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According to OWASP-2021, more than 3,00,000 web applications have been detected for unauthenticated and unauthorised
access leading to a breach of security trust. Security patterns are commonly used in web applications to address the problem of
broken access. Web developers are not experts in implementing security patterns. Therefore, it is necessary to verify that the
security pattern has been applied, specifying the original intent of the security pattern. In this paper, an approach has been
proposed that analyses the behavioural aspect of security patterns to verify that it meets the security requirement of the web
application. The proposed approach extracts the class diagram’s structural properties, relations, associations, and security-
related constraints and verifies it using the first-order predicate logic. Experiments have been conducted using class diagrams
of security patterns to detect instances of broken access control early in the design phase. The proposed approach will help
minimise the risk of unauthenticated and unauthorised access to a web application.

1. Introduction

According to OWASP-2021, security vulnerabilities causing
broken access control have moved to the first position from
fifth in the last three years [1]. 94.5% of web applications
have been detected with security weaknesses causing
unauthorised disclosure, distortion, disruption, or data
destruction by allowing users to perform actions, not within
their respective limits [1]. Such weaknesses of broken
authentication and unauthorised access have been reported
in more than 318,000 web applications [1]. The percentage
of vulnerabilities due to broken access control is increasing
[2], as shown in Figure 1. These vulnerabilities exist in web
applications due to inadequate design, hardcoding of access
control and rights, and overlooking security best practices
during the software development life cycle [3]. Moreover,
frequent changes in software applications to patch security
vulnerabilities bring new challenges for testing and remov-
ing the bugs [4–6].

Security patterns are commonly used in web applications
and framework to address the problem of broken access [7].
In literature, the design and description of security patterns

are commonly characterised by classes consisting of an
interface class, abstract class, method, data members, and
their respective implementations in concrete classes. The
UML description, code examples, and design recovery
regarding security patterns are not yet as mature as their
counterparts in the software design patterns [8]. The organi-
sation, structure, relationships, and dependencies of member
data, methods, and classes in a security pattern represent a
recurring design concept that can be utilised to verify and
validate before implementation [9]. A sample code may
not accompany the security pattern description for imple-
mentation. Therefore, during the software design phase,
the class diagram of the security patterns requires a thor-
ough examination to vouch for any unintentional security
breach or hidden vulnerability. This vulnerability may be
caused at run time due to the establishment of undesired
connections among various objects of a class diagram. An
attacker may exploit such a connection and access confiden-
tial data with time. The security patterns, thus applied, need
to be verified for their consistency and usability. The class
diagram in the design document provides a structural and
behaviour view of member elements and functions. If not
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applied appropriately, the properties of relationships and
accessibility lead to unauthorised access to resources by the
users. This leads to a hidden vulnerability that goes unno-
ticed until the attacker exploits the vulnerability. For exam-
ple, consider an operation update op1 on a data element
d1 is meant only for a role Rx.

In contrast, other operation read op2 on the same data
element d1 is meant for various Rx, Ry, and Rz roles. The
secure visitor pattern is applied to ensure role-based data
access. However, suppose the accessibility (public, private,
protected, and friend) of data elements in abstract and con-
crete classes is not defined appropriately. In that case, it will
allow restricted roles to access the data elements and opera-
tions for which the role is not authorised.

Moreover, certain security constraints are not shown
in the class diagram but are written in textual statements
in security patterns. The textual statements that could
not be depicted in the class diagram also go unnoticed
during the implementation of the security pattern. These
security issues leave vulnerability that goes unnoticed even
during rigorous security testing. The attackers take advan-
tage of these hidden security vulnerabilities and take over
resource control.

This paper proposes an approach to verify the relation-
ships and accessibility among various objects created during
the execution of a security pattern. The proposed approach
extracts the microarchitecture from the class diagram of
the security pattern applied. The security constraints speci-
fied in the security pattern description are written in first-
order predicate logic. The proposed approach has been
applied to secure visitor, secure strategy factory, and authen-
ticator patterns to check the consistency of relationships
among various concrete elements of the abstract security
pattern. The extracted microarchitecture and security con-
straints are analysed by generating their instances using
Alloy. The experiments show that connections indicating
unauthorised access and broken access control are detected
in one or more instances. The detected instance is rectified
using the proposed approach, and a metamodel is generated
for the security pattern. The approach will facilitate the
appropriate implementation of security-dependent logic in
a web application and helps in the identification of hidden
vulnerabilities at an early stage.

