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Accurate motion interval segmentation is the basic and crucial step in the advanced human perception based on WiFi signals.
However, previous works have rarely considered motion duration, which is one of the important parameters for complete
description of human motion. On this basis, we deeply investigate the properties of the CSI ratio from the perspective of
Mobius transformation and construct a novel motion indicator using its complementary real and imaginary parts. The new
indicator can attenuate the impact of motion fragmentation under short-window conditions and significantly reduce the
duration error while ensuring detection accuracy. Moreover, we propose a universal subcarrier screening method based on
response sensitivity and shape similarity, which provides more accurate information for perception. Furthermore, we present
MoSeFi—a duration estimation robust human motion detection system using an existing commercial WiFi device. Detailed

experimental results demonstrate that MoSeFi is lightweight yet effective compared to state-of-the-art systems.

1. Introduction

Perceiving human motion in the region of interest is the
basic task of context awareness, which will enable various
intelligent applications and services, including monitoring,
control, and analysis. In recent years, with the widespread
deployment of WiFi devices in daily life scenarios, ubiqui-
tous awareness based on WiFi signals has attracted the
attention of an increasing number of researchers. Compared
with traditional video-based and device-based methods,
reuse of the existing WiFi devices for passive human motion
sensing has many advantages, such as no additional cost, no
privacy disclosure, and no line-of-sight (LOS) path limita-
tion. Thus, a large number of WiFi-based sensing technolo-
gies have emerged.

The wireless signal is affected by the surrounding envi-
ronment in the process of propagation, causing variations
in signal amplitude, phase, and frequency. By analysing the
modulated signal, we can obtain relevant environmental
information. Early wireless sensing used the received signal

strength indicator (RSSI) to implement application [1-3].
However, the coarse-grained RSSI measures the average
receiving signal intensity over multiple propagation paths,
which limits its stability and reliability. In recent years,
researchers have turned their attention to fine-grained chan-
nel state information (CSI), which contains a richer environ-
mental context. Compared with the RSSI, CSI describes the
multipath propagation effects of wireless signals to a certain
extent and provides more detailed and robust features for
advanced environmental perception. Therefore, multiple
CSI-based sensing methods have been proposed, including
indoor location [4, 5], intrusion detection [6, 7], behavior
classification [8, 9], and gesture recognition [10-12].

In these applications, distinguishing the static and mov-
ing states of the human body is a basis and crucial step for
subsequent processing. A good system must not only be able
to correctly detect the human motion but also accurately
segment the motion interval. Here, we call the former detec-
tion accuracy, which is measured by false positive (FP) and
false negative (FN), and the latter duration accuracy, which
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can be represented by the difference between the detected
duration and actual duration. Among them, the duration
accuracy is crucial for applications such as identification
and classification, because in these cases, we prefer to obtain
pure CSI fragments that contain only complete motion
information. However, most previous work focused on
motion detection accuracy while ignoring duration accuracy,
which results in an incomplete description of motion inter-
vals. In addition, modern wireless communication systems
provide us with multiple data streams for perception, but
different data streams respond differently to environmental
changes due to the influence of frequency differences, prop-
agation paths, and system noise. Among these jagged data
streams, how to select the ones with excellent environmental
awareness is also an intractable problem.

To this end, we deeply analyse the characteristics of the
derived CSI ratio from the perspective of the Mobius trans-
form and find that its real and imaginary parts are sine-like
and shape-complementary. Thus, we construct a novel indi-
cator for motion sensing using both the real and imaginary
parts of the CSI ratio, which can significantly improve the
duration accuracy while ensuring the detection accuracy
under short-window conditions.

Furthermore, we conduct proof-of-concept experi-
ments and find that the nice data streams usually show
appropriate environmental sensitivity and high shape sim-
ilarity. Based on these observations, we propose a universal
data stream screening algorithm driven by responsivity
and similarity, which utilizes the sum of variance for
rough selection and the curvature distance for fine selec-
tion. The proposed algorithm provides more accurate
information for perception and fundamentally guarantees
the motion detection accuracy.

Meanwhile, we prototype a passive human motion sens-
ing system based on WiFi named MoSeFi. We deploy the
system in two typical scenarios, and the results show that
MoSeFi can achieve good performance in both detection
accuracy and duration accuracy.

The rest of this paper is arranged according to the fol-
lowing structure. In Section 2, we review the related works
on wireless sensing, and some preliminary analysis of CSI
is introduced in Section 3. Then, we provide the detailed sys-
tem design in Section 4, and the evaluation of the system
performance is presented in Section 5. Finally, we summa-
rize our work in Section 6.

2. Related Works

Driven by the needs of system applications, researchers have
conducted extensive research on human motion sensing
based on video, sound waves, and wearable devices. How-
ever, these device-dependent methods either require addi-
tional equipment such as cameras or destroy the normal
state of the subject. In recent years, with the widespread
deployment of WLAN equipment, WiFi-based passive
human motion sensing has gradually become a research hot-
spot. According to the signal used, previous works can be
divided into RSSI-based and CSI-based studies.
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2.1. RSSI-Based Studies. Due to the advantages of universal-
ity and accessibility, RSSI was widely used in early wireless
sensing works. RASID [13] utilized the variance of RSSIs
to capture human motion, which operates in a short oftline
phase and a monitoring phase. Siebert et al. [14] provided
a human motion detection and classification system based
on the random forest algorithm. Time differencing transfor-
mation and empirical mode decomposition (EMD) are
adopted in the system, and four statistical variables, includ-
ing variance, mean, skewness, and kurtosis, are selected as
the features. In another work [15], an occupancy estimation
system using WiFi power measurements was proposed.
Based on developing a simple motion model that character-
izes the impact of blocking the LOS and scattering effects,
the number of occupants was estimated using Kullback-
Leibler divergence. WLID [16] expanded the detection area
of human presence to the whole-home level by integrating
WiFi-enabled Internet of Things (IoT) devices, and the sys-
tem reached a 98% true-positive rate and a 3.8% false-
positive rate by establishing a nonparametric algorithm. Fur-
thermore, WiDet [17] captured human walking events by
utilizing a deep convolutional neural network (CNN), where
the wavelet coefficients and the raw RSSI signal were used as
the input to the CNN. In general, the RSSI describes coarse-
grained environmental variations, and the small-scale fading
caused by the multipath effect limits the stability and reli-
ability of motion sensing based on the RSSI.

