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The high-frequency (HF) signal detection and identification plays an import role in HF communications, and it is challenging
since the HF environment randomly varies. Due to the success of deep learning (DL) methods in the fields of computer vision
and natural language processing, some researchers adopt DL-based object detection methods to detect and identify signals in
wideband spectrograms and achieve the good performance. However, the existing DL-based methods are not suitable for real-
time HF signal detection, and their performance will be significantly degraded when these methods are applied to an unknown
HF environment. In this paper, we design a novel multiresolution signal detection and identification network for real-time HF
signal detection and identification and propose a domain adaptation method to adapt the network to unknown environments.
The experimental results show that the running speed and accuracy of our designed network are superior to ones of the
existing DL-based networks in different HF environments, and the proposed domain adaptation method can achieve obvious
performance improvement in unknown environments.

1. Introduction

The HF communication in the frequency range of 2MHz
to 30MHz is widely used in military and civilian life due
to its flexibility and long-distance transmission capability
[1]. Currently, the HF channel is crowded and the HF envi-
ronment randomly varies, where there are multipath delay,
Doppler frequency shift, fading, and serious interference
[2]. The urgent demand for accurate and real-time HF sig-
nal detection and identification in the military field and
civilian field has attracted increasing attention from
researchers, which requires detecting and identifying the
signals of interest in the HF band as soon as they appear.
However, there are still few research works on the real-
time signal detection and identification in known and
unknown HF environments.

The traditional HF signal detection and identification
methods divide the above demand into two tasks: signal
detection [3] and modulation identification [4]. Signal
detection methods, including threshold-based methods,
nonthreshold-based methods, and DL-based methods [5,

6], usually perform in a narrow band to detect the pres-
ence of signals. Modulation identification methods mainly
use feature-based (FB) methods. The popular features for
the modulation identification include instantaneous time
features [7], statistical features [8], transform features [9],
and deep learning features [10].

DL-based methods have made great successes in com-
puter vision and natural language processing for different
tasks, such as object detection [11, 12], human emotions
detection [13], facial expression recognition [14], and
domain adaptation [15]. Recently, some researchers have
introduced the DL-based object detection methods into
signal detection and identification [16–18]. In [16], a
DL-based spectrum sensing approach was presented for
cognitive radio communication. In [17], researchers
regarded the time-frequency spectrum as an image and
used SSD for signal detection and identification. In [18],
researchers modified the CenterNet for HF signal detection
and identification in wideband spectrograms and achieved
excellent performance. These works have shown the great
potential of DL-based methods in HF communication fields
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Figure 1: Continued.
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Figure 1: Continued.
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and achieved state-of-the-art performance in known
environments.

However, there may be some disadvantages in applying
the above-mentioned works to real-time HF signal detection
and identification. First, these works use long-time signals
for the detection and identification, which cannot meet
requirements of real time. Second, these works treat the
time-frequency spectrum of wideband signals as an image

and only use one time-frequency spectrum as input, so the
details of different transmitted signals may be lost. Third,
these works assume that the signals used for training and
testing the networks are gathered from the same environ-
ment without considering how to ensure the performance
of signal detection and identification in unknown environ-
ments. However, HF environment can be significantly differ-
ent in time, frequency, weather, and place, and it is also
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Figure 1: The time-frequency information of rðtÞ under AWGN channels. (a) The time sequence of rðtÞ. (b) The frequency spectrum and
label of rðtÞ. (c) P1ðt, f Þ with △t1 =40ms and △f1 = 25/4π Hz. (d) P2ðt, f Þ with △t2 =10ms and △f1 = 100/4π Hz. (e) P3ðt, f Þ with △t3
=5ms and △f1 = 200/4π Hz. (f) P4ðt, f Þ with △t4 =2.5ms and △f4 = 400/4π Hz.
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Figure 2: The overall network structure of MSDIN.
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impossible to obtain sufficient labeled signals for all possible
HF environments. Thus, the problem of how to ensure the
performance of HF signal detection and identification in
unknown environments naturally appears.

The main contributions of our work are as follows. (1)
We adopt the multiresolution time-frequency spectra as fea-

ture representation and design an efficient network for HF
signal detection and identification, and the experimental
results show that the proposed network has distinct
improvements in running speed and accuracy. (2) We adapt
the proposed network to unknown HF environments by
using the domain adaptation method, and the experimental
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Figure 4: The structure of the backbone module and FPN module. (a) The structure of the backbone module. (b) The structure of the FPN
module.
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results demonstrate the effectiveness of our proposed
method. (3) We evaluate the robustness of our proposed net-
work and methods in various environment conditions and
analyze and compare the performance of the network under
different environment conditions.

2. Signal Model and Feature Representation

2.1. Signal Model. Consider a wideband HF receiver with
bandwidth B, and assume the receiver captures K different
signals emitted by HF transmitters. Without losing general-
ity, the baseband model of the captured signal can be formu-
lated as

r tð Þ = 〠
K

i=1
hi tð Þ ∗ si tð Þ + n tð Þ = 〠

K

i=1
ri tð Þ + n tð Þ, ð1Þ

where t ∈ ½0, T� is the observation time range of rðtÞ, siðtÞ is
the signal emitted by the i-th HF transmitter, hiðtÞ is the
impulse response of the transmitting channel from the i-th
transmitter to the receiver, riðtÞ = hiðtÞ ∗ siðtÞ is the received
signal corresponding to siðtÞ, “∗” denotes linear convolution,
and nðtÞ is the additional noise. The typical channel models
in HF environment include the additive white Gaussian
noise (AWGN) channel, Watterson channel, and Rayleigh
fading channel [19]. Generally, the transmitted signal siðtÞ
is a modulated signal, which can be modeled as

si tð Þ = ai tð Þe−j 2πf it+θi tð Þð Þ, ð2Þ

where aiðtÞ, f i, and θiðtÞ are the instantaneous envelope,
carrier frequency, and instantaneous phase of siðtÞ. The
modulation type of siðtÞ is denoted as mi. The modulation
types of transmitted signals widely used in HF communica-
tions include amplitude modulation (AM), frequency modu-

lation (FM), single side band (SSB), continuous wave (CW),
frequency-shift keying (FSK), phase-shift keying (PSK),
amplitude-shift keying (ASK), and Gaussian minimum shift
keying (GMSK).

