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In this study, the daily lactation data of Holstein dairy cows in one lactation period (305 days) were used as lactation time series
data. Empirical mode decomposition (EMD) was used to decompose milk yield series. The nonstationary milk yield series with
multiple oscillation modes was decomposed into several components. After eliminating the interference components, the
interference components were superimposed. Remaining component reconstruction was used to get the denoising milk yield
series. The denoising milk yield series retained the basic characteristics of the original milk yield series and corrected the errors
of the original data. The back propagation neural network (BPNN) was used to predict and compare the original milk yield
series and the denoising milk yield series. The results showed that it was feasible to use EMD to smooth the original daily milk
production data. The noise reduction milk production series was beneficial to the learning of prediction model and could

improve the accuracy of prediction of daily milk production of dairy cows.

1. Introduction

With regard to the predictive study on the milk yield of dairy
cows, Brody et al. [1] had used a mathematical model to
describe the functional relationship between milk yield and lac-
tation time in 1923. Thereafter, a large amount of mathematical
model research is carried out to predict the milk yield [2-4], and
the basic thinking of selecting or constructing model is generally
consistent, which is to fit the mean milk yield of cows in a cer-
tain period of time and then to predict the milk yield using
model. It is useful to predict the population milk yield of dairy
cows using the population mean statistical data for investigating
the nutritional requirements of population dairy cows [5-7];
however, such treatment suggests the difference in production
performance between individual cows. Clearly, applying such
prediction model in predicting the milk yield of individual dairy
cows will increase the prediction error [8-10]. With the increas-

ingly demanding standards of fine feeding for dairy cows, the
milk yield prediction accuracy of individual dairy cows should
be improved, the nutritional requirements of individual cows
should be obtained, and the diet nutrition concentration for
individual cows is clustered, thus obtaining the optimal group-
ing scheme and group feeding formula of dairy cows.

The biological difference of individual dairy cows, together
with the metabolic difference in different feed nutrients, has
resulted in changes in the daily milk yield of dairy cows with
time. Therefore, within a lactation period, the daily milk yield
of individual dairy cows shows a nonlinear time series. Measur-
ing error during production or the unpredictable external
effects will affect partial daily milk yield and become the noise
term. Consequently, the partial daily milk yield represents the
unpredictable part in the milk yield series from the perspective
of the timing characteristics of the entire lactation period, which
will disturb the learning of major data characteristics by the
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FI1GURE 1: Simulation architecture. The left architecture is a BPNN model fitted with the original daily milk yield series, and w and b
represent the connection weights and bias between neurons in each BPNN model. The current daily milk yield enters the input layer of
the BPNN model as an input value, and the output layer is the model predictor of the next day’s milk yield. The accuracy of the model
prediction value is used as the criterion for evaluating the model. The right architecture is a BPNN model fitted with the denoised daily

milk yield series.

prediction model and reduce the model prediction performance
[11-13]. Traditional forecasting methods and models have not
been flexible enough to predict lactation dynamically and reli-
ably due to the complex physiological mechanisms of dairy
cows, and in addition, single-forecasting models usually do
not provide accurate prediction results. Combined forecasting
models combine the advantages of different techniques or
methods to predict data trends more effectively. This study
employed empirical model decomposition (EMD) [14] to
decompose the original milk yield data series according to the
time scale characteristics, then to produce the denoised milk
yield series after reconstruction, and to carry out simulation
forecast using the BPNN model. The results suggested that
the denoised milk yield series could well preserve the series
properties of the original data, which contributed to improving
the model prediction accuracy. The proposed combined model
enhances the learning capability of the prediction model.

2. Materials and Methods

2.1. Data. In this study, daily milk yield data was converted
to 4% FCM [15]. A lactation period of dairy cow was defined
as a milk yield series, while the lactation period started from
cow calving to the 305™ lactation days after delivery, and the
last milk yield data was not collected for prediction. Data in
a milk yield series were randomly divided into training set
and verification set datasets, among which the training set
samples (n =202) were used to train the model, while the

verification set samples (n=102) were utilized for model
verification.