2.2. CSI-Based Studies. Compared with the RSSI, CSI pro-
vides much more fine-grained information, such as the
amplitude and phase of multiple subcarriers; therefore, an
increasing number of CSI-based human motion detection
studies have emerged since the CSI Tool [18] was released.
FIMD [19] first leveraged the amplitude of CSI for distin-
guishing human motion, which slightly outperformed the
RSSI-based system in [13]. To use the noisy phase of CSI,
PADS [20] employed a linear transformation on the raw
phase and computed the eigenvalues of the covariance
matrix of both amplitude and phase sequences; furthermore,
a threshold-based SVM classification was used for human
motion detection. R-TTWD [21] considered the special case
of through-the-wall detection of moving humans. The sys-
tem took advantage of the correlated changes over different
subcarriers and extracted the first-order difference of the
eigenvector across different subcarriers for human detection.
AR-Alarm [22] presented a real-time human intrusion
detection system using the phase difference between differ-
ent antennas. To achieve the purpose of environmental
self-adaptation, the system utilized the normalized standard
deviation as the motion detection feature and adopted a real-
time static profile update scheme. WiSH [23] integrated cor-
relations in both the time and frequency domains as a novel
motion indicator and achieved a detection accuracy greater
than 98% when a low sampling rate was used. Yang et al.
[24] provided a device-free alarm system employing the
CSI signal to identify human motion. In the active alarm
module, specific help-seeking action combinations were cap-
tured through variance and Fourier transform, while in the
passive alarm module, the foreground detection algorithm
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was used to distinguish dangerous actions. WiMonitor [25]
presented a room-level human vitality monitoring method.
By eliminating auto gain control (AGC) noise, WiMonitor
obtained a more stable sensing boundary parameter. More-
over, the system extracted the Doppler frequency shift
(DES) from the more robust CSI ratio signal and further
constructed an activity intensity coefficient to distinguish
between silence and different human activities.

Existing work has greatly promoted the development of
passive wireless sensing technology based on WiFi. On this
basis, this paper further proposes a subcarrier screening
method based on environmental sensitivity and shape simi-
larity and verifies the advantages of real and imaginary parts
of the CSI ratio in improving the accuracy of motion dura-
tion detection.

3. Preliminaries

3.1. About CSI: Overview. CSI describes the propagation
characteristics of wireless signals in the form of the channel
frequency response (CFR). In indoor scenarios, the signal
received is the superposition of signals from different paths
due to the multipath effect; thus, the CSI of the wireless sys-
tem can be expressed as

H= e (). )

where A, is the amplitude attenuation, K is the number of
total propagation paths, L, is the propagation length of the

k™ path, and f and A represent the subcarrier center fre-
quency and wavelength, respectively. A change in the envi-
ronment, such as moving the transmitter or receiver,
replacing the surrounding facilities, or walking along the
propagation paths, brings a corresponding change in CSI,
which makes it possible to use CSI for environmental
sensing.

According to prior work [26], the wireless propagation
paths can be divided into two parts: static paths and
dynamic paths. The signals from the static path are coherent
with each other, which can be regarded as a constant, and
the dynamic component is incoherent with the static com-
ponent, which causes the fluctuation of the CSI. Thus, we
can rewrite the CSI as

HUO =)+ Y. () esp (<nf 240), 2
k=1

where H(f, t) denotes the static component, K, denotes the
total dynamic reflection path, and A;; and L, are the ampli-
tude attenuation and propagation length of the k' dynamic
path, respectively. However, due to the imperfect hardware
of the WiFi system, there are two major types of noise in
the collected CSI data: amplitude noise, which is caused by
the power amplifier uncertainly, and phase noise, which
includes the packet detection delay (PDD), sampling fre-

quency offset (SFO), and carrier frequency offset (CFO)
[27]. Thus, the polluted CSI can be expressed as

H(f, 1) = Ayge exp (=j0.)H(f, 1), (3)

where A,,

offset.

Figure 1(a) shows the trajectory of the raw CSI on the
complex plane. It can be seen that the CSI is distributed on
a circle in the static state, while it is distributed on a ring
in dynamic state. Due to the interference of phase noise,
the phase is random in both two states; therefore, only its
amplitude can be directly used for perception.

. is the amplifier noise and 0, is the total phase

3.2. From CSI to the CSI Ratio. In modern wireless networks,
orthogonal frequency division multiplexing (OFDM) and
multiple-input multiple-output (MIMO) technologies are
used to improve the channel capacity and communication
quality. Hence, the CSI evolves into a three-dimensional
matrix, which characterizes the wireless channel variation
simultaneously in the temporal, frequency, and spatial
domains. Thus, we can define the CSI ratio as the quotient
of raw CSI between two antennas [28], which can be
expressed as

AL (Hﬁ”( 1, t)) #3540 (1) exp <—j27rf (L,iy(t)m))
A (HI(£.0) + 50 A% (1) exp (~j2nf (1id (7))
(4)

where the superscripts (1) and (2) are used to distinguish
the parameters of the two antennas.

As different antennas share the same RF chain and clock
in a commercial WiFi card, the power amplifier noise A,

and the random phase offset 0, are almost identical between
different antennas [29]. Therefore, the calculation process of
the CSI ratio can naturally eliminate amplitude and phase
noise. Without loss of generality, we assume that there is
only one dominating dynamic path corresponding to the
moving object; then, the CSI ratio derived from Equation
(4) can be written as

CSI

ratio — >

Hgl)(f, t) +A£il) exp (—j27rf<L[(;)/)L>)
§2)(f, t) +Afi2) exp (j2rf (AL4/A)) exp <‘j277f(Lfil)/)t)) 5

(5)

CSI

ratio —

where AL, = L;l) - L[(f> is the dynamic path length difference

of two antennas. If we further employ z = exp (—j2nf (Lgll)/
A)) to represent the unit circle on the complex plane, it
can be seen that the CSI ratio is the Mobius transformation
of z, which includes the mapping of scaling, rotation, com-
plex inversion, and translation. Since Mobius transforma-
tion is a conformal mapping, the trajectory of the CSI ratio
during motion is still a circle on the complex plane.

As shown in Figure 1(b), the CSI ratio concentrates at a
point in the static state, and its trajectory is a circle in the
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FIGURE 1: Trajectory on the complex plane. (a) CSI. (b) CSI ratio.

dynamic state. Since the impacts of amplitude and phase
noise are eliminated, in addition to the amplitude, the phase
of CSI ratio can also be used for sensing, which verifies the
superiority of CSI ratio.

3.3. Key Observations of Motion Detection Using CSI Ratio.
In this subsection, we conduct proof-of-concept experiments
to further illustrate some key issues of motion sensing based
on WiFi. We separate the transmitter and the receiver by
1.5m at equal height and move a box with a size of 0.4 x
0.3 x 0.6 m along the perpendicular bisector of the LOS; at
the same time, the CSI data are collected.

3.3.1. Contradiction between Motion Integrity and Duration
Accuracy. Figure 2(a) shows the amplitude of the CSI ratio,
and it can be seen that there is a complete continuous
motion interval. As mentioned above, the amplitude fluctu-
ates differently in static and dynamic states. Previous works
usually quantify this feature by variance or correlation coef-
ficient and select the values of static state as a threshold.
Since the above two parameters are calculated in a certain
time window, next, we take the variance as an example to
illustrate the impact of window size on detection result.