Moreover, the following constraint conditions are
assumed in expressions (1) and (2).

(1) mi ∈M, where M is the set of possible modulation
types of transmitted signals. In this paper, we set
M = {AM, FM, SSB, CW, 2FSK, 4FSK, 8FSK, PSK,
ASK, GMSK} and jMj =M

(2) Fi = ½ f li, f ui � and Bi = f ui − f li ≪ B, where Fi and Bi are
the effective frequency range and bandwidth of siðtÞ,
respectively

(3) The K received transmitted signals hardly overlap
each other in the frequency domain

The aim of real-time HF signal detection and identifica-
tion is to estimate the effective frequency range and modula-
tion type of each transmitted signal siðtÞ by only utilizing the
captured signal rðtÞ without any other prior information as
fast as possible.

2.2. Feature Representation. According to the above-
mentioned signal model, the K received transmitted signals
are completely mixed in the time domain, while they can
be easily separated from each other in the frequency
domain. Transmitted signals with different modulation
types and modulation parameters usually possess different
time-varying characteristics and frequency characteristics,
and the time-frequency information of the captured signal
can clearly display these characteristics. Therefore, we uti-
lize the time-frequency information of captured signals as
a feature representation for HF signal detection and
identification.
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The short-time Fourier transform (STFT) is a commonly
used method for time-frequency analysis. The STFT of the
captured signal rðtÞ is

S t, fð Þ =
ð∞
−∞

r τð Þw τ − tð Þ½ �e−j2πf τdτ, ð3Þ

P t, fð Þ = S t, fð Þj j2, ð4Þ

where wðtÞ is the time window function, Pðt, f Þ is the time-
frequency spectrum of rðtÞ, and t ∈ ½0, T� and f ∈ ½0, B� are
the time range and frequency range of Pðt, f Þ, respectively.
Denote△t and △f as the time resolution and frequency res-
olution of Pðt, f Þ, respectively. According to [20], the time-
frequency resolution of Pðt, f Þ is determined by the time
window function. In particular, the following relationship
must be satisfied:

△t ·△f ≥ 1/4π, ð5Þ

and the equality holds when the time window function is a
Gaussian window function. From expression (5), it is obvi-
ous that △t and △f are a pair of contradictions.

Figure 1 shows the time-frequency information of a cap-
tured signal rðtÞ comprising six different transmitted signals,
AM, SSB, PSK, CW, 2FSK, and 8FSK, where the observation
time T = 800ms and bandwidth B = 50 kHz. Figures 1(a)
and 1(b) show the time sequence and amplitude of the fre-
quency spectrum of rðtÞ, respectively. The effective fre-
quency range and modulation type of each transmitted
signal are labeled in Figure 1(b). Figures 1(c)–1(f) depict
the time-frequency spectrum of rðtÞ with different time-
frequency resolutions. It should be noted that from
Figures 1(c) to 1(f), the frequency resolution gradually
declines, while the time resolution gradually increases. Spe-
cifically, the time resolutions of these time-frequency spectra
range from 40ms to 2.5ms, and the time-frequency resolu-
tions satisfy with △t ·△f = 1/4π. These time-frequency
spectra show the contradictions between △t and △f . For
example, the time-frequency spectrum in Figure 1(c) has
the highest frequency resolution and the lowest time resolu-
tion, where the frequency characteristics of 2FSK and 8FSK
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are obvious, but the time-varying characteristics of AM, SSB,
CW, 2FSK, and 8FSK are fuzzy. In contrast, the time-
frequency spectrum in Figure 1(f) has the lowest frequency
resolution and the highest time resolution, where the time-
varying characteristics of AM, SSB, CW, and 2FSK are dis-
tinct, but the frequency characteristics of 8FSK are fuzzy.

The above example shows that it is difficult to represent
the frequency characteristics and time-varying characteris-
tics of various transmitted signals by utilizing only one
time-frequency spectrum with the fixed time-frequency res-
olution. Therefore, it is necessary to utilize multiple time-
frequency spectra with different time-frequency resolutions
for robust HF signal detection and identification.

Let Pi express the time-frequency spectrum with the
time resolution △ti and frequency resolution △f i in expres-
sion (4), and denote the feature representation of rðtÞ as

I = Pi, i = 1,⋯,Nf

� �
, ð6Þ

where Nf is the number of time-frequency spectra. Specifi-
cally, four different time-frequency spectra, as shown in
Figures 1(c)–1(f), are adopted as inputs for HF signal detec-
tion and identification in this paper.

3. Deep Signal Detection and Identification

In this paper, the training signals with sufficient labels are
called source domain signals, and the testing signals with
no labels are called target domain signals. We denote the
source domain and target domain as S and T , respectively.
Specifically, the source domain signals and target domain
signals are gathered from the same HF environment in the
task of signal detection and identification in known environ-
ment, and the source domain signals and target domain sig-
nals are gathered from the different HF environments in the
task of signal detection and identification in unknown
environment.