2.2. Relevant Theories and Techniques. EMD-based milk yield
data decomposition: the original milk yield series was carried
out stationary processing using EMD and decomposed into a
residual sum and a series of finite intrinsic mode functions
(IMFs) with low quantity [14]. The original milk yield series
was x(t), which represented the cumulative sum of several tim-
ing components:

™=

I
—

x(t)= ) Cit) + R, (1) (1)

C,(t) stands for the IMFs of the original milk yield series
arranged in the order of high frequency to low frequency; i rep-
resents the number of IMFs, and R, () indicates the trend of
original milk yield series x(t). The original milk yield series
was decomposed by EMD, as shown below:

(1) All local maximum values and local minimum values
on the original milk yield series x(t) were identified,
and the upper envelop [16] curve u(t) comprised the
local maximum values, together with the lower envelop
curve [(t) constituted by local minimum values were
obtained by the cubic spline function [17]

The means of upper envelop curve u(t) and lower envelop
curve was m, (t) = (u(t) +1(¢))/2, and the difference between
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F1GURrE 2: EMD denoised. The observed value is the original milk yield value, and the value varies between 10 and 45 kg per day. The original
milk yield series was decomposed through EMD, to obtain IMFs and the residual series. The resultant IMF after decomposition showed
obvious physical significance, which represented the hidden fluctuation components in the original milk yield series at various scale.
Residual series reflect a hidden prolactin change, i.e., most milk yield value changes between 20 and 35. The high-frequency IMF1 was
removed, then other IMFs were cumulatively added, which were then added with residual to obtain the denoised milk yield series.

the original milk yield series x(¢) and the mean m, (t) was h; (

£) = x(t) - m, (1)

(2) If h,(t) was an IMF, then h,(¢t) was IMF,, and C, (¢
) = h, (). Otherwise, the original milk yield series x
(t) was replaced by h,(t), and the calculation was
returned to step (1), until IMF, was extracted

(3) The residual was calculated as follows R, (t) = x(t) -
C,(t), if Ry(t) was a monotonic function, then x(¢)
was replaced by R, (); and steps (1)-(4) were executed.
Otherwise, multiple different decomposition results
would be obtained, the high frequency IMF, was
removed [18], then other IMFs were cumulatively
added, which were then added with residual to obtain
the denoised milk yield series

2.3. BPNN Model. BPNN is a kind of multilayer feedforward
neutral network with signal forward transfer and error back
propagation, which is frequently used in nonlinear prediction,
and it is also one of the most extensive neural network models
applied at present. A three-layer BPNN model is constructed
for simulation forecast, the numbers of input layer and output
layer neurons in the model topology are related to the predic-
tion task, and the Hecht-Nielsen method is utilized in obtaining
the neuron number in the hidden layer [19]. If the neuron num-
ber in the input layer is m, then the neuron number in the hid-
den layer should be 2m + 1. BPNN is greatly dependent on the
initial weight and bias, and a group of superior weight and bias-
ing was of crucial importance to the network prediction perfor-
mance. Under the premise of guaranteeing the minimal

training error, the improved z distribution iteration is adopted
to obtain these parameters, to replace the method of standard
BPNN to randomly produce parameters.