As shown in Figure 2(b), when the window is long (2's),
a complete motion interval with significantly large variance
can be detected; however, the detected motion duration is
significantly longer than the true value. It is reasonable
because for the data points in the static interval that are close
to the head or tail of the dynamic interval, their variance will
be larger due to the influence of the dynamic data points
contained in the window. These data points will be mis-
judged as dynamic state, making the detected motion dura-
tion longer than the true value. The longer the window,
the more data points are affected around the junction.

Appropriately reducing the window length would allevi-
ate the problem above, as Figure 2(c) shows. It can be seen

that the minimum variance of the dynamic state is just
greater than the maximum variance of the static state, which
allows us to obtain a complete motion interval that is closer
to the true duration. Such a window seems like a suitable
window.

If the window is shortened even further, such as 0.3 s, we
found that the original continuous motion interval was
divided into multiple short-term motion intervals, as shown
in Figure 2(d). Here, we refer to these short-term motion
intervals as motion fragments. The reason is that for a
sinusoidal-like time series, the fluctuations at the position
of the peak and trough in a small window are much smaller
than those of the linear parts, which are comparable to the
slight fluctuations in the static state. Meanwhile, the short
window reduces the influence of the surrounding data
points, and the boundary between static and dynamic states
becomes clearer. If all these fragments are merged correctly,
we will get a motion interval with a duration closer to the
true value. However, the merging of fragments is not easy,
especially when there are too many fragments; the false
and missed merging not only reduces the accuracy of motion
detection but also increases the error of motion duration.

From the foregoing discussion, we find that there is a
contradiction between the motion integrity and the duration
accuracy. From the perspective of motion integrity, a long
window should be used, while for duration accuracy, a short
window is better. Therefore, a compromise window size is
usually selected in practice. Although the analysis above is
conducted on the amplitude of the CSI ratio, the conclusions
are also applicable to phase since they are all sine-like in
shape.

3.3.2. Diversity of Subcarrier Response. For a MIMO-OFDM
WiFi system, there are multiple data flows; however, the
responses of different data flows are diverse due to the differ-
ences in frequency, propagation path, and noise level.
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FiGURE 3: Diversity of subcarriers.

Figure 3 shows nine typical amplitude series of CSI ratio,
and it can be seen that the data flows can be divided into
three categories based on the noise level and response
intensity.

(1) Noisy Subcarriers. These subcarriers contain a large
amount of noise, such as those series plotted in dotted
dashed lines. The fluctuations caused by motion are sub-
merged in the noise and almost impossible to distinguish;
thus, such subcarriers are shape-independent and useless
for motion detection.

(2) Insensitive Subcarriers. We plot these subcarriers in dot-
ted lines, and it is clear to see that they are stable when there
is no moving object, but the fluctuations caused by motion
are also very small. They are unresponsive to environmental
changes regardless of whether they come from noise or
human motion.

(3) Nice Subcarriers. As the solid line shows, these subcar-
riers show clear differences between two states, which
remain stable in the static state but react significantly to
the dynamic state. Moreover, they show strong correlation



and exhibit similar shapes during the motion period since
they usually present approximate physical reality. Compared
with the first two categories, these subcarriers are more suit-
able for motion detection.

From the analysis above, we find that avoiding the inter-
ference of poor subcarriers is necessary for motion detection,
which is also the basis for determining the quality of the sub-
sequent processing.

Via the case study, we find that although CSI ratio shows
better attributes than CSI, there are still two key issues that
need to be further solved for accurate and robust motion
sensing:

(a) How to perceive the motion on the premise of both
motion integrity and duration accuracy

(b) How to select the nice subcarriers with better envi-
ronmental awareness

Aiming at the first problem, we construct a novel motion
indicator by using both the real and imaginary parts of the
CSI ratio; furthermore, we propose a subcarrier screening
mechanism based on environmental sensitivity and shape
similarity.

4. System Design

4.1. Data Preprocessing. Due to environmental noise and
incomplete hardware, the collected CSI data cannot be
directly used for motion detection. To solve the problem of
data loss caused by sampling jitter, we conduct interpolation
to obtain a uniform time interval. Then, the Savitzky-Golay
filter is chosen to further smooth the CSI data.

4.2. Motion Detection Using New Feature. As described in
Section 3, the CSI ratio of the dynamic state can be regarded
as the Mobius transformation of the unit circle, and its tra-
jectory is a circular on the complex plane when the dynamic
path changes one wavelength. Thus, the real and imaginary
parts of CSI ratio change periodically. Meanwhile, the CSI
ratio centralizes on a point in the static state, which means
that its real and imaginary parts are both stable at this time.
Therefore, both parts can be used for motion sensing like
amplitude and phase. At the same time, since the trajectory
of CSI ratio on the complex plane is a circle, the extreme
points of the real part appear in the direction of the real axis,
and the extreme points of the imaginary part appear in the
direction of the imaginary axis, and the extreme points of
the two are staggered.

In Figure 4, we show the schematic illustration of
Mobius transformation, and it can be seen that the real
and imaginary parts of the CSI ratio are not standard sine
curves due to the scaling, translation, and complex inversion
operations in the transformation. The degree of shape devi-
ation depends on the coefficients in the transformation.
When p = |H§2> (f, t)/A;2)| is far from 1, the real and imagi-
nary parts are both sine-like. The condition above is easy to
satisfy in practice, especially when the LOS exists. At the
same time, since the trajectory of CSI ratio is a circle, the
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extreme points of the real part appear in the direction of
the real axis, and the extreme points of the imaginary part
appear in the direction of the imaginary axis, and the
extreme points of the two are staggered.

Figure 5(a) shows the real and imaginary parts of the
CSI ratio collected in real scenario; it can be seen that
their shape features are consistent with the previous anal-
ysis. Similar to magnitude and phase, when we use a short
window to calculate the variance and select the maximum
variance of static state as the threshold, there are multiple
motion fragments in the raw detection results, as shown in
Figures 5(b) and 5(c).

Recall that the root reason of motion fragments under
short-window conditions is the relatively small fluctuation
range at the extreme points. Since the real and imaginary
curves of CSI ratio are complementary in shape, this inspires
us to use both of them for motion sensing and construct a
new motion indicator as

Mg = Var e + Variy, g (6)

indi

where Var,,; and Var;,,

and imaginary part, respectively. It is clearly that the value
of M, 4 is small in the static state because both real and
imaginary parts are stable. For the dynamic state, if there is
a small value of Var,,,, there must be a large value of
Var;,,.» and vice versa. Thus, M,y is always greater than
that of the static state during the whole motion period.