3.1. Signal Detection and Identification in Known
Environment. In this subsection, we present a multiresolu-
tion signal detection and identification network (MSDIN)
for HF signal detection and identification in known environ-
ment. Assuming that the training signals and testing signals
are gathered from the same environment, the task of HF sig-
nal detection and identification in known environment can
be treated as a data-driven DL-based object detection task.
The network model and training process of the MSDIN
are shown in the following.

3.1.1. Network Model. The overall network structure of the
MSDIN is shown in Figure 2, which is specially designed for
HF signal detection and identification. To address the multire-
solution inputs, we present an aggregation module to align
and integrate the deep features of the inputs with different res-
olutions and obtain a comprehensive aggregation feature for the
following detection. The backbone module generates multiscale
features to address the signals with different modulation types
and bandwidths. The prediction module is used to predict the
modulation type and locations of each signal, and the post-
processing deals with the outputs of prediction module to
obtain the final results. The details of different modules are
described in the following.

(1) Aggregation Module. The aggregation module is used to
align and integrate the deep features of all multiresolution input
to obtain a comprehensive aggregation feature for the following
detection. Figure 3 shows the structure of aggregation module,
which consists of multiple paths with different convolutional
steps (Conv Step) and a concatenation layer (Concat). The
structure of convolutional step is designed with the reference
to ResNet [21]. As show in Figure 3, the deep input feature Ai
is extracted from the input Pi through the i-th path of the aggre-
gation module. Due to the special design of each path, all input
features {Ai, i = 1,⋯,Nf } have the same size. Then, these fea-
tures are concatenated in the concatenation layer, and a com-
prehensive aggregation feature Af is obtained.

(2) Backbone Module. The backbone module accepts the
aggregation feature Af as input and generates a set of multiscale
features to detect the signal with different modulation types and
bandwidths. These multiscale features allow theMSDIN to pre-
dict the transmitted signals at different frequency sizes rather
than at a single size. The structure of the backbone module is
shown in Figure 4(a), which consists of a sequence of convolu-
tional steps, pooling layers and a feature pyramid network
(FPN) [22]. These convolutional steps down-sample the input
in the frequency domain step by step, followed by the pooling
layers with full-time pooling to obtain a set of full-time multi-
scale features F = fF̂i, i = 1,⋯,Mf g, whereMf is the number
of multiscale features. The frequency size of these features is
decreasing step by step, while the time size is fixed to one. As
shown in Figure 4(b), the FPN module is added at the end of
the backbone module, which can enhance the representation
ability and robustness of multiscale features and generate a set
of enhanced full-time multiscale features F = fFi, i = 1,⋯,
Mf g. In addition, F̂i and Fi have the same time-frequency size.

Table 1: The details of different datasets.

Available dataset Transmitted channels B [kHz] T [ms] MDFS [Hz] SNR [dB] Training samples

AWGN dataset AWGN 50 800 0 [-10,4] 20000

Watterson dataset Watterson 50 800 100 [-10,4] 20000

Rayleigh dataset Rayleigh fading 50 800 100 [-10,4] 20000

Time dataset Rayleigh fading 50 [160,1600] 100 [-10,4] 20000

MDFS dataset Rayleigh fading 50 800 [0,400] [-10,4] 20000
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Figure 7: Continued.
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(3) Preset Windows. Inspired by the anchor box used in SSD
[11], we associate a set of preset windows with each cell of
enhanced full-time multiscale features F = fFi, i = 1,⋯,
Mf g, as shown in Figure 5. The preset windows bind the cell
in a convolutional manner so that the default center of each
preset window relative to its corresponding cell is fixed. The
preset windows bind the cell in a convolutional manner so
that the default center of each preset window relative to its
corresponding cell is fixed. Specifically, for a feature with K
cells, assume that each cell is bound with Nd different preset
windows so that there are a total of KNd preset windows
applied in this feature. For each preset window, we compute
ðM + 1Þmodulation type confidence (Conf) and 2 frequency
location offsets (Loc) relative to the preset window. This
results in a total of ðM + 3ÞNd convolutional filters that are

applied around each cell in this feature, yielding ðM + 3ÞK
Nd outputs. Moreover, for each of multiscale features, the
default number and bandwidth of bound preset windows
can be set according to the frequency scale of each feature.
Generally, the cells of large-scale feature are bound to wide
preset windows, and vice versa.

(4) Prediction Module. The prediction module utilizes the
enhanced full-time multiscale features F = fFi, i = 1,⋯,
Mf g as input to predict the frequency location offset and
the modulation type confidence of each preset window. Spe-
cifically, the predictors of each enhanced feature are the con-
volutional layers with kernel size (1×3), as shown in
Figure 2. The center and bandwidth of preset windows can
be fine-tuned by the prediction location offset to obtain an