2.4. Simulation Forecast. Simulation forecast was constituted
by the original milk yield series/denoised milk yield series, z dis-
tribution iteration adaptive operator finds, and BPNN sets
(Figure 1), as described below:

(1) The normalized formula

(" =2 % ((x = Xpin )/ (Xmax = Xmin)) — 1) Was used to
normalize the original milk yield series/denoised milk
yield series to interval [-1,1]

(2) z distribution iteration adaptive operators were found,
BPNN was initiated, and the self-adapting operator find
algorithm was used to optimize the BPNN initial weight

and bias

(3) BPNN was trained using the optimal weight and bias,
the training set milk yield was used as the input vari-
able, while the morrow milk yield of training set was
used as the output variable, and finally the verification

set was used for test

(4) R*, RMSE, and SSE were employed to evaluate the
prediction results

2.5. Evaluation Indexes of Prediction Performance. R-square
(coeflicient of determination) was used to characterize the
fitting effect of data, and the value closer to 1 indicates better
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FIGURE 3: Original value and denoised value of the milk yield series. The observed value is the original milk yield value. The horizontal axis
represents the time of day (305 days), and the vertical axis represents the milk yield value.
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FIGURE 4: Training set comparison. The correlation between the predicted values obtained by the training set fitting the prediction model
and the original values is represented in the scatter plot on the left. The correlation between the predicted values obtained by the training set
fitting the prediction model and the denoised values is represented in the scatter plot on the right.
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Root mean squared error (RMSE) was the fitting stan-
dard deviation of the regression system.

RMSE =

The sum of squares due to error (SSE) closer to 0 indi-
cated better model selection and fitting and more successful

data prediction.
SSE = z w;(y; = 7,)"
i=1

3. Results and Discussion

3.1. Denoised of the Milk Yield Series. In Figure 2, the
observed daily milk yield data of every cow represented
one timing value of the milk yield series within a lactation
period; then, this series was characterized by the nonstabil-
ity, nonlinearity, complexity, and noise. As IMF included
various scale features, EMD was utilized to decompose the
original milk yield series, and all finite IMFs and residual
series were extracted. The remaining IMFs and residuals
after removing the first IMF were recombined to obtain
the denoised milk yield series.
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FIGURE 5: Verification set comparison. The correlation between the predicted values obtained by the validation set using the prediction
model and the original values is represented in the scatter plot on the left. The correlation between the predicted values obtained by the
training using the prediction model and the denoised values is represented in the scatter plot on the right.

TaBLE 1: Comparison of the prediction model evaluation between
original milk yield series and denoised milk yield series.

Training dataset Validate dataset

Evaluation items Observed Denoised Observed Denoised

R? 0.37 0.90 0.56 0.86
RMSE 435 1.37 3.35 1.79
SSE 3827.68  379.90 114628  326.81
Frequency 202 202 102 102

The milk yield series was decomposed through EMD, to
obtain IMF and the residual series, and the resultant IMF
included the local characteristic signals of the original milk
yield series at various time scales, which was the “roguing”
[20, 21] reflection of the entire original milk yield series.
The resultant IMF after decomposition showed obvious
physical significance, which represented the hidden fluctua-
tion components in the original milk yield series at various
scale, while the residual indicated the basic trend of the milk
yield trend, and the residual trend was consistent with the
group statistical data trend features [22-24].

The front milk yield of the original milk yield series was
gradually increased (early lactation period), which peaked in
the second or third lactation month and maintained for a
period of time (peak lactation period), and thereafter
decreased slowly (middle-late lactation period). The trend
of milk yield is consistent with the known reports [25, 26].
The denoised milk yield series also well reflected the lacta-
tion peak features at the period of 49-79 days, corrected
the measuring error of the 271 lactation days, and preserved
the milk yield characteristics of individuals in the original
milk yield series on the whole (Figure 3).

3.2. BPNN Prediction. The training datasets of the original
milk yield series and denoised milk yield series were used
to fit the prediction equation using BPNN. The prediction
equation scatter diagram of the training set of the original
milk yield series is shown in the left of Figure 4, while that
of the training set of the denoised milk yield series is pre-
sented in the right of Figure 4. The prediction equation scat-
ter diagram of the verification set of the original milk yield
series is displayed in the left of Figure 5, while that of the
verification set of the denoised milk yield series is shown
in the right of Figure 5.