Therefore, we still use the largest M, 4 of the static state
as a benchmark, which is denoted as Th,, ;.4 and deter-
mine the data points whose M, 4 is larger than Th,, ; 4 as
dynamic. In order to initialize Thy, .4, we keep the environ-
ment static at the beginning of data collection and pick the
largest M, 4 of this static interval as the initial Th, ; 4. As
Figure 5(d) shows, a complete and continuous motion inter-
val can be obtained under short-window conditions. Mean-
while, the shorter window reduces the number of affected
points close to the actual motion interval, and the motion
duration detected is closer to the true value.

Due to the complexity of human movement and envi-
ronmental noise, there may still be a small amount of resid-
ual moving debris in the raw detection results, which is
located in a complete motion interval or a stationary
interval.

are the variance of the real part

indi

(1) The residual fragments within the motion interval
are generally caused by the transient immobility of
the human body in a complete motion, so the time
interval between the adjacent motion fragments is
relatively short

To this end, we define the threshold of static duration
Th, which characterizes the minimum time interval between
two independent motions. When the time interval between
two motion fragments is less than Th,, the two motion frag-
ments are regarded as being located in a complete motion
interval and merged. Conversely, the two motion fragments
are both treated as independent.
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(2) The pseudomotion fragments in the stationary
region are generally caused by noise, either the dura-
tion is short or the fluctuation is small. Thus, we uti-
lize two parameters to eliminate them: the threshold
of motion duration Th, and the threshold of average
variance Th,,

The Th,, is defined as the smallest possible duration of a
true motion. When the duration of a motion fragment is less
than Th,,, it is discarded. In this way, the pseudo-short-
duration motion fragments are eliminated.

The Th,, is defined as « times Th,, ; 4> which can be
expressed as

Thav =« ThM_indi' (7)

For an independent motion segment, we calculate its
average variances and then compare it with Th,,. If the aver-
age value is greater than Th,,, this motion segment is deter-
mined to be valid and retained; otherwise, the motion
segment is considered to be caused by environment noise
and discarded.

In the actual detection process, the above three parame-
ters are fused together to remove the impact of motion frag-
ments. Firstly, we calculate all the time intervals between
adjacent motion fragments and merge the two fragments
with time interval less than Th,. Then, we repeat the above
operation until the intervals between all adjacent motion
fragments are greater than Th,. For these new independent
motion segments, we further utilize Th,, and Th,, to judge
them one by one and remove the segments whose duration
is less than Th,, or the average variance is smaller than
Th,,. At last, the remaining independent motion segments
with long duration and large variance are picked as the final
detection result.

4.3. Nice Subcarrier Screening. According to the characteris-
tics of the excellent subcarrier, we divide the subcarrier
screening process into two steps: coarse selection driven by
responsiveness and fine selection driven by similarity.

4.3.1. Coarse Selection. From the discussion in Section 3, we
know that the poor subcarriers are either disorganized or
unresponsive; moreover, a nice subcarrier remains relatively
stable in the static state and generates an appropriate
response to the motion. Thus, we select the subcarriers
approximately according to their volatility intensity. Here,
the sum of variance (SV) is used to describe the volatility
of the time series, which can be written as

P
sy = Z Vargk), (8)
i=1

where Varl(»k) is the variance of the i packet in the k™ sub-

carrier and P is the length of the CSI series.

Figure 6(a) shows the SVs in gradient colors, and it can
be seen that the SV values between subcarriers are signifi-
cantly different. Here, we firstly sorted the SVs and divided
the subcarriers into three groups equally according to values
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of SV. The split benchmarks are shown as the dashed lines in
Figure 6(a). Since the SV describes the magnitude of fluctu-
ation, each group shows different responsiveness. Specifi-
cally, the first group contains the subcarriers with the 30
largest SV values, which are usually noisy due to being
hyperreactive to environmental changes. The second group
contains the subcarriers with the 30 smallest SV values,
which are usually insensitive to environmental changes.
Obviously, the above two groups are not suitable for motion
detection, so they are discarded. Finally, the 30 subcarriers
with the middle SV values are reserved as the result of coarse
selection. These subcarriers usually keep stable in static state
but fluctuate strongly enough in dynamic state. Figure 6(b)
shows the coarse-selected subcarriers, and it can be seen that
most of them meet the characteristics of the nice subcarrier.

4.3.2. Fine Selection. Recall that the nice subcarriers appear
in clusters and show a great deal of similarity in shape,
which inspires us to design a similarity-driven selection
mechanism to further pick the appropriate subcarriers.

Curvature is one of the important mathematical tools to
describe the geometry of curves and is widely used in many
shape processing applications [30]. Here, we utilize k-cosine
functions [31] to calculate the curvature. Let

Sik = (Xi = Xipo Vi = Visk)»
= (X = X ¥ = Vick)

)

be the k-vectors of point p,=(x;,y,) on the curve; the k
-cosine is defined as

k_ Stk
0s p; = . (10)
D sl [t

Then, the curvature of point p; = (x;, y;) can be expressed
as

k
¢=—FP (11)

. |sik| + [tix|

. . !
For any time series X andX ', we can construct the corre-
. . ! 1k
sponding curvature series C = [c’l‘, c’z‘, R cif, ~Jand C" =|[c'},
1k 1k . .
€y €, e+). Since the curvature describes the shape of

time series, we can leverage the curvature distance (CD) to
measure the shape similarity. The curvature distance is
defined as

DC(X,X'> St M (12)
where P is the length of the time series. The shorter the cur-
vature distance is, the more similar the shape of the two
time series.

Figure 7(a) shows the CDs of the coarse screened real
parts, and it can be seen that the CDs between different sub-
carriers are distinct since they experience diverse variations.
If we pick M groups with the smallest CD values, the shapes
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30 [ [ 10> [0 [ [wss [ [ 0w [ sowt [ ase | s [ vovn [ soos [ o [ [ 555 [ ome [ s [ v [ sooe [ s [ oom | 02 [ows [ ot [ [ome [ s

i
HEHHN

Subcarrier index
&

= RIEEIEEE :TEEEEREERE BB ==
HHHEHEEEE HE HHEEEHHEE

HHEEEHHEHHHEHEEHEEHHEEEE

HHHEHEHEE
HEEE

Fnwano e
HHBE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

@
g

Subcarrier index

()

Real

0 500 1000 1500

Packet

®)
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of corresponding real parts are similar. It is worth noting
that M should not be too large; otherwise, some subcarriers
with poor shape similarity may be introduced. However, a small
M sometimes results in too few subcarriers selected due to the
overlap of subcarrier indexes, which is not conducive to the sub-
sequent selection of imaginary parts. Therefore, we additionally
specify the minimum number of selected real parts denotes as
NumR_,,, and once the number of subcarriers contained in
the M groups is less than NumR,; , we continue to pick the
group with the smallest CD value among the remaining ones
until no less than NumR ;, subcarriers are selected.