99.2%

0.0%

0.5%

0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.8%

0.0%

99.0%

0.1%

0.0%

0.0%

0.0%

0.0%

0.1%

0.1%

0.0%

1.7%

0.1%

0.0%

98.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

1.9%

0.1%

0.1%

0.1%

99.5%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.7%

0.0%

0.0%

0.0%

0.0%

99.2%

0.0%

0.0%

0.1%

0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

91.4%

0.3%

0.0%

0.0%

1.1%

7.9%

0.0%

0.0%

0.0%

0.0%

0.0%

0.1%

91.1%

0.8%

0.1%

0.1%

7.1%

0.0%

0.0%

0.0%

0.0%

0.1%

0.0%

0.8%

85.2%

2.7%

0.2%

9.8%

0.0%

0.0%

0.0%

0.0%

0.3%

0.0%

0.0%

1.8%

80.8%

0.0%

11.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.8%

0.1%

0.5%

0.0%

89.1%

5.5%

0.6%

1.0%

0.6%

0.4%

0.5%

7.7%

7.6%

11.5%

16.2%

9.5%

AWGN dataset at SNR = 4 dB

AM SSB FM ASK PSK/QAM CW 2FSK 4FSK 8FSK GMSK MAR

Predictions

AM

SSB

FM

ASK

PSK/QAM

CW

2FSK

4FSK

8FSK

GMSK

FAR

La
be

ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 7: The performance of different methods on the AWGN dataset. (a) The mAP vs SNR curves of different methods. (b) The confusion
matrix of MSDIN at SNR = 4 dB. (c) The confusion matrix of MSDIN at SNR = 0 dB. (d) The confusion matrix of MSDIN at SNR = −4 dB.
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accurate prediction frequency location. These fine-tuned
prediction windows allow the network to better match the
transmitted signals with different center frequencies and
bandwidths.

(5) Post Processing Module. The post processing module is
used in the testing phase to address the repeated prediction
windows obtained from the prediction module. As shown
in Figure 5, each transmitted signal may match multiple pre-
set windows, so we need to remove the repeated prediction
windows to produce the final prediction results. It is realized

by nonmaximum suppression (NMS) algorithm [23], which
can keep the windows with maximum confidence and
remove the repeated windows.

3.1.2. Training Process. During the training phase, we need
to assign each transmitted signal to specific preset windows
and predict the location offset and confidence of each preset
window. Once the assignment is decided, the loss function
and backpropagation are applied to update the parameters
of the network. The matching strategy and loss function

–10 –8 –6 –4 –2 0 2 4

SNR (dB)

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

MSDIN
SDIN

CenterNet
SSD

(a)

–10 –8 –6 –4 –2 0 2 4

SNR (dB)

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

MSDIN
SDIN

CenterNet
SSD

(b)

Figure 8: The performance of different methods on the Watterson dataset and Rayleigh dataset. (a) The mAP vs SNR curves on the
Watterson dataset. (b) The mAP vs SNR curves on the Rayleigh dataset.
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are the keys to training the network, which will be described
in detail in the following.

(1) Matching Strategy. During the training phase, we need to
determine which preset window corresponds to a transmit-
ted signal and then train the network accordingly. Inspired
by the matching strategy of SSD, we first match each of the
transmitted signals to the preset window with the maximum
overlap and then match the transmitted signals to the preset
windows with high overlap. In experiments, the overlapping
threshold is set to 0.5. This matching strategy can simplify
the learning process, which allows the network to predict
high confidences for multiple preset windows with high
overlap, rather than only picking the window with maxi-
mum overlap.

The matching process is shown in Figure 5. The frequency
spectrum and ground truth of the captured signal are shown
on the left of Figure 5, which captures two transmitted signals,
AM and 4FSK. Following the above-mentioned matching
strategy, the matched preset windows are painted with the
color of the corresponding transmitted signal, while the color
of unmatched preset windows remains unchanged. The
matching result is shown on the right of Figure 5.

Denote all preset windows as

W = W mp ∪W ump
� �

, ð7Þ

where W mp and W ump are the set of matched preset win-
dows and unmatched preset windows, respectively. The
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Figure 9: The running speed and model size comparison of different methods. (a) Running speed comparison. (b) Model size comparison.
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Rayleigh dataset at SNR = 0 dB, T = 1600 ms
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Figure 10: Continued.
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Rayleigh dataset at SNR = 0 dB, T = 800 ms

AM SSB FM ASK PSK/QAM CW 2FSK 4FSK 8FSK GMSK MAR

Predictions

AM

SSB

FM

ASK

PSK/QAM

CW

2FSK

4FSK

8FSK

GMSK

FAR

La
be

ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

99.1%

0.0%

0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

1.0%

0.1%

98.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.1%

0.0%

1.1%

0.3%

0.0%

99.3%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

1.3%

0.1%

0.1%

0.0%

99.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.5%

0.0%

0.0%

0.0%

0.1%

99.7%

0.0%

0.0%

0.0%

0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

94.8%

0.2%

0.0%

0.0%

1.2%

4.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.1%

95.0%

0.3%

0.0%

0.6%

4.6%

0.0%

0.1%

0.0%

0.0%

0.0%

0.0%

0.3%

93.4%

2.5%

0.4%

4.8%

0.0%

0.0%

0.0%

0.0%

0.1%

0.0%

0.1%

0.7%

91.1%

0.0%

6.7%

0.0%

0.0%

0.0%

0.0%

0.0%

1.1%

1.0%

0.3%

0.1%

93.5%

4.1%

0.5%

1.1%

0.7%

0.2%

0.2%

4.1%

3.5%

5.3%

6.1%

4.3%

(c)

Rayleigh dataset at SNR = 0 dB, T = 400 ms
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Figure 10: The performance of MSDIN with different duration times on the time dataset. (a) The mAP vs SNR curves of MSDIN with
different duration times. (b) The confusion matrix of MSDIN at SNR = 0 dB, T = 1600ms. (c) The confusion matrix of MSDIN at SNR =
0 dB, T = 800ms. (d) The confusion matrix of MSDIN at SNR = 0 dB, T = 400ms.
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ground truths of matched preset windows can be expressed
as

G = g!
L
i , g

!M
i

� �
,wi ∈W mp

n o
, ð8Þ

where wi is the i-th matched preset window; g!
L
i = ðgoi , gbi Þ is

the frequency location of the transmitted signal matched to
wi; g

o
i and gb

i are ground truth center frequency and band-

width of the signal, respectively; and g!
M
i is the modulation

type of the signal. In addition, the default center and band-
width of wi are denoted as oi and bi, respectively.