The rest of the paper is organised into four sections
describing Related Work, Proposed Methodology, Experi-
mental Results, Analysis, and Discussion, and Conclusion
and Future Work.

2. Related Work

In this section, various approaches for verifying and validat-
ing security patterns have been discussed. Dong et al. [10]
represented the composition of security patterns using
Calculus of Communicating System- (CCS-) based model
checker of sequence diagrams. The approach proposed by
Dong et al. [10] verified the states and its transitions in the
sequence diagram of a security pattern. Mourad et al. [11]
proposed an aspect-oriented two-phased approach to verify
integrated security patterns in an application. The approach
defines security objects, methods, and events and manually
verifies them with security requirements. Pedroza et al.
[12] proposed a verification approach using block and state
machine diagrams in the SysML environment for the safety
and security of critical real-time embedded systems.

Heyman et al. [13] modelled and verified compositional
and trust properties of a software security architecture using
security patterns based on abstract and concrete levels.
Castellanos et al. [14] presented a verification method of
security and dependability patterns in preconditions, post-
conditions, and model transformations. Devyanin et al.
[15] performed a data flow analysis of the operating system
security model using role-based access control to prove its
conformance and consistency to ensure integrity and confi-
dentiality. Vaca and Gasca [16] defined security patterns
using Feature-Oriented Domain Analysis (FODA) and rep-
resented mandatory forces of security patterns in the Backus
Naur Form. Hamid et al. [17] proposed a semiformal
approach for representing security patterns at domain-inde-
pendent, domain-specific, and pattern-specific metamodel.
Alzahrani [18] demonstrated the use of codecharts for for-
mal specification and verification of security patterns in
terms of generalisation and abstraction. Dwivedi and Rath
[19, 20] presented verification of five security patterns of
web applications and one security pattern of Service-
Oriented Architecture (SOA) using Alloy [21]. The security
patterns verified by Dwivedi and Rath [19, 20] are secure
proxy, single-sign-on, check point, authenticator, and access
policy.

He and Fu [22] modelled and analysed six security pat-
terns, namely, account lockout, authenticated session, client
data storage, encrypted storage, password authentication,
and password propagation, to check their completeness,
consistency, and ambiguity in their textual descriptions. He
and Fu [22] used high-level petri nets to ensure the correct
implementation of these six security patterns. Near and
Jackson [23] showed that previously unknown security bugs
could be easily identified using their proposed formal
approach SPACE (Security Pattern Checker), which finds
implementation bugs in access control security patterns. In
an approach to improve security pattern definition, Behe-
rens [24] provided abstractions and their implementations
using formalised notation. The constraints were represented
as a finite state machine recognised by regular language for
analysis and verification.

Berghe et al. [25] focused on defining security patterns
using a modelling language and proposed four data-
specific building blocks, namely, data types, data flows, data
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Figure 1: Increasing trend of broken access control detected in web
applications in the last five years [1].
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creation, and data storage, to support security patterns.
Security analysis of the web in terms of cache usage, tempo-
ral logic, and state transitions was presented by Shimamoto
et al. [26]. Shimamoto et al. [26] also verified Web Decep-
tion attack, CSRF attack, and exact origin and cross-origin
Browser Cache Poisoning (BCP) attack using Alloy and tem-
poral logic syntax. Obeid and Dhaussy [27] presented a mes-
sage, resource, and access-based approach for formalisation,
verification, and composition of security patterns with
increased complexity measures.

Gadouche et al. [28] used Event-B correct-by-construction
methodology to specify declarative and behavioural aspects
of Role-Based Access Control. Gabillion et al. [29] designed
a model for representing dynamic and contextual authori-
sation rules using first-order predicate logic for security
administration and policy in the Internet of Things. Gupta
et al. [30] proposed a formal approach to represent security
constraints of a security pattern using first-order predicate
logic. The formal specification facilitated early detection of
hidden security vulnerabilities in a software or a web
application.

The approaches available in the literature for specifi-
cation and verification of security patterns are based on
transitions and a set of actions and cover few security
patterns. The existing approaches have considered trans-
actions, temporal logic, request, response, and resource
messages to verify the security of an application. As the
application grows in size bringing variations in code, the
greater efforts are required to verify security properties
and detect vulnerabilities [31]. However, the existing
approaches grow exponentially as the number of transi-
tions and states becomes larger in terms of complexity and
execution time. The relationships and security-related con-
straints among various objects created in the execution of
security patterns have not been analysed in existing
approaches. The existing approaches have not verified the
behavioural aspect of security patterns among various
instances of concrete objects.