Here, we take M =3 and NumR,_;, =5 as an example to
illustrate the specific screening process. In Figure 7(a), we
mark the three positions with the smallest CD values in
red boxes, and it can be seen that only three subcarriers
(#4, #18, and #19) are selected due to the overlapping of
indexes. Thus, we successively pick two groups with the
smallest CD values (yellow boxes) from the remaining sub-
carriers. Finally, the five subcarriers (#4, #6, #7, #18, and
#19) are chosen as the result of fine selection. The screened
real parts are shown in Figure 7(b) accordingly, and it can
be seen that the shapes of them are exactly similar. Since

the curvature distance concentrates on the difference of
shape, the nice subcarriers can still be picked out even if they
lie far away in terms of Euclidean distance.

Since we use both real and imaginary parts of CSI ratio
for motion detection, to ensure that both parts meet the
requirements, we firstly utilize SV to roughly select the real
part and obtain R_,,.; then, we pick M groups of real part
series with the closest curvature distance to form Rg.. If
Rg, contains less than NumR, ;. subcarriers, we continue
to pick the group with the smallest CD value among the
remaining R_, ... until more than NumR; subcarriers are
selected. Next, we select the corresponding imaginary parts
Itne according to the subcarrier indexes of R;;,. and choose
two pieces of imaginary part series with the smallest curva-
ture distance in I, which are denoted as I, and I,
respectively. According to the subcarrier indexes of I,
and I, we can find the corresponding two real part series
R, and R,. The pseudocode of this module is shown in
Algorithm 1.

At last, we obtained two subcarriers with similar real and
imaginary parts. Since only one subcarrier is needed in the
calculation of M, 4, we further calculate the average of the
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Input: K: number of subcarriers; P: number of CSI packets; R € RP*K: real
parts of CSI ratio; I € RPX: imaginary parts of CSI ratio;

Output: R, I,
: \\coarse selection of real part

:for k=1to K do

1

2

3

4: end for

5: RCOdVSE

6: \\fine selection of real part

7: CR «— discrete curvature of R
8:fori=1to30-1do

9: for j=1+1to L do

18: end while
19: \\fine selection of imaginary part

21: Ijine — I[indR—fine]
22: CI — discrete curvature of I,

SV[k] — Zﬁzlmovvar(R[p, k)
«— 30 pieces of R with middle SV

coarse

10: Deg(is j) «— Yy ICR]p, i] = CRp, j}|/ (P~ 1)
11: end for
12: end for

13: Ry, < M groups of R with the shorts D¢y, in R
14: Count «— number of subcarriers in Ry;,,

15: while Count < NumR_;, do
16: Add the group of R with the shortest D¢y in remained R, to Ry,
17: Count «— number of subcarriers in R,

20: indy_y;,, < subcarrier indexes of Ry,

23: for m=1 to length(indy_;,.) — 1 do

24: for n=m+1 to length (indg 4,.) do

25: Dg;(m, n) «— sum,_,|CI[p, m] - CI[p, n]|/(P - 1)
26: end for

27: end for

28: [Iyyy5 Ip| «— two pieces of I with the shortest D in I,

29: [ind,_,,, ind,_,,,] «— subcarrier indexes of [I;, I 5]
30: [Rsell’ Rsell] — R[indl—sell’ ind[—selz}

coarse

ALGoORITHM 1: Subcarrier screening module.

real and imaginary parts of the two subcarriers, respectively,
which can be expressed as

R ., = Rsell + Rselz

sel 2 > ( ) 3)
I, = Isell + IselZ

sel — 2 :

Here, we take R as an example to illustrate the rational-
ity of above operations. Since Ry, and Ry, are of equal
length, we can regard Ry, as the translation of R, and
denote the translation item as AR=R_,; — R,,. Thus, the
variance of Ry, can be expressed as

(14)

Var(Rsel) — Var(Rsell) + Var<R5512) _ Var(AR) .
2 2 4

Since Ry, and R, are similar in shape, we have the fol-

lowing: (1) the shape of R, is close to R, and R,. (2) The

elements of translation item are approximately equal; thus,

Var(AR) is small, and Var(R,) is mainly composed of the

first two items. Since Var(R,);) of dynamic state is larger
than that of static state and so does Var(Ry,), Ry can be
used for motion detection.

Similarly, we can infer that I, which is similar in

shape to I and I, can also be used for motion detec-
tion. Furthermore, it can be seen that Ry and I are
complementary in shape because Ry, and I, and Ry,
and I, are complementary in shape. Thus, we can utilize
R, and I to calculate M, ; for motion detection.
4.4. Subcarrier and Benchmark Update. For long-term
motion perception, subcarrier screening with excessively
long CSI data incurs vast computational overhead. Mean-
while, it is not safe to use the fixed subcarrier for a long
time because the nice subcarrier is not invariable. There-
fore, we propose a motion-enhanced subcarrier updating
mechanism.

When the system detects new motion, we reperform the
subcarrier screening module using the data containing the
motion interval. Furthermore, if the environment maintains
a static state for a long time, such as 15 minutes, the system
also conducts subcarrier reselection to avoid nice subcarrier
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drift. Meanwhile, the benchmark used to distinguish
between static and dynamic states is also updated. Specifi-
cally, we recalculate the M, of new subcarriers in the static
state and pick the maximum value as the new Thy, ; 4 for
subsequent motion detection. Correspondingly, the Th,,,
which is «a times Thy, ; 4, will also be updated.

5. Performance Evaluation

5.1. Experiments Setup. For MoSeFi, we utilized a TP-Link
WDR5600 wireless router with two antennas working as
the transmitter in AP mode at 2.4 GHz and a Lenovo X200
laptop equipped with an Intel 5300 NIC and three omnidi-
rectional antennas working as the receiver. The laptop ran
Ubuntu 12.04 OS with the modified firmware CSI Tool
installed. We set the height of both transmitter and receiver
to be 1.3 meters, and the distance between them is 3 meters.
The sampling rate was set as 100 packets/s. We collected the
CSI data in two typical scenarios: (1) a student dormitory
containing only one performer during data collection and
(2) a graduate studio containing 5 resident students and
some random visitors. The floor plans of the two scenarios
are shown in Figure 8. In order to obtain the ground truth
of human motion duration, we used a camera to record
the data collection process.

We adopted the false-positive rate (FPR) and false-
negative rate (FNR) to characterize the motion detection
accuracy, which can be depicted as follows:

FPR < Fz.11'se positives I
True positives + false positives (15)
FNR = False negatives

True positives + false negatives

For a motion detection system, FPR describes the pro-
portion of false detections of motion when the environment
is static, while FNR describes the proportion of missed
detections of true motion. Compared to accuracy that calcu-
lates the proportion of the sum of false and missed detec-
tions, FPR and FNR more clearly depict the ability of the
system to correctly distinguish between static and dynamic
states.