Denote the prediction results of all preset windows as

PW = Pmp, Pump
� �

, ð9Þ

where Pmp and Pump are the prediction results of matched
preset windows and unmatched preset windows,
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Figure 11: The running speed and model size comparison of MSDIN on the time dataset. (a) Running speed comparison with different
duration times. (b) Model size comparison with different duration times.
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Rayleigh dataset at SNR = 0 dB, MDFS = 50 Hz
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Figure 12: Continued.
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Rayleigh dataset at SNR = 0 dB, MDFS =100 Hz
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Rayleigh dataset at SNR = 0 dB, MDFS = 200 Hz
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Figure 12: The performance of MSDIN on the MDFS dataset. (a) The mAP vs SNR curves of MSDIN with different MDFS. (b) The
confusion matrix of MSDIN at SNR = 0 dB, MDFS = 50Hz. (c) The confusion matrix of MSDIN at SNR = 0 dB, MDFS = 100Hz. (d) The
confusion matrix of MSDIN at SNR = 0 dB, MDFS = 200Hz.
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Watterson dataset at SNR = 0 dB
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Figure 13: Continued.
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MSDIN:AWGN to Watterson at SNR = 0 dB
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MAAN:AWGN to Watterson at SNR = 0 dB
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Figure 13: The performance of different methods in case 1. (a) The mAP vs SNR curves of different methods. (b) The confusion matrix of
the benchmark at SNR = 0 dB. (c) The confusion matrix of the MSDIN at SNR = 0 dB. (d) The confusion matrix of the MAAN at SNR =
0 dB.
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AWGN dataset at SNR = 0 dB
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Figure 14: Continued.
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Figure 14: Continued.
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respectively. The prediction results of matched preset win-
dows can be expressed as

Pmp = p
!L

i , p
!M

i

� �
,wi ∈W mp

n o
, ð10Þ

where p
!L

i = ðpoi , pbi Þ is the prediction frequency location off-
sets of wi; poi and pbi are the prediction center offset and

bandwidth offset of wi, respectively; and p
!M

i is the modula-
tion type confidence of wi. Similarly, the prediction results of
unmatched preset windows can be expressed as

Pump = p
!L

j , p
!M

j

� �
, ~wj ∈W ump

n o
, ð11Þ

where ~wj is the j-th unmatched preset window and p
!L

j =

ðpoj , pbj Þ and p
!M

j are the prediction location offsets and
modulation type modulation type confidence of ~wj,
respectively.

(2) Loss Function. The overall signal detection and identifica-
tion loss (Ldet) is a weighted sum of the frequency location
loss (Lloc) and modulation type confidence loss (Lconf ):

Ldet G, PWð Þ = Lloc G, Pmp
� �

+ λ1Lconf G, PWð Þ, ð12Þ

where λ1 is the balance weight term. The frequency location
loss is a smooth L1 loss [24] between the ground truth loca-

tion (g!
L
i ) and prediction location (p

!L

i ) of the matched preset

MAAN:Watterson to AWGN at SNR = 0 dB
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Figure 14: The performance of different methods in case 2. (a) The mAP vs SNR curves of different methods in an unknown environment.
(b) The confusion matrix of the benchmark at SNR = 0 dB. (c) The confusion matrix of the MSDIN at SNR = 0 dB. (d) The confusion matrix
of the MAAN at SNR = 0 dB.
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windows.

Lloc G, Pmp
� �

=
1

Nmp
〠

wi∈W mp

〠
h∈ o,bf g

SmoothL1 ĝh
i − phi

� �
,

ĝoi =
goj − oi

� �
bi, ĝbi

= log
gbi
bi

,

ð13Þ

where Nmp is the number of matched preset windows and ĝoi
and ĝbi are the normalized ground truth center offset and
bandwidth offset between wi and the corresponding trans-
mitted signal, respectively. If there are no transmitted signals
in the captured signal, Lloc =0. With this frequency location
loss, the MSDIN learns to refine the center and bandwidth of
matched preset windows to better match the transmitted sig-
nals to obtain an accurate prediction location.

The modulation type confidence loss is a cross-entropy

loss between the prediction confidence (p
!M

i and p
!M

j ) and

ground truth modulation type (g!
M
i ) of all preset windows.

Lconf G, PWð Þ = −
1

Nmp
〠

wi∈W mp

〠
M

m=1
gmi log pmið Þ − 1

Nump
〠

~wj∈W ump

log p0j
� �

,

ð14Þ

where Nump is the number of unmatched preset windows,

gmi is the m-th item of g!
M
i , and pmi is the m-th item of p

!M

i .
Specifically, gmi and pmi present the ground truth and predic-
tion probability of modulation type m of wi, respectively,
and p0j is the prediction probability of background (noise).
With this modulation type confidence loss, MSDIN learns
to identify the modulation type of transmitted signals.

The training process also involves other training strate-
gies of DL-based object detection, such as hard-negative
mining, data augmentation, and data balance. We use the
Adam optimization algorithm to perform training with an
initial learning rate of 10-3 in our experiments.

For readers interested in the mathematical justification
or derivation of loss function in expressions (12)–(14),
please refer to [25] and references therein.