3. Proposed Approach

This paper proposes an approach to verify secure access con-
trol and detect unauthenticated and unauthorised access
arising from the inadequate implementation of security pat-
terns. The class diagram of the security pattern available in
literature has been used to extract its microarchitecture in
the proposed approach. The microarchitecture of the class
diagram contains structural properties such as interface
class, abstract class, concrete class, methods, fields, and their
respective relations and accessibility. An interface class is
identified along with its member functions, data, and acces-
sibility specifiers. The approach then identifies the abstract
class and its concrete implementations. The private and pro-
tected data fields and member functions are identified for
every concrete class. The private and protected member ele-
ments are the restricted elements to be verified for their non-
accessibility from other elements. Subsequently, other
member elements with public and friend accessibility are
also identified and checked for the parameters passed and

consistency. The interface, abstract, and concrete classes
are analysed for the relationships of inheritance, association,
composition, aggregation, and creation of objects.

Further, security constraints are written in first-order
predicate logic and modelled with the microarchitecture.
For example, suppose in a security pattern, it is defined that
a concrete class should not have a public method. In that
case, it is written as ∄ispublicðoperationsðConcreteClassÞÞ,
in which ∄ is a negative existential quantifier of predi-
cate logic. Similarly, a class may have only one member
function and the predicate logic for same is Operations
ðConcreteClassXÞ = fOpXðÞg. The identified microarchi-
tecture is then analysed and executed using Alloy Specifica-
tion Language. The security pattern is then executed by
creating multiple instances and objects. Each execution is
verified for the existence of any counterexample instance
in its respective instance. If a counterexample is detected,
the constraints and structure are rectified suitably to pres-
ent an accurate design of security pattern. All nodes in an
instance are checked for reachability [32, 33] to verify the
complete and unambiguous implementation of the security
pattern. The proposed approach for verifying applied secu-
rity patterns and identifying any hidden vulnerabilities is
shown in Algorithm 1.

4. Experiments, Results, and Analysis

The proposed approach has been applied to three security
patterns: authenticator, secure visitor, and secure strategy.
The microarchitecture has been extracted and detailed in
Section 4.1 for each applied security pattern in the first step.
The subsequent modelling, execution of multiple instances,
results, and analysis for each security pattern have been
discussed.

4.1. Extracting Microarchitecture of Security Patterns

4.1.1. Authenticator Pattern. The class diagram of the
authenticator pattern [34] is shown in Figure 2(a). The
microarchitecture from the class diagram of the authentica-
tor pattern is extracted by identifying its classes, member
functions, security constraints, and relations and is shown
in Figures 2(b) and 2(c).

4.1.2. Secure Visitor Pattern. The secure visitor pattern class
diagram [35] is shown in Figure 3(a). The secure visitor pat-
tern separates conditional security logic from the business
logic in hierarchical data nodes in a web application. It
enables data nodes to authenticate the visitors requesting
their access for certain operations. The usage of the secure
visitor pattern helps prevent unauthorised access to data by
implementing security logic in a separate code segment
or class. The secure visitor pattern provides a solution to
prevent such attacks by making data nodes lock them-
selves from being read by a visitor unless the visitor sup-
plies the proper credentials to unlock the data node. The
secure visitor pattern consists of an interface, abstract,
and concrete classes representing secure visitors, unlocked
and locked data nodes, various member data and func-
tions, and their respective access specifiers. The abstract
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function ‘acceptðÞ’ is implemented in concrete classes of
locked data node type(s) that, in turn, unlock the respec-
tive data node after checking a user’s credentials. The
microarchitecture of the secure visitor pattern extracted
is shown in Figure 3(b). Security constraints such as for
every locked data node, there should be an unlocked data

node, restriction of access to parent and child data nodes,
and restrictions on member functions of abstract and con-
crete classes are represented in predicate logic and shown
in Figure 3(c). These security constraints are crucial for
providing secure access and preventing broken access in
web applications.

Input class diagram of security pattern
Process
Step 1 extraction of microarchitecture

For each security pattern
Identify classes, member functions, and member data from the class diagram.
For each class identified, label it as an interface, abstract class, or concrete class.

For each function identified, label it as an abstract function or a concrete function.
For each member, data and function
Identify the accessibility

End for
End for

End for
Look into the textual description of security patterns to identify security constraints.
For each security constraint

Write first-order predicate logic.
End for

End for
Step 2 model the security pattern in Alloy using the mapping of extracted microarchitecture, assertion, and facts
Step 3 run and execute the assertion for multiple instances
Step 4 check for counterexample

If counterexample found
Rectify the relation, association, and function calls
Go to step 1

Else
Terminate with metamodel

Output metamodel for security pattern for code implementation

Algorithm 1: Algorithm for analysing and identifying vulnerabilities in the implementation of security patterns at the design phase.