Meanwhile, we recorded the difference between the
detected motion duration and the true motion duration for
all files under true-positive (TP) conditions and took their
average as the motion duration error (MDE). In practice,
the raw detection results are packet indexes, which can be
converted to second according to the timestamp of the CSI
data. Meanwhile, the actual motion duration can be
obtained by video recording.

In addition, we used tic and foc commands in Matlab to
record the time consumption of each file and took their
average value as the running time (RT). The RT measures
the real-time performance of the system.

We selected two typical systems for comparison: AR-
Alarm uses the variance of the phase difference to charac-
terize changes in the environment; WiSH utilizes the cor-
relation of CSI in both time and frequency domains. Since

11

the subcarrier selection mechanism is not clearly stated in
AR-Alarm, we traverse all subcarriers and choose the best
performing one as its final performance. And for WiSH,
we select all subcarriers to calculate the correlation matrix.

5.2. Case Study of Single Motion Series. In this subsection, we
collected the CSI data in scenario (a), and five volunteers
were recruited to complete six different actions, including
walking, sitting, kicking, waving, stepping, and squatting.
The volunteers were first asked to remain still, then complete
a specified action under voice commands, and finally remain
still for a period of time. For each type of motion, we asked
each volunteer to complete 30 repetitions in three different
positions. Specifically, as Figure 8(a) shows, the volunteers
completed the walking action according to the gray lines
(A,—A,", B,—B,', and C, — C,"), respectively, and
did the remaining five actions in the positions A,, B;, and
C,, respectively. Finally, a total of 2700 sets of CSI data were
collected. Obviously, this type of data is often used in the
applications such as classification and recognition.

5.2.1. Overall Performance. In order to verify the influence of
the window size on the detection results, we tested the per-
formance of the three systems with window sizes of 0.5s
and 1 s, respectively, and the experimental results are shown
in Table 1.

It can be seen that when the window size is 1s, the detec-
tion accuracy of MoSeFi is significantly higher than that of
the other two systems. This emphasizes the importance of
subcarrier screening. On the one hand, it is not safe to
always use a fixed subcarrier because the drift of nice subcar-
riers may cause the system to make wrong judgments. On
the other hand, rough use of all subcarriers is not an optimal
choice, and the processing of poor subcarriers is redundant
or even harmful. Meanwhile, we find that the MDE of WiSH
is smaller than that of the other two systems when the win-
dow is long. However, the real-time performance of WiSH is
poor due to the calculation of complex correlation coeffi-
cient, and its RT is far greater than the other two, since
AR_Alarm only uses the threshold of motion duration to
judge each motion fragment and does not address the issue
of incorrectly merging fragments. Meanwhile, we only
counted the MDE under the true-positive conditions; the
MDE of AR_Alarm is smaller although its FPR and FNR
are significantly larger than those of MoSeFi. The above
results also show that the merging of motion fragments is
risky, and the wrong merging may lead to the increase of
MDE.

When the window reduces to 0.5s, our system can still
maintain a relatively stable performance, while the perfor-
mance of the other two systems is seriously degraded,
especially AR_Alarm. It is because AR_Alarm employing
variance of phase difference suffers from severe motion
fragmentation when the window is short. Due to lack of
fragment merging mechanism, if there are multiple frag-
ments with durations greater than Th,, each fragment will
be misjudged as an independent motion, and the FPR
increases accordingly. On the contrary, if the durations
of all fragments are less than Th,, they will all be
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FiGure 8: Floor plan of experiment scenarios. (a) Student dormitory. (b) Graduate studio.
TaBLE 1: System performance for single motion case.
System Window (s) FPR (%) FNR (%) MDE (s) RT (s)
. 1.0 0.33 0.89 1.22 0.14
MoSeFi
0.5 0.78 0.67 0.53 0.13
1.0 2.56 2.90 0.94 0.12
AR-Alarm
0.5 12.42 10.46 0.76 0.11
. 1.0 3.12 3.46 0.61 1.41
WiSH
0.5 4.49 8.06 0.66 1.33

discarded, resulting in the increase of FNR. By contrast,
WiSH and MoSeFi, which adopt the fragment merging
module, both outperform AR_Alarm under short-window
conditions. Since the ingenious motion indicator of
MoSeFi can significantly reduce the number of motion
fragments, thereby reducing the probability of false merg-
ing and missed merging, its FPR and FNR are still low
with short window. Benefiting from the shortening of the
window and the limited increase of motion fragments,
the MDE of MoSeFi declines significantly. On the con-
trary, severe motion fragmentation not only declines the
motion detection accuracy but also offsets the benefits of
window shortening in improving motion duration accu-
racy, resulting in a slight increase in MDE of WiSH.

5.2.2. Importance and Universality of Subcarrier Selection
Module. In order to pick the nice subcarriers, we have car-
ried out coarse selection and fine selection successively. To
further illustrate the role of two steps, we tested the per-
formance of MoSeFi when only coarse or fine selection
was used. Here, we refer to the above two systems as
MoSeFi‘® and MoSeFi* ), respectively. For MoSeFi(C), we
directly calculated the mean of coarse selected 30 subcar-
riers, while for MoSeFi'", we utilized the curvature dis-
tance to select two nice subcarriers among all subcarriers.
Furthermore, aiming at verifying the universality of the
proposed subcarrier selection method, we have also tested
the performance of AR-Alarm and WiSH with the full
subcarrier selection module, which are called AR-

Alarm® and WiSH“?, respectively. Table 2 shows the
experimental results.

From Table 2, it can be seen that compared with
MoSeFi using full subcarrier selection module, the detec-
tion accuracy of both MoSeFi® and MoSeFi™ drops.
As described in Section 4.3, there are still some insensitive
or oversensitive subcarriers in the coarse selection results.
Indiscriminately averaging these subcarriers reduces the
discrimination between static and dynamic states, result-
ing in a large increase in the FPR and FNR of MoSeFi'®.
On the other hand, when using the curvature distance to
fine select across all subcarriers, the results may locate in
the unresponsive or hyperreactive group, causing the var-
iance of motion interval to be too small or the selected
threshold to be too large. Thus, the performance of
MoSeFi® deteriorated. The above results also show that
the coarse selection and the fine selection play different
roles, and one of them alone is not enough to always
screen out the nice subcarriers; therefore, it is necessary
to combine the above two steps in the actual human
motion detection.