3.2. Signal Detection and Identification in Unknown
Environment. In this subsection, we present a multilabel
alignment adversarial network (MAAN) for HF signal detec-
tion and identification in an unknown environment. It is
assumed that the source domain signals and the target
domain signals are gathered from different environments.
The source domain signals are fully labeled, while the target

domain signals are entirely unlabeled. Let XS = fISi ,GS
i gn

S

i=1
denote the set of labeled data in the source domain, where
ISi and GS

i are the feature representation and ground truth

of the i-th source domain signal, respectively. Let XT =

fITj gn
T

j=1
denote the set of unlabeled data in target domain,

where ITj is the feature representation of the j-th target
domain signal.

The main idea behind MAAN is to utilize domain adap-
tation and signal identification as auxiliary tasks to perform
conditional adversarial cross-domain feature alignment and
prediction consistency regularization for signal detection
and identification in an unknown environment [26]. As
shown in Figure 6(a), MAAN utilizes MSDIN as the basic
signal detector and adds a domain discriminator and a mul-
tilabel learner for conditional adversarial training and multi-
label learner training. The details of the MAAN will be
described in the following.

3.2.1. Domain Discriminator. The popular generative adver-
sarial network (GAN) [27] has shown that two domain data-
sets with different distributions can be aligned by using a
domain discriminator to play a minimax two-player game.
Therefore, we utilize the domain discriminator to perform
feature alignment between source domain features (FS

k , k
= 1,⋯,Mf ) and target domain features (FT

k , k = 1,⋯,Mf

). The domain discriminator predicts the domain of each
input feature, with class “1” indicating the source domain
and class “0” indicating the target domain. The domain dis-
criminator consists of a convolutional layer and a domain
classifier, where the domain classifier is a fully connected
layer (FC) as shown in Figure 6(b). Specifically, the domain
discriminator utilizes the source domain feature (FS

k ) and
target domain features (FT

k ) as input to predict the domain
probabilities (dSk and dTk ). For the domain discriminator
training, we adopt a focal loss [28], which uses the prediction
confidence deficiency score to weight each instance to give
more weights to hard-to-classify examples. As mentioned
in [28], the domain discriminator can be trained by optimiz-
ing the following equations:

min
E

max
D

Ladv = −
1

2 LSadv + LTadv
� � ,

LSadv = −〠
Mf

k=1
1 − dSk

� �γ� �
log dSk

� �
, LTadv = −〠

Mf

k=1
dTk

� �γ
log 1 − dTk

� �
,

ð15Þ

where E and D represent the parameters of the domain dis-
criminator and feature extractor, respectively; dSk and dTk are
the domain prediction probabilities of source domain fea-
ture FS

k and target domain feature FT
k , respectively; and γ

is the regulatory factor of focus loss. If γ = 1, focal loss
degenerates into cross-entropy loss. With this adversary loss,
the domain discriminator D aims to maximally separate
multiscale features, while the feature extractor E attempts
to confuse the domain discriminator D. As a result, the mul-
tiscale features of the two domains are gradually indistin-
guishable. The domain discriminator is expected to bridge
the domain distribution gaps and improve the adaptation
of the target domain.
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3.2.2. Multilabel Learner. The signal detection and identifi-
cation task include signal detection and corresponding mod-
ulation type identification, which is much more difficult than
the signal identification task. We find that the features with
excellent signal identification performance are also informa-
tive for signal detection and identification. Therefore, we use
the signal identification task as an auxiliary task for signal
detection and identification and add a multilabel learner to
learn this task. The multilabel learner consists of a convolu-
tional layer and a multilabel classifier, where multilabel clas-
sifier is a fully connected layer (FC) as shown in Figure 6(c).
The multilabel learner utilizes the source domain feature (FS

k
) to predict the signal probability (u!

S

k ). The signal identifica-

tion label (y!
S
) can be obtained from the ground truth label

(g!
M
i ) as

ym = max
wi∈W

gmi , m = 1,⋯, M, ð16Þ

where ym is the m-th item of y!
S
. Specifically, ym represents

the presence of modulation type m. For multilabel learner
training, we adopt the cross-entropy loss for multilabel clas-
sification. The multilabel learner loss, LML, is

LML = −〠
Mf

k=1
y!
S

log u!
S

k

� �� �†
+ 1

!
− y!

S� �
log 1

!
− u!

S

k

� �� �†� 	
,

ð17Þ

where u!
S

k is the signal prediction probability vector of multi-
label learner of the source domain feature FS

k , “†” denotes

the vector transposition, and 1
!
is an all-one vector.

3.2.3. Consistency Regularization. We find that the predic-
tion location errors in the signal detector may be accumu-
lated to signal identification errors so that multilabel
learner can produce a more accurate signal identification
prediction in an unknown environment. Based on this
observation, we propose a prediction consistency regulariza-
tion mechanism between the signal identification prediction
probabilities of multilabel learner and signal detector. The
signal prediction probability vector of the signal detector
(q!) can be obtained from the prediction results of all preset
windows (PW ) as

qm = max
wi∈W

pmi , m = 1,⋯, M, ð18Þ

where qm is the m-th item of q!. Specifically, qm represents
the signal prediction probability of modulation type m of
the signal detector. For consistency regularization training,
we adopt the Kullback-Leibler (KL) divergence to enforce
the consistency between the predictions produced by the sig-
nal detector and multilabel learner. The consistency regular-
ization loss, LKL, is

LKL = LSKL + LTKL,

LSKL =
1
2
〠
Mf

k=1
KL u!

S

k , q
!S

� �
+ KL q!

S
, u!

S

k

� �� �
,

LTKL =
1
2
〠
Mf

k=1
KL u!

T

k , q
!T

� �
+ KL q!

T
, u!

T

k

� �� �
,

ð19Þ

where u!
S

k and u!
T

k are the signal prediction probability vec-
tors of the multilabel learner of source domain signals and
target domain signal, respectively, and KLð·, · Þ is the func-
tion of KL divergence. With this consistency regularization
loss, we expect the multilabel learner to assist the signal
detector in achieving a better signal identification perfor-
mance in an unknown environment through unified mutual
learning.