The prediction scatter diagram of the training set of the
original milk yield series was clearly scattered, while obvious
correlation could be seen in the training set of the denoised
milk yield series. The minimum of 10.4 kg was seen on the
271% lactation day in the original milk yield series, which
belonged to the measuring error upon verification; the pre-
dicted value was 32.3kg, which had resulted in the maxi-
mum residual of 21.9. Such abnormal value was repaired
to be 17.8kg after denoised processing, and the residual
was reduced. At the same time, the milk yield values in the
training set of the original milk yield series mostly concen-
trated on 30kg/d to 35kg/d, and such feature was reflected
in the scatter diagram of the training set of the denoised milk
yield series. The greatest scatter density was seen at 30-35 in
the right of Figure 4.

The prediction scatter diagram of the verification set of
the original milk yield series was not clearly scattered, which
also demonstrated that the errors and noise data randomly
divided to the verification set of the original milk yield series
were less than those to the test set. The obvious correlation
could still be observed in the verification set of the denoised
milk yield series. With regard to the residual, the verification



set of denoised milk yield series also performed better than
that of the original milk yield series.

In this study, the prediction effect of the denoised milk
yield series was better than that of the original milk yield
series, and the indexes of correlation and residual in the
denoised milk yield series were better than those of the orig-
inal milk yield series, which partially overcame the problem
of prediction distortion of the measuring errors and noise
data.

3.3. BPNN Evaluation. The training datasets of the original
milk yield series and denoised milk yield series were fit using
BPNN (Table 1), respectively. The determination coefficient
R? of the original milk yield series fitting model was 0.37,
RMSE was 4.35, and SSE was 3827.68. The determination
coefficient R? of the denoised milk yield series fitting model
was 0.90, RMSE was 1.37, and SSE was 379.90. The original
milk yield series fitting model was applied to the original test
set samples, and the prediction result R*> was 0.56, RMSE
was 3.35, and SSE was 1146.28. The denoised milk yield
series fitting model was applied to the denoised test set sam-
ples, and the prediction result R* was 0.86, RMSE was 1.79,
and SSE was 326.81. Clearly, the fitting degree obtained
upon directly using the original milk yield series was sub-
stantially decreased, and the error was greatly increased, sug-
gesting apparently poor effect of the prediction model
constructed based on the original milk yield series. By con-
trast, the prediction model constructed based on the
denoised milk yield series had better selection and fitting,
as well as more successful data prediction [27].

In Table 1, the observed value is the original milk yield
value. Data in a milk yield series were randomly divided into
training set and verification set datasets, among which the
training set samples (n = 202) were used to train the model,
while the verification set samples (n = 102) were utilized for
model verification. The samples are frequency.

The training set and verification set were compared in
the same prediction model. The R* of the verification set of
the original milk yield series was increased by 19% com-
pared with that of the training set, RMSE was decreased by
1 unit, and SSE was reduced by 2681.4 units. The R? of the
verification set of the denoised milk yield series was
decreased by 4% compared with that of the training set,
RMSE was increased by 0.42 unit, and SSE was reduced by
53.09 units. The differences in R?>, RMSE, and SSE between
the training set and verification set of the original milk yield
series were great, which suggested poor stability of the pre-
diction model fitted using the original milk yield series; at
the same time, the model was associated with the problem
of excessive fitting.

4. Conclusion

The original milk yield data series of dairy cow within a lac-
tation period displays dynamic complexity. Prior to con-
struction of the prediction model, EMD is adopted to
reduce the noise of the original milk yield series, which can
remove the abnormal points in the series, obtain the basic
trend of milk yield within the lactation period and daily milk

Wireless Communications and Mobile Computing

yield fluctuations of various scales, and restore the clear lac-
tation features of individual cows. The original milk yield
data series of individual cows is subjected to EMD denoised
processing. Besides, fitting a nonlinear model (such as
BPNN) for prediction is a feasible strategy, which can not
only improve the daily milk yield prediction performance
but also enhance the stability of the prediction model.
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