As for AR-Alarm“® and WiSH®Y, their motion
detection accuracy is significantly improved in both win-
dow conditions, benefiting from the subcarriers that more
accurately describe the environmental changes. At the
same time, subcarrier screening reduces the data for calcu-
lating the correlation coefficient, so that the RT of
WiSH? considerably drops. The results further illustrate
the influence of subcarrier quality on the motion detection
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TABLE 2: System performance using different subcarrier selection modules.
System Window (s) FPR (%) FNR (%) MDE (s) RT (s)
© 1.0 2.16 4.67 124 0.12
MoSeFi
0.5 3.75 6.02 0.66 0.12
® 1.0 134 1.60 1.20 0.14
MoSeFi
0.5 1.44 1.67 0.54 0.14
(R 1.0 0.89 1.34 1.05 0.12
AR-Alarm
0.5 3.50 1.86 0.65 0.12
WiSHCP 1.0 0.78 1.00 0.56 0.38
0.5 2.38 4.54 0.49 0.31

accuracy and also show that our universal subcarrier screen-
ing method can combine with other works to improve system
performance. However, we find that although the perfor-
mance of AR_Alarm®” and WiSH®™ has been greatly
improved under short-window conditions compared with
the native systems, their overall detection accuracy is still
not high. This shows that subcarrier screening alone is not
enough, and the impact of motion fragmentation cannot be
ignored under short-window conditions.

5.2.3. Advantage of Proposed Motion Indicator. To further
verify the superiority of using both the real and imaginary
parts of CSI ratio for improving the duration accuracy, we
tested the system performance with different window sizes.
For the sake of fairness, we selected AR-Alarm‘“™ and
WiSH®) for comparison.

As shown in Figure 9, when the window is larger than
0.8s, the motion detection accuracy of the three systems is
high, but if the window continues to be shortened, their per-
formance will decline to varying degrees. Take the window
size of 0.3 s as an example. Benefiting from the complemen-
tarity between the real and imaginary parts of CSI ratio, the
number of motion fragments in MoSeFi can be significantly
reduced, and the FPR and FNR are only slightly increased to
1% and 0.89%, respectively. On the contrary, the serious
fragmentation problem makes the FNR of AR_Alarm "
increase sharply to 7.58%. At the same time, the correlation
coefficient calculated within a short window is difficult to
accurately describe the environment state, resulting in a
sharp increase in the FNR of WiSH P t0 9.62%. In addition,
we found that the size of the window is not as long as possi-
ble. Although a long window improves the probability of
detecting complete motion interval, it also blurs the bound-
aries between static and dynamic states, making the system
performance worse.

Figure 10 shows the motion duration accuracy of dif-
ferent systems. It can be seen that the MDE of MoSeFi
monotonically decreases as the window gets shorter. Since
the new motion indicator effectively reduces the number of
motion fragments, we can directly obtain a complete motion
interval with a higher probability under short-window condi-
tions. As discussed in Subsection 3.3.1, reducing the window
size can weaken the influence of the surrounding data points,
which makes the MDE of our system decrease as the window
shortens. For AR-Alarm‘“" that also uses variance, when the

window length is shortened from 1s to 0.6s, its MDE is
reduced from 1.06 s to 0.63 s. However, excessively shorten-
ing the window will result in severe motion fragmentation,
which prevents the MDE of AR-Alarm‘“® from being fur-
ther reduced. WiSH'“" achieves the best duration accuracy
when the window length is 0.7s, and its MDE declines to
0.43 at the cost of increased FPR and FNR. When the window
size is less than 0.7 s, its MDE gradually increases due to seri-
ous motion fragmentation.

5.2.4. Parameters Analysis

(1) Motion Type. Figure 11 shows the system performance of
different types of motion. In general, MoSeFi is robust to
human motion with different magnitudes and velocities.
Specifically, the system achieved the highest motion detec-
tion accuracy and motion duration accuracy when multiple
body parts move as a whole, such as sitting. Conversely,
when multiple parts of the body move simultaneously but
independently, the FPR and MDE of the system become
larger, such as walking and stepping. Through further
analysis, we find that the increase of the motion complex-
ity makes the raw detection results more fragmented. For
example, walking and stepping contain 40% and 37%
more residual motion fragments than sitting, respectively.
These more motion fragments increase the probability of
false and missed merging, resulting in larger FPR and
MDE. On the other hand, compared with the above
large-scale motion, the CSI fluctuations caused by small-
scale waving are more likely to be overwhelmed by noise,
resulting in the highest FNR.

5.2.5. Threshold of Static/Motion Duration. As shown in
Figures 12(a) and 12(b), both FPR and FNR decrease as
Th, increases. It is because for motion fragments located in
a complete motion, if their durations are greater than Th,,
they are more likely to be merged into one as Th, increases,
rather than being misjudged as multiple independent
motions, so FPR drops. Conversely, when the durations of
these fragments are less than Th,,, they are more likely to
be merged into one as Th, increases, rather than being
removed, so FNR declines. On the other hand, when Th,
becomes larger, more motions are discarded as noise, so that
FPR decreases and FNR increases. For MDE, we find that it
increases with Th, and Th,, as Figure 12(c) shows. In
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FIGURE 13: Impact of average variance threshold. (a) FPR and FNR. (b) MDE.

comparison, Thy has a greater impact on MDE because it
determines whether the fragments near the head or tail of
the true motion interval can be merged into the detection
result. Considering the motion detection and duration accu-
racy comprehensively, we choose Thg as 1s and Th, as 1.2s
in this paper.

5.2.6. Threshold of Average Variance. Figure 13(a) shows the
detection accuracy when « changes from 1 to 10. It can be
seen that FPR decreases and FNR increases with a. This is

reasonable because we discard motion segments with aver-
age variance less than « times Th,, ;,4; in other words, «
determines the minimum average variance of the retained
motion segments. When « gets larger, some true motion seg-
ments with small variance may be erroneously eliminated,
resulting in an increase of FNR. On the contrary, once the
value of « is small, it is impossible to remove all pseudomo-
tion segments with small variance, so that the FPR increases.
Meanwhile, if « is too small, the motion fragments caused by
noise may be mistakenly merged into the real motion
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interval, thereby reducing the accuracy of motion duration,
as Figure 13(b) shows. In this paper, we choose « as 5.

5.2.7. Distance between Human and LOS. To test the sensing
range of MoSeFi, we selected 5 positions on the midperpen-
dicular of LOS, which are 1 to 5 meters away from the mid-
point of LOS. Then, the volunteers completed the above six
actions in these positions, respectively, and the experimental
results are shown in Figure 14. It can be seen that MoSeFi is
very stable when motion occurs within 3m from the LOS;
the FPR, FNR, and MDE are all at a very low level. How-
ever, when the motion occurs beyond 3m, the induced
CSI fluctuation becomes small and the system perfor-
mance degrades. Thus, equipment deployment should be
reasonably designed to ensure that motion occurs within
the effective detection range of the system. In addition,
we find that small-scale motions, such as waving and kick-
ing, are more likely to be missed as distance increased.
The increase in distance further weakens the already small
CSI fluctuations, which makes these small-scale motions
more difficult to detect.