3.2.4. Overall Loss. The overall loss of the MAAN is a sum of
the detection loss (Ldet), conditional adversarial loss (Ladv),
multilabel learning loss (LML), and consistency regulariza-
tion loss (LML):

Lall = Ldet + μ1Ladv + μ2LML + μ3LKL

min
L,Q,E

max
D

Lall
, ð20Þ

where L, Q, and E represent the parameters of the multilabel
learner, predictor, and feature extractor, respectively, and μ1,
μ2, and μ3 are the trade-off weights that balance the multiple
loss terms. We use the SGD optimization algorithm to per-
form training with an initial learning rate of 10-4. The initial
parameters of the MAAN are obtained from the correspond-
ing MSDIN. In addition, the optimization of minmax oper-
ation is achieved by the gradient inversion layer (GRL) as
described in [29].

4. Experiments

In this section, we show the experimental results of the pro-
posed methods and take some existing methods as baselines
for comparison to demonstrate the robustness and effective-
ness of our methods. The details of the datasets utilized in
the experiments are described in Subsection 4.1, the base-
lines are introduced in Subsection 4.2, the comparison met-
rics are given in Subsection 4.3, and the experimental results
are presented in Subsection 4.4. All of the experiments are
conducted on GTX 1080ti. The source code for experiments
is freely available from Github at https://github.com/
huanglin123136/Real-Time-HF signal-Detection-and-Iden-
tification-in-Known-and-Unknown-HF-Channels.

4.1. Dataset. In this section, we generate several different
datasets, including the AWGN dataset, Watterson dataset,
Rayleigh dataset, time dataset, and MDFS (maximum Dopp-
ler frequency shifts) dataset. The signals in these datasets are
transmitted through the AWGN channels, Watterson chan-
nels, and Rayleigh fading channels, respectively. The details
of these datasets are shown in Table 1, where B is the
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bandwidth of the signals, T is duration time of the signals,
MDFS is the maximum Doppler frequency shifts of the
transmitted channels, SNR is the range of signal noise ratio
of the training samples, and training sample is the number
of the signals in the training dataset.

4.2. Baseline for Comparison. We set the following typical
methods used in the previous works as the baselines for
comparison.

(1) SSD [11]: SSD is a representative one-stage object
detection method that uses anchor boxes to predict
objects. The backbone network of SSD used in our
experiments is VGG-16

(2) CenterNet [12]: CenterNet is a representative
anchor-free object detection method that regards
each object as a point of the bounding box for detec-
tion. The backbone network of CenterNet used in
our experiments is ResNet-50

(3) SDIN: SDIN is a single-resolution input version of
MSDIN. The network structure of the SDIN is simi-
lar to that of the MSDIN, but only one path of the
aggregation module is reserved

4.3. Metrics. In this paper, we compare different methods in
three aspects: detection precision, running speed, and model
size. The mean average precision (mAP) [30] is used to evalu-
ate the detection precision of different methods, which is a
widely used precision metric in objection detection tasks. AP
is a comprehensive metric of the prediction precision (Preci-
sion) and recall (Recall), as shown in the following equations:

Precision = TP
TP + FP

, ð21Þ

Recall =
TP

TP + FN
, ð22Þ

APm =
ð1
0
Pm rð Þdr, ð23Þ

where TP, FP, and FN are the number of correctly detected
transmitted signals, missing alarmed transmitted signals and
missing detected transmitted signals, respectively, PmðrÞ is
the precision-recall curve of modulation type m, and APm is
the area size of PmðrÞ. The mAP is the mean of APm of differ-
ent modulation types

mAP =
∑M

m=1APm

M
, ð24Þ

where M is the number of modulation types. In addition, the
signal detection and identification task usually adopt the false
alarm rate (FAR) and missing alarm rate (MAR) to evaluate
the performance

FAR = 1 − Recall, ð25Þ

MAR = 1 − Precision, ð26Þ

The processing bandwidth per second (BPS) is used to
evaluate the running speed of different methods.

BPS =
Bprocess

Tprocess
, ð27Þ

where Tprocess and Bprocess are the processing time and process-
ing bandwidth of the network, respectively. The unit for run-
ning speed is MHz/s.

The memory usage (MU) of model parameters is used to
evaluate the model size of different methods. The unit for
model size is MB.

4.4. Experimental Results and Analysis

4.4.1. Performance Comparison with Baseline Methods. In
this subsection, we compare the performance of MSDIN
with ones of the baseline methods on the different datasets
in known environment. Figure 7(a) shows the mAP vs
SNR curves of different methods on the AWGN dataset. It
can be seen that MSDIN achieves the best performance at
all SNRs, and SDIN is better than SSD and CenterNet.
Figures 7(b)–7(d) show the confusion matrixes of MSDIN
on the AWGN dataset with different SNRs, which indicate
that there are more errors happens in low SNR and most
of errors are false alarms and missing alarms, rather than
the confusion between different modulation types. Similarly,
Figure 8 shows the performance of different methods on the
Watterson dataset and Rayleigh dataset, respectively. It is
again seen that the MSDIN achieves the best performance
at all SNRs on these datasets (see Figures S1-S3 in the
Supplementary Material for comprehensive performance
comparisons at different SNRs).

Figure 9 shows the running speed and model size com-
parison of different methods. It is obvious that MSDIN
and SDIN are significantly faster and smaller than SSD and
CenterNet. Compared with SDIN, MSDIN achieves better
performance, especially at low SNR, with little cost incre-
ment of running speed and model size. These experimental
results indicate that our proposed network is not only supe-
rior to the existing DL-based networks in running speed and
accurate, but also robust to different HF environments.