Authenticator
Authenticator is an interface.

Abstract classes: ObjectFactory, Remote, Authenticator
Abstract operations: get, auth, create

Concrete classes: ObjectA, ObjectB,
ConcreteAuthenticatorA, ConcreteAuthenticatorB
Operations: getA, authA, createA, getB, authB, createB
Where A,B are the methods restricted to the different
authentication methods

(A) Class diagram of authenticator pattern [34] (B) Microarchitecture of authenticator pattern

Security constraints in first order predicate logic
all x: Authenticator | all y: ObjectFactory |
one x≥y && one y≥x implies one y≥x ||

create [x, y] implies one x≥y

C) Security constraints of authenticator pattern

Remote object

ObjectFactoryAuthenticator

Concrete
Authenticator

Concrete
ObjectFactory

create()

creates

create()

authenticate(s)

authenticate(s)

get()

Figure 2: Extracting microarchitecture of authenticator pattern.
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4.1.3. Secure Strategy Factory Pattern. The class diagram of
the secure strategy factory pattern [35] is shown in
Figure 4(a). The secure strategy factory pattern separates
the security-dependent logic associated with each role from
the basic functionality of object creation and selection.

Secure strategy factory implements the creation and selec-
tion of an object for executing an operation depending on
a set of security credentials. The given security credentials
are used to select and return the role-specific object. The dif-
ferent secure functions are implemented in various concrete

subclasses

subclasses (UnlockedDataNode)
access (x, x.child) ∧ ~access (x, x.parent)

ispublic (operations (LockedDataNode))

subclasses
create (l, u)}

u

DataHierarchy
∃accept operations
∃checkCredentials operations

l

SecureVisitor
Secure visitor is an interface
Abstract classes: UnlockedObject,
UnlockedDataNode, LockedDataNode,
UserAndRolesCredentials
Operations: accept, unlock, checkCredentials,
Visit
Concrete classes: VisitorX,
UnLockedDataNodeX, LockedDataNodeX
Where X ranges from 1 to n.
a) UnlockedObject UnlockedDataNode

associations 
b) relations(UnlockedObject,

UnlockedDataNode, associations)
c) accept operations(LockedDataNode)
d) unlock operations(LockedDataNode)
e) accept  operations(UnlockedDataNode)
f) CheckCredentials operations

(LockedDataNode)
g) VisitX⊆ operations(SecureVisitor)
h) isProtected(checkCredentials)
i) isPublic(accept)
j) isPrivate(unlock)

(A) Class diagram of secure visitor pattern [34] (B) Microarchitecture of secure visitor pattern
Security constraints in first order predicate logic
a) Association is from UnlockedObject to UnlockedDataNode

a. type (UnlockedObject) = Object ∧
b. type (UnlockedDataNode) = UnlockedDataNode ∧
c. multiplicity (UnlockedDataNode) = “⁎”

b) Client depends only on SecureVisitor and UnlockedObject
a. Such that: 

i. access (SecureVistor, UnlockedObject),
ii. {UnlockedDataNode} subclasses (UnlockedDataNode) subclasses (SecureVisitor)

c) Accessor is the only operation in UnlockedDataNode
i. Operations (UnlockedDataNode) = {accessor}

d) For every subclass of UnlockedDataNode, there exists a subclass belonging to LockedDataNode and an
operation VisitX belonging to the subclass of SecureVistitor. The function visit () takes the parameter
UnlockedDataNode of typeX as its subclass such that each concrete node in the data hierarchy has both a
locked and unlocked version. Only a locked node will be able to create an unlocked node.

x  DataHierarchy !x (l, u) such that
{∃

∄

∃(UnlockedDataNode) (LockedDataNode) ∧

e) No UnlockedDataNode should be able to access its parent or child data node.

~
f) LockedDataNodes has no public operations

g) To access UnLockedDataNode, visitor should call LockedDataNode, which in return create
UnLockedDataNode after checking user credentials.