5.2.8. Length of LOS. We changed the distance between the
transmitter and receiver from 1 m to 4m and asked the vol-
unteers to complete the aforementioned six actions within
the effective detection range. Figure 15 shows the detection
results, and it can be seen that the impact of LOS length is
weaker than that of the distance between human and LOS,
and the system can obtain relatively better performance with
middle-length LOS. A short LOS means a large static signal
strength, while a long LOS makes the dynamic reflection
path longer, both of which make the proportion of the
dynamic signal smaller, resulting in a decrease in system
performance. Furthermore, we found that the relationship
between system performance and LOS length is little affected
by motion types; too long or too short LOS is unfavorable to
the detection of all six actions.

5.2.9. Sampling Rate. We gradually reduced the sampling
rate from 200 packets/s to 20 packets/s, and the detection
results are shown in Figure 16. It can be seen that MoSeFi
performs well when the sample rate is above 80 packets/s,
and the motion detection and duration accuracy of the
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system is maintained at a relatively high level. Besides, we
find that the detection accuracy and duration accuracy are
not significantly improved when the sampling rate
increases to 200 packets/s, but the volume of data doubles.
However, when the sample rate drops to 60 packets/s and
below, the system performance gradually deteriorates. On
the one hand, the decreasing of captured information
reduces the motion detection accuracy. On the other hand,
the reduction of the temporal resolution makes the MDE
rise significantly.

5.2.10. Environment Change. In order to verify the system
performance in different environments, we redeployed
MoSeFi in scenario (b) and asked the volunteers to com-
plete the above six actions in three positions which are
shown in Figure 8(b). The experimental results show that
our system can maintain a relatively stable performance
in new scenario, and its FPR, FNR, and MDE are 0.70%,
0.83%, and 0.58s, respectively. When the environment
changes, the subcarrier screening module of our system
can still pick excellent subcarriers and recompute suitable
benchmarks to detect human motion. On the whole, our
system is robust to the changes of environment.

5.3. Motion Sequence Case. The action sequence is an impor-
tant form of human motion in real life; as Figure 8(a) shows,
we designated two paths (D, — D," — D, and E, —
E,' — E,) in scenario (a) and asked the volunteers to com-
plete a series of actions, including standing up, walking,
drinking, walking back, and sitting down, according to the
voice commands, and each motion sequence was completed
twenty times on each path. As discussed in the single motion
case, the performance of AR_Alarm and WiSH is rather
poor under short-window conditions; thus, we only tested
their performance with 1s window for comparison.

In Table 3, we show the system performance. On the
whole, the detection accuracy of MoSeFi remains at a high
level. The FPR and FNR of MoSeFi are 1.00% and 0.90%,
respectively, which are the lowest among the three sys-
tems. Nevertheless, due to the lack of an effective subcar-
rier screening method and motion debris disposal

mechanism, the FPR and FNR of AR-Alarm are 4.70%
and 4.80%, respectively. Compared to the single motion
case, the detection accuracy of WiSH improves slightly.
Through in-depth analysis, we found that the errors of
WiSH are mainly concentrated in waving and kicking in
the case of single motion; however, these small-amplitude
motions are not included here, which makes the FPR
and FNR WiSH drop slightly.

Benefit from the shorter window, the MDE of MoSeFi is
0.75's, which is much smaller than the 1.25s of AR-Alarm.
Although WiSH performs slightly better in terms of the
duration accuracy, its FPR and FNR are obviously larger
than those of MoSeFi. Meanwhile, the RT of WiSH is
3.27s, which is the longest of the three systems. It is obvious
that the real-time performance of the variance-based
method is much better than that of the correlation-based
method.

Note that we have not updated the subcarrier or the
threshold for the medium-length CSI data, and MoSeFi still
achieves satisfactory performance. This verifies that the nice
subcarriers can maintain fine environmental awareness for a
period of time.

5.4. Evaluation of Long-Term Performance. To evaluate the
stability of MoSeFi, we deployed the system in scenario (b)
and collected ten hours of CSI data on a normal working
day. During the data collection, the status of indoor person-
nel was not restricted; they can either stay still or perform
different actions as usual.

Table 4 shows the overall performance of the three sys-
tems. Specifically, the FPR of MoSeFi is 1.71%, and the
values of AR-Alarm and WiSH are 6.61% and 4.96%,
respectively. We note that the FP of MoSeFi is signifi-
cantly less than that of the other two systems. Since the
noise level in the real environment for a long time is more
complicated, the mean variance threshold adopted by
MoSeFi can effectively eliminate the pseudomotion caused
by noise, which is not available in the other two systems.
Meanwhile, both MoSeFi and WiSH have FNRs of
2.54%, which are smaller than AR-Alarm. The nice sub-
carriers are more likely to degrade under long-term
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TaBLE 3: System performance of motion sequence case.
System FPR (%) FNR (%) MDE (s) RT (s)
MoSeFi 1.00 0.90 0.75 0.26
AR-Alarm 4.70 4.80 1.25 0.21
WiSH 291 3.31 0.74 3.27
TABLE 4: System performance for long-term case.
System Time 8:00-10:00 10:00-12:00 12:00-14:00 14:00-16:00 16:00-18:00 Total FPR/FNR (%)
TP 27 11 37 15 25 115
MoSeFi FP 0 0 1 0 1 2 1.71
FN 1 1 0 1 3 2.54
TP 27 12 34 15 25 113
AR-Alarm FP 3 2 1 0 2 8 6.61
FN 1 0 3 1 5 4.24
TP 27 12 36 15 25 115
WiSH Fp 1 0 2 2 1 6 4.96
FN 1 1 3 2.54

conditions, resulting in an increase in the number of
missed detection. These phenomena are consistent with
the conclusions obtained in the previous experimental pro-
cedure. In addition, we find that our system can correctly
capture the movement when a random visitor enters the
room, which indicates that MoSeFi can also be applied
in applications such as intrusion detection.

6. Conclusion

In this paper, we present the design and implementation of
MoSeFi, a device-free and duration estimation robust
human motion sensing system using ubiquitous WiFi signal.
Based on the analysis of Mobius transform, we construct a
novel indicator for motion detection using the shape-
complementary real and imaginary parts of the CSI ratio,
which can significantly reduce the motion duration error
under short-window conditions. Furthermore, we propose
a universal subcarrier screening method based on sensitivity
and similarity and provide an update mechanism to attenu-
ate the impacts of environmental variations. We conduct
detailed experiments in real environments, and the results
show that MoSeFi is lightweight yet efficient. We believe that
this system enriches the practical solutions of passive human
motion detection and facilitates the development of upper-
level applications.
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