4.4.2. Performance Comparison with Different Duration
Times. In this subsection, we present the experimental
results of MSDIN on the time dataset. Figure 10(a) shows
the mAP vs SNR curves of MSDIN with different duration
times on the time dataset. It is shown that the long duration
time can achieve better signal detection performance. Com-
pared with T = 800ms, the performance when T = 1600ms
has an approximately 2 dB gain. Figures 10(b)–10(d) show
the confusion matrixes of MSDIN with different duration
times. It can be seen that the shorter duration time brings
more false alarms and missing alarms. Figure 11 presents
the running speed and model size of the MSDIN with differ-
ent duration times. It is obvious that the running speed of
the proposed network is increasing with the duration time
and that the longer duration time can obtain better perfor-
mance. Therefore, the duration time is a key parameter
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affecting the trade-off between real time and accuracy and
should be selected according to the demands of real
applications.

4.4.3. Performance Comparison with Different MDFS. In this
subsection, we present the experimental results of the
MSDIN on the MDFS dataset with Rayleigh Fading chan-
nels. Figure 12(a) shows the mAP vs SNR curves of MSDIN
with different MDFS. It is indicated that the Rayleigh Fading
channels with lower MDFS can obtain better detection per-
formance. Figures 12(b)–12(d) show the confusion matrixes
of MSDIN with different MDFS, where it can be seen that
Rayleigh Fading channels with larger MDFS may suffer
more modulation type confusion errors. The experimental
results show that the signals in the Rayleigh Fading channels
with larger Doppler frequency shifts are difficult to detect
and identify. The running speed and model size of MSDIN
with different MDFS are same as those in Figure 9.

4.4.4. Performance Comparison in Unknown Environments.
In this subsection, we present the experimental results of dif-
ferent methods in unknown environments, where the source
domain signals and target domain signals are gathered from
different environments (channels). Specially, we consider
two different situations, case 1, the source domain signals
are gathered from the AWGN channels, and the target
domain signals are gathered from the Watterson channels,
and case 2, the source domain signals are gathered from
the Watterson channels, and the target domain signals are
gathered from the AWGN channels.

Figure 13(a) shows the mAP vs SNR curves of different
methods in case 1. The “Benchmark” presents the mAP vs
SNR curve of MSDIN in a known environment, i.e., source
domain signals and target domain signals are both from
the Watterson dataset. It is shown that the mAP perfor-
mance of all methods is degraded over all SNR, and the
MAAN achieves better performance than other methods.
Figures 13(b)–13(d) show the confusion matrixes of differ-
ent methods in case 1, where it can be seen that the MSDIN
suffers more modulation type confusion errors than the
benchmark, and MAAN can correct most of them. However,
the MAAN is not very effective for errors of false alarms and
missing alarms, which indicates that there may still be some
room for improvement of our method, especially at low
SNR. Similarly, Figure 14 shows the performance of different
methods in case 2, where it is shown that MAAN achieves
better performance than MSDIN and is very close to the
benchmark. These experimental results show that the
MAAN can achieve obvious performance improvement in
unknown environments, and it is robust for the different sit-
uations (see Figures S4-S7 in the Supplementary Material for
comprehensive performance comparisons in unknown
environments).

In addition, it should be noticed that the domain dis-
criminator and multilabel learner of the MAAN only work
in the training phase to assist the signal detector in bridging
the domain shift between the source domain signals and tar-
get domain signals. Therefore, the running speed and model

size of the MAAN are the same as MSDIN as shown in
Figure 9.

5. Conclusions

In this paper, we analyze the characteristics of different
transmitted signals and set forth the validity to utilize multi-
resolution time-frequency spectra for HF signal detection
and identification. Then, we design a novel multiresolution
signal detection and identification network for real-time
HF signal detection and identification. Finally, we propose
a domain adaptation method to adapt the proposed network
to unknown environments.

We have demonstrated, by a series of simulation experi-
ments, the effectiveness of our works on the different trans-
mitted environmental conditions (channels), SNRs, duration
times, and maximum Doppler frequency shifts. These exper-
iment conditions and parameters are typical enough for
most of HF channels. Specially, the experimental results
show that the running speed and accuracy of our proposed
network is superior to ones of the existing DL-based net-
works in different HF environments, and the proposed
domain adaptation method can achieve obvious perfor-
mance improvement in unknown environments.

In future researches, we will enrich the datasets of differ-
ent environments, add more modulation types, explore more
comprehensive features, and further improve the perfor-
mance of real-time signal detection and identification in
known and unknown environments.
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Supplementary Materials

Figure S1: The confusion matrixes of MSDIN on the AWGN
dataset at different SNRs. Figure S2: The confusion matrixes
of MSDIN on the Watterson dataset at different SNRs. Fig-
ure S3: The confusion matrixes of MSDIN on the Rayleigh
dataset at different SNRs. Figure S4: The confusion matrixes
of MSDIN training on the AWGN dataset and testing on the
Watterson dataset at different SNRs. Figure S5: The confu-
sion matrixes of MAAN at different SNRs, where the source
domain is the AWGN dataset and target domain is the Wat-
terson dataset. Figure S6: The confusion matrixes of MSDIN
training on the Watterson dataset and testing on the AWGN
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dataset at different SNRs. Figure S7: The confusion matrixes
of MAAN at different SNRs, where the source domain is the
Watterson dataset and the target domain is the AWGN
dataset. (Supplementary Materials)
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