(LockedDataNodeX) ∧
(LockedDataNodeX)

such that
if return(checkCredentials)=true

create (l, u)
C) Security constraints of Secure Visitor Pattern in first order predicate logic

↑

⫙

⫙

⫙
⫙

⫙

∩ ∩

⩝ ⫙

x⩝ ⫙

x⩝ ⫙

⫙

⫙

⫙ ⫙

∃
∧

Visitor

LockedDataNode  

UnlockedDataNode  

UnlockedDataNode1  UnlockedDataNode2  

LockedDataNode1  

+accept():Visitor, user:UserCredentials
-unlock():UnlockedDataNode1

+accept():Visitor, user:UserCredentials

+accessor1()
+accessor2()

+accessor1() +accessor2()

-unlock():UnlockedDataNode2

LockedDataNode2

+VisitDataNode1(): UnlockedDataNode1

+accept():Visitor:UserCredentials
+checkCredentials:UserCredentials

+unlock():UnlockDataNode

ConcreteVisotor1 ConcreteVisotor2

+VisitDataNode1: UnlockedDataNode1 +VisitDataNode1: UnlockedDataNode2

+VisitDataNode2(): UnlockedDataNode2

Extends
Extends

Extends Extends

ExtendsExtends

Figure 3: Extracting microarchitecture of secure visitor pattern.
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implementations of abstract secure strategy factory for each
set of roles defined by the security requirements. For
example, in a web application, there are three roles having
complete, little, or no trust, and then, three concrete imple-
mentations of secure strategy will be created, one for each
level of trust. A concrete implementation of secure strategy
factory will only contain functionality restricted to a secure
role or trust level. The microarchitecture of the secure strat-
egy factory pattern is extracted using the proposed approach
as in Figure 4(b), and the security constraints written in first-
order predicate logic are shown in Figure 4(c).

4.2. Detection of Broken Access Control. In this section, the
class diagram of the security pattern is executed in the Alloy
tool to detect any violation of security requirements. Each
pattern has been executed for multiple instances to create
objects, and each instance is analysed for the existence of
any counterexample. On detecting a counterexample, the
nodes in the graph are analysed for the inappropriate link.
The security pattern is then rectified by correcting the defini-
tion of concrete classes and methods and implementing the
security predicate to verify the security requirement.

4.2.1. Authenticator Pattern. The class diagram of authenti-
cator pattern is executed to detect any hidden vulnerabilities.
In Figure 5, while executing two or more concrete authenti-

cators, it is found that concrete authenticator0 is creating an
object for the concrete authenticator1. It is detected that the
concrete object of concrete authenticator1 is inheriting the
abstract method instead of overriding it. It is also detected
that an object created by one authenticator can create an
object of another authenticator by an inherited method of
abstract authenticator. The security error is rectified by
ensuring that pred creates ½x : one ConcreteAuthenticator, y
: oneObjectA�fg and overriding the method createðÞ in each
concrete authenticator.

4.2.2. Secure Visitor Pattern. The secure visitor pattern class
diagram is executed, and hidden vulnerabilities are detected
using the proposed approach. The predicate logic for the
security constraint is that only a locked data node can create
its unlocked data node. However, on the execution of the
predicate visit for two or more instances in secure visitor,
an instance is found in Figure 6 that shows unlocked data
node2 could unlock data node1. The instance creates
unauthorised access to data node2 via data node1, against
the security requirements. On analysing the microarchitec-
ture, it is detected that the function visitðÞ has been imple-
mented inappropriately.

pred visit v : SecureVisitor, l : LockedDataNode½ � f g: ð1Þ

SecureStrategy
SecureStrategy is an interface.
Classes: SecureStrategy,
UserAndRolesCredentials,
RoleAccess
Operations: getCredentials, getRole,
checkCredentials, secureMethod
Classes: secureStrategyX,
secureStrategyY, secureStrategyZ
Operations: secureMethodX,
secureMethodY, secureMethodZ
Where X,Y,Z are the methods
restricted to the roles X,Y,Z
a) secureMethod secureTrust

associations
b) relations (secureMethod,

secureTrust, associations)
c) fetchLevelAccess LevelAccess
d)

operations (fetchRoleAccess)
e) checkCredentials operations(fet

chRoleAccess)
f) isProtected (checkCredentials)
g) isPublic (getCredentials)
h) isPrivate (secureMethod)

(A) Class diagram of secure strategy factory pattern [34] (B) Microarchitecture of secure
strategy factory pattern

Security constraints in first-order predicate logic
For every trust level x of LevelAccess, there exists a concrete subclass SecureStrategy that belongs to the role
with the method definition of secureMethod.

