of discrete
logarithm. When gck and gμ is obtained from gμck , it is pro-
tected by the hardness of the computational Diffie-Hellman
problem. It is almost impossible to obtain the information
before encryption. Therefore, the proposed encryption
scheme meets the requirements of parameter privacy. It is
almost impossible to obtain the information before encryp-
tion. As a result, the proposed encryption scheme meets
the requirements of parameter privacy.

5. Analysis of Experimental Results

5.1. Experimental Setup. The experimental dataset is the
MNIST handwritten digit classification dataset, which
includes 60 k training samples and 10 k test samples, includ-
ing ten different label categories from 0 to 9, and the UCI
Human Activity Recognition (HAR) dataset, including 7 k
training samples and 3 k test samples, containing 50 dimen-
sional features.

The network structure used is a convolutional neural
network (CNN), which consists of two 5 × 5 convolutional
layers, two 2 × 2 pooling layers, a fully connected layer,
and a final softmax output layer. The weights in the model
are initialized to random values sampled from the normal
distribution N (0, 0.022) and the biases are initialized to 0.
We simulated a setup of 100 devices, 10 edge servers, and
a central server. Discussed the scenario where each edge
server has the same number of edge devices uploading infor-
mation, and each edge device has the same amount of data.
For local updates on each client, minibatch stochastic gradi-
ent descent with a batch size of 10 is employed. Use the
pickle module to convert gradient parameters into a stream
of bytes for transmission. The experiments were performed
on a Windows 10 machine with an Intel i7-8700K CPU,
GTX 1080T GPU, and 16GB RAM.

5.2. Experimental Results

5.2.1. Influence of Parameters. Firstly, the parameters in the
model are simulated to discuss the performance of the model
under different parameters. In optimizing the hierarchical
edge federated learning architecture, the key to the optimiza-
tion technique lies in the number and proportion of local
updates and local aggregations. We first analyze the impact
of the number of local and global aggregations on model
accuracy and then discuss the problem of local update ratios.
It is worth noting that in order to better test the impact of
parameters on performance, the homomorphic encryption
method is not used. It is assumed in this paper that O = 50.
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When τ2 = 1 and all local aggregations, the optimized
hierarchical federated learning is the same as FAVG, so τ2
= 1 is used as the baseline. As shown in Figure 3, when τ1
= 15 and τ2 = 4, the best efficiency can be achieved in the
least time, which is also consistent with the experimental
results in [25]. There are similar experimental results on
both datasets.

Experiments show that, without affecting the perfor-
mance of the model, increasing the number of local gradient
aggregation can reduce the communication cycle with the
cloud, achieve better accuracy in a shorter time, and help
reduce communication overhead.

In addition, we also found that increasing the threshold
when local aggregation is updated can further reduce the
computational overhead without affecting the model accu-
racy. The experimental results are shown in Figure 4. When

θ = 1, all local aggregations increase the computing pressure
of the edge server, which also means longer computing time,
so we choose the ratio of θ = 0:5. Because under this ratio, not
only can better results be achieved but also the communica-
tion time is shorter and the communication cost is reduced.

5.2.2. Execution Time. By testing the time it takes to build a
model on the dataset, it reflects the efficiency of the algorithm.
Taking the traditional FedAvg algorithm as the benchmark
and comparing EdgeFed, which also adopts the idea of seg-
mentation learning; we test the time required by the three
parties under the same model accuracy. According to [28],
the latency of one round communication between edge server
and cloud server is set to 100ms, the latency of one round of
communication between edge device and edge server is
10ms, and the latency of one local update on the device is
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1ms. Taking the MNIST dataset results as an example, it takes
62.7min, 60.5min and 106.1min to train on PPFEL, EdgeFed,
and FedAvg to achieve 97% accuracy, respectively. This shows
that adopting segmentation learning can not only reduce the
computational pressure of edge devices but also achieve better
performance in less time. PPEFL optimizes themodel aggrega-
tion, reduces the number of communication rounds between
the edge server and the cloud server, and thus reduces the
computational overhead, which is not much different than
the EdgeFed running time but adds additional privacy protec-
tion capabilities, which means that the proposed edge local
aggregation method is effective.

5.2.3. Comparison with Other Models. The comparison
scheme is as follows:

EdgeFed [17]: applying federated learning to edge com-
puting, all participants complete training on local and edge
servers, upload updates to cloud servers to complete aggre-
gation, and reduce device computing costs and global
communication consumption, but have no other privacy
protection methods.

FedMEC [24]: adopt the federated edge learning frame-
work to further protect privacy security through differen-
tial privacy.

P2FEC [29]: also adopts the federated edge learning
framework to ensure user privacy through secure multiparty
computation.

PPEFL: our scheme adopts an optimized edge federated
learning framework to protect privacy through lightweight
encryption.

The four comparison schemes were completed under the
same settings, and the experimental results are as follows.

(1) Data transmission

The local update composition is completed by the edge
device and the edge server, which will inevitably bring

additional communication costs. After multiple local aggre-
gations are performed at the edge server, the global aggre-
gation is completed. By reducing the number of global
aggregations, the purpose of reducing the communication
pressure can be achieved. In PPEFL, to provide 128-bit
security level, the ElGamal key size is set to 256 and the
group size is set to 3072. To evaluate the transmission effi-
ciency, the size of the encryption parameters was measured,
and the Figure 5 shows the size of the ciphertext transmit-
ted in one global epoch. By limiting the number of clients
participating in uploading gradients, the size of the trans-
mitted ciphertext is reduced.

(2) Model training
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The time of model convergence is used to reflect the size
of communication overhead because the increase of commu-
nication rounds will inevitably bring a large amount of com-
munication overhead. Experiments show that our proposed
scheme can achieve good accuracy with fewer communica-
tion rounds. The model has a shorter convergence time
and lower communication overhead. As can be seen from
Figure 6, the number of communications required by this
method on the MNIST dataset is less than the EdgeFed,
which can reduce the communication overhead, but the
accuracy rate is reduced.

Under the same training time, the model accuracy of
EdgeFed scheme using no privacy protection scheme is
slightly higher than other schemes. Using the FedMEC
scheme is slightly lower than the other schemes, which is
due to the addition of additional noise, resulting in a reduc-
tion in model accuracy. The test accuracy of the PPEFL
scheme is slightly lower than that of the EdgeFed scheme
in the comparison, because some parameters are discarded
in the local aggregation process, resulting in a decrease in
accuracy. Although the accuracy is slightly lower than the
EdgeFed scheme, privacy protection is very important for
information, so it is more suitable for the edge computing
network environment. Compared with the same precision,
using the P2FEC scheme takes longer to execute, because
SMC requires more rounds of communication in each
global update.

6. Summary

In order to protect clients’ data privacy and reduce commu-
nication consumption, a federated learning based on edge
computing framework (PPFEL) is proposed that can
improve both efficiency and privacy. The proposed frame-
work is based on optimizing hierarchical edge federated
learning. Local updates are implemented on the edge client
and edge server, and a local aggregation is completed on
the edge server after several updates. After several local
aggregations are completed, upload to the cloud server to
complete the global aggregation, and the global model
update is sent, and the global model updates to edge servers
until the model converges. In an effort to reduce the compu-
tational pressure of the edge client, a segmentation model is
used to divide the complete convolutional neural network
into two parts, which are deployed on the edge device and
the edge server, respectively. With the purpose of ensuring
the privacy of data transmission, a lightweight encryption
algorithm that does not require a third-party trusted organi-
zation is used to provide sufficient privacy assurance. Finally,
the effectiveness of the proposed method is proved by
experiments.

Data Availability
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