LevelAccess (f, m) such that
(SecureStrategy) ∧

C) Security constraints of secure strategy factory pattern in first-order predicate logic

↑

⫙

⫙
⫙

⫙

∃ ⫙

(SecureStrategy) ∧∃ ⫙

x⩝ ⫙ !x∃
f
m

define (f, m ,x)

subclasses
subclasses

getCredentials

AbstractSecureStrategyFactory

SecureStategy

ConcreteStrategyFaxtoryXY

+method(): secureMethod()

Extends ExtendsExtends

SecureStrategyX

+method(): secureMethodX +method(): secureMethodY +method(): secureMethodZ

SecureStrategyY SecureStrategyZ

+getStrategy (credentials, role, check): StrategyXY +getStrategy (credentials, role, check): StrategyYZ

ConcreteStrategyFaxtoryYZ

+method(): getCredentials

+method(): checkCredentials

Extends
Extends

+method(): getRole

Figure 4: Extracting microarchitecture of secure strategy factory pattern.
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The pattern is rectified by incorporating the predicate for
accepting using credentials and creating an unlocked data
node that the user will visit. Predicate create and assertion
unique is added in the implementation of secure visitor pat-
tern for specifying the constraint. One locked data node will
create only one unlocked data node, and unlocked data node
should not access are not or child data nodes.

pred accept v : SecureVisitor, u : UserCredentials½ �f g,
pred create l : LockedDataNode, u : UnLockedDataNode½ �f g:

ð2Þ

4.2.3. Secure Strategy Pattern. The class diagram of secure
strategy factory is executed to detect any hidden broken
access to operations. The secure strategy factory concrete
classes are built for two trust levels. TrustLevel-1 can per-

form op11 and op12, and TrustLevel-2 can operate op21.
On executing the predicate created for two or more instances
in secure strategy factory, an instance is found such that
TrustLevel-1 could access the operation op21 restricted for
TrustLevel-2. The broken instance is detected using the pro-
posed approach while implementing the secure strategy fac-
tory pattern and is shown in Figure 7, without checking user
credentials. It is detected through the broken connection
that op21 has been inappropriately defined in class meant
for TrustLevel-1 and called by TrustLevel-2. The security
pattern is rectified by implementing the predicate that ∀x
∈ LevelAccess ∃!x ð f ,mÞ such that

∃f ∈ subclasses SecureStrategyð Þ∧,
∃m ∈ subclasses secureMethodð Þ∧,

define f ,m, xð g:
ð3Þ

auth: 2 ConcreteAuthenticator$1this/ObjectA
objectA0

objectA1

objectA1

objectA1

createA

this/ObjectA
objectA0

objectA1

objectA0

objectA0

createA

ConcreteAuthenticator$0

authenticate$0 ObjectA$1

ObjectA$0

($get_y)create$0get$0

($get_x)

auth auth

authA: 2

authA authA

createA: 2

createA

createA

createA: 2
createA createA

getA: 2 getA getA
obj: 2

obj
obj

Figure 5: An instance generated for the authenticator pattern showing the creation of multiple objects and broken authentication.

accept1: 1

accept1

accept2: 1

accept2

c

c1

access: 2

access

access

access1: 1

access1

create: 1

create
access2: 1 access2

unlock: 1

unlock

unlock: 1

unlock

bool1: 1

bool1

bool2

bool2: 1

visit1: 2

visit1 visit1

visit2: 2

visit2

visit2

create: 1

create

LockedDataNode2 Visitor1 Visitor2 this/UnLockedDataNode access

UnLockedDataNode10

UnLockedDataNode20

UnLockedDataNode20

UnLockedDataNode10

UnlockedDataNode2

UserCredentials UnLockedDataNode1 checkCredentials accept access unlock

LockedDataNode1

Figure 6: A broken instance detected through the proposed approach in the implementation of secure visitor.

bool1: 1
bool2: 1
call_op11: 1
call_op12: 1

r: 1
r: 1
requests: 1

call_op21: 1
call_op21: 1

Client this/ss1 r

ss10 level10 checkCredentials0op110 op120 op210

call_op11 call_op12 call_op21 bool1

ss1
($execute_s)

op21
($execute_o)op11 op12 level1 level2checkCredentials

s22

Figure 7: A broken instance detected through the proposed approach in the implementation of the secure strategy factory.
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4.3. Metamodel of Authenticator Pattern, Secure Visitor
Pattern, and Secure Strategy Pattern. In this section, the
extracted microarchitecture of the security pattern and its
rectified predicate logic is executed in the Alloy tool to verify
that it meets the security requirement. Each pattern has been
executed for multiple instances to create objects, and each
instance is analysed for the existence of any counterexample.
The metamodel of the authenticator pattern is generated and
shown in Figure 8(a). Consider two different authentication
systems in a web application. Each of the two authentication
systems is implemented using a separate concrete class. The
concrete authenticator defines its concrete object and

authentication mechanism. The separation of different
authentication mechanisms ensures that the other authenti-
cator does not create the object of one authenticator. The
arrangement is easily extendible if a third or more authenti-
cation mechanisms are appended to the application in future
versions. The class diagram of the authenticator pattern is
verified using the security constraints written in first-order
predicate logic as an assertion unique.

In the metamodel of secure visitor pattern shown in
Figure 8(b), the client requests SecureVisitor Interface to
visit UnlockedDataNode through its concrete implementa-
tionsVisitor1 or Visitor2. SecureVisitor can implement any

createA
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this/ConcreteAuthenticator this/authenticate

extends extends

extends

extends extends extends

this/create this/get this/ObjectA

this/ObjecttFactorythis/operationthis/Authenticator

this/Remote

getA

(a)
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extends extends

extends
extends
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extends
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r
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Figure 8: The metamodel generated by the proposed approach: (a) authenticator; (b) secure visitor; (c) secure strategy factory.
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number of concrete visitors as per the user requirement.
LockedDataNode accepts concrete visitor and user creden-
tials and verifies them from UserCredentials class. After
checking the user credentials, the data node is unlocked by
its respective locked data node and the access is passed to
the respective concrete visitor.

In the metamodel of the secure strategy factory pattern
shown in Figure 8(c), the client requests SecureStrategy
Interface to create factory objects for two different
TrustLevel-1 and TrustLevel-2. After checking the user cre-
dentials, each role can perform the operations restricted to
its role. The class RBAC contains policies for TrustLevel
and operation mapping. It defines the operations that are
restricted to a particular TrustLevel. In the present instance,
TrustLevel-1 can perform operations op11 and op12.
TrustLevel-2 can perform operation op21. SecureStrategy
ss1 creates an object for a user with TrustLevel-1 after check-
ing the credentials. Accordingly, a user with role1 can per-
form actions op11 and op12 but not operation op21.
Similarly, SecureStrategy ss2 creates an object for a user with
TrustLevel-2 after checking the credentials. Accordingly, a
user with TrustLevel-2 can perform actions op21 but not
operations op11 and op12. The security feature of the secure
strategy factory is verified using the predicate logic ∀x ∈
LevelAccess∃!x ð f ,mÞ such that

∃f ∈ subclasses SecureStrategyð Þ∧,
∃m ∈ subclasses secureMethodð Þ∧,

define f ,m, xð g:
ð4Þ

4.4. Validation and Verification of Multiple Concrete
Instances. The authors have used the Alloy analyser to verify
the proposed approach. The analyser transforms predicate
models into Conjunctive Normal Forms (CNF) and analyses
using Satisfiability (SAT) solvers. The analyser generates two
forms of valuations for the relations in the model: (1)
instances, i.e., valuations such that the formulas hold, and
(2) counterexamples, i.e., valuations such that the negation
of the formulas holds. Using an analyser reduces the time

required to verify the model having many literals and clauses
in CNF. The microarchitecture of the security pattern
extracted through the proposed approach is translated and
executed using Alloy. The graphical representation of
the metamodel of the security pattern is generated from the
extracted microarchitecture and security constraints. The
security pattern is executed multiple times for many con-
crete instances to check the consistency of relationships
among the various member elements. Several concrete
instances of authenticator, secure visitor, and secure strat-
egy factory are created in the Alloy analyser to validate the
model further. Alloy generates the number of concrete
instances, primary variables, and clauses in CNF. The sim-
ulation time taken to verify each concrete instance for the
authenticator, secure visitor, and secure strategy pattern is
given in Table 1. No clause with broken access control for
accessing the restricted data element has been found in
these instances. The correctness of the proposed metamo-
del for each security pattern is verified.

4.5. Analysis and Discussion. The proposed approach repre-
sents the design, structure, dynamics, and other dependen-
cies among various components of security patterns in the
generated metamodel. The approach will enable web devel-
opers to implement code accurately and minimise threats
to the web application. The proposed approach provides a
general model that applies to every domain. It considers
structural aspects and interrelationships among various
structural elements and analyses behaviour based on possi-
ble relationships, states, transitions, and execution steps.
The proposed approach verifies security patterns by defining
the set of interface, abstract, and concrete classes and static
methods and nonstatic method calls on the class and identi-
fier and all dependencies at the design phase. It will be help-
ful in verifying applications. All security-related constraints,
artefacts, and static and dynamic checks mentioned at differ-
ent sections of a security pattern are represented and vali-
dated using the predicate modelling before implementation.

It provides precise semantics, verification and validation,
and automated reasoning and is machine incomprehensible

Table 1: Concrete instances generated by the proposed approach for secure strategy factory.

Concrete
instances

Authenticator pattern Secure visitor Secure strategy factory

No. of
variables

No. of
primary
variables

No. of
clauses

Time
in ms

No. of
variables

No. of
primary
variables

No. of
clauses

Time
in ms

No. of
variables

No. of
primary
variables

No. of
clauses

Time
in ms

2 154 24 225 3 251 44 345 5 1250 285 2177 17

4 432 56 677 3 865 114 1329 8 2694 569 4737 15

6 806 96 1297 5 1699 216 2676 9 4050 861 7150 19

8 1276 144 2085 8 2837 350 4533 13 5618 1161 9920 25

10 1852 200 3121 13 3735 516 6073 15 7288 1469 12938 19

20 6132 600 10701 28 11025 1826 18243 20 16278 3129 29098 27

40 21892 2000 39061 74 42045 6846 70903 73 42178 7049 75878 69

60 47252 4200 85021 113 93065 15066 157963 911 77678 11769 140258 88

128 205824 17664 372933 196 416133 66950 711279 944 270186 33801 490798 270

256 803812 68096 1466821 11196 1651461 264966 2831599 10804 933610 100361 1702574 2125
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due to the usage of predicate logic. This specification facili-
tates automated verification and validation of security pat-
terns applied in web applications. For example, in the
secure strategy factory pattern, the constraint for every trust
level, i.e., complete, partial, and none, should be a separate
unique ConcreteObject implementing each trust level. This
constraint is specified in predicate as ∀x ∈ TrustLevel∃!y ∈
ConcreteObject. Such representations in predicate logic are
easily verified using automated tools and help identify any
counterexample(s) simple and error-free.

The proposed specification and its metamodel of security
pattern defined various structural elements, their relations,
and how these elements will communicate using directed
edges and appropriate markers. This form of representation
enables developers to understand the complete structure. It
helps implement an effective and productive design that is
instantly easy to verify, validate, and correct at early stages
to ensure security properties of confidentiality, integrity,
availability, accountability, nonrepudiation, authentication,
and authorisation. The proposed approach provides a verifi-
able specification of structural design and implementation of
security patterns covering all security patterns. Moreover,
security constraints such as accessibility among micro archi-
tecture elements and parent and child nodes that require
extraordinary validation, verification, and testing are also
analysed.

In the proposed approach, any flaw in the system’s
design concerning security functionalities and role-based
access to resources is found early through structural and
behaviour validations, thereby preventing any consequent
security breach.

5. Conclusions and Future Work

Security breach due to broken authentication and access
control has been an essential concern for web developers.
Though security patterns are applied in a web application,
there is a need for a method that can verify the correctness
of the class diagram built during the design phase. In this
paper, the proposed approach verifies the relationships and
accessibility among objects and classes of a security pattern
applied in a web application. The approach extracts the
structural properties, relations, associations, security-
related constraints, artefacts, and static and dynamic checks
of the class diagram of a security pattern. The extracted
microarchitecture is executed using Alloy to identify
unauthorised and broken access in the security pattern
applied in a web application. The proposed approach
detected inconsistencies at the design phase when applied
to secure strategy factory, authenticator pattern, and secure
visitor pattern. The detected inconsistencies are then recti-
fied by redefining the methods, classes, relationships, and
security constraints and subsequently verifying them using
predicate logic. The experiments have generated more than
200 instances of concrete classes each for the secure visitor
pattern, authenticator, and secure strategy factory pattern.
These instances have been verified for the existence of any
counterexample. The final metamodel is generated for each
security pattern to develop and implement the code. The

proposed approach is helpful for the developer community
to verify the consistency of relationships among the various
member elements of complex class diagrams restricted to
different roles, trust levels, and authentication methods.
The complex class diagram of the security pattern can be
quickly evaluated and verified for secure access control dur-
ing the design stage of the web application.

The authors intend to extend the approach to verifying
the composition of security patterns in web applications in
the future.

Data Availability

The proposed approach has been applied to security pat-
terns: Authenticator, Secure Visitor, and Secure Strategy
available at [34, 35].
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