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LoRa is an IoT communication technology that realizes ultra-long-distance transmission through spread spectrum modulation.
However, its ultra-long-distance transmission also sacrifices the corresponding rate, and data conflicts are prone to occur when
the number of nodes is large. In this article, we investigate various types of data collisions in LoRa wireless work, most of
which are affected by Spreading Factor (SF) assignment. At present, the distribution of the SF for LoRa in the industry is
mostly based on Min-airtime and Min-distance. In the case of a large number of nodes, the data collision between nodes will
increase sharply. This paper proposes a SF redistribution scheme under limited network resources, in order to improve the
terminal capacity of the LoRa gateway. First, the problem of minimizing the data collision rate without expanding gateway or
network resources is presented. Specifically, the reallocation of SF with increasing number of terminals is studied. Finally,
considering the randomness of the data sent by the terminal, SF redistribution schemes based on deep reinforcement learning
(DRL) are developed. The simulation results show that the collision rate of the proposed SF redistribution scheme is nearly
30% lower than Min-airtime and Min-distance, and its total energy consumption is close to Min-distance. Therefore, the
proposed SF redistribution scheme can effectively improve the gateway capacity of LoRa wireless network.

1. Introduction

In recent years, the Internet of Things industry has devel-
oped rapidly, existing mobile cellular communication tech-
nology cannot meet the communication requirements of
long-distance, low power consumption, and large connec-
tion of IoT node equipment [1, 2]. In this context, low power
wide area network (LPWAN) [3] came into being, which is a
general term for a communication technology suitable for
long distance, low power consumption, low bandwidth,
and multiconnection IoT connections [4]. LPWAN includes
LoRa, NB-IoT [4], RPMA [5, 6], Sigfox [7, 8], LTE-M [9,
10], and other wireless communication technologies [11,
12]. Among them, it can be divided into two categories
according to whether authorization is required. In the unli-
censed frequency band, LoRa has been widely used in the
field of IoT since its invented due to its long transmission

distance and low power consumption. Compared with NB-
IoT, which requires operator authorization, its on-demand
deployment and low deployment cost also make it favored
by many organizations and companies with ad hoc [13] net-
work needs. Especially in scenarios with weak signal, long
transmission distance and low power consumption require-
ments, LoRa has more advantages than other communica-
tion technologies [14].

LoRa [15, 16] achieves super anti-interference and
long-distance transmission through spread spectrum mod-
ulation technology. This technology trades bandwidth for
sensitivity [17] and is used in communication technolo-
gies such as WiFi [18, 19] and Zigbee [20]. LoRa modu-
lation is characterized by maximizing sensitivity, even
approaching the limit of Shannon’s theorem [21]. While
LoRa achieves such long-distance transmission, it also
sacrifices some speed. When the anti-interference ability
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is stronger and the transmission distance is longer, the
amount of data that can be transmitted per unit time is
less. In this process, the main parameter of the SF plays
an important role [22].

At present, the mainstream method for setting the SF is
based on Min-distance and Min-airtime [23]. The two
methods determine the optimal SF selection based on the
optimal selection of distance and transmission time, respec-
tively. Therefore, neither of the two methods considers the
correlation between nodes when the node data is large or
the data sending time is close, so the data conflict will
increase as the number of nodes increases. How to reduce
the data collision rate between LoRa nodes has become a
major concern in this paper.

In this paper, we develop a DRL-based LoRa SF alloca-
tion optimization method to dynamically optimize the SF
allocation of LoRa nodes, thereby reducing the occurrence
of collisions between nodes. To showcase the efficiency, we
compare the proposed DRL-based method with traditional
node feature-based SF assignment methods. Contributions
can be summarized as follows:

(i) We first study the performance characteristics of
nodes under different SFs for the LoRa collision
problem. For different SFs, virtual simulation sce-
narios are built to simulate the characteristics of
transmission under different SFs. Through compar-
ative analysis, it is shown that the optimal rate does
not necessarily have the lowest collision rate in the
selection of the SF

(ii) Aiming at the existing algorithm for selecting SF
based on feature, this paper proposes to consider
the influence of channel environment on SF. An
optimization algorithm based on DRL framework
is proposed. The algorithm considers selecting the
optimal SF by combining the node’s own character-
istics and channel environment information. Con-
sidering that the gateway cannot know whether
there is a collision between nodes, we consider
whether the node is retransmitted to determine
whether the node collides or loses packets. Finally,
we redesign the state and action parameters of the
algorithm

(iii) On the simulation platform, we compare the perfor-
mance of the DRL-based SF optimization algorithm
with the feature-based Min-distance and Min-
airtime algorithms. When the number of nodes
reaches 1000, the optimization algorithm we pro-
pose collides with each other. The rate is reduced
by nearly 30%, and the total energy consumption
is close to the Min-distance

The rest of the paper is organized as follows. Section 2
presents related works. Section 3 provides the problem for-
mulation and system model. Section 4 proposes DQN based
SF allocation. Section 5 elaborates the numerical results, and
finally, Section 6 summarizes the conclusion and future
work.

2. Related Work

At the beginning of the invention of LoRa, the node uses the
pure ALOHA [24] protocol to send data, and the node does
not perform channel detection but sends it directly. In this
way, as the number of terminals increases or the number
of sent packets increases, the probability of packets from
multiple terminals colliding on the channel is greatly
increase. Since the LoRa mechanism is too simple, on the
basis of LoRa, the LoRa Alliance has launched the LoRa-
WAN protocol [25, 26]. In LoRaWAN, a duty cycle is pro-
posed to constrain the node to occupy the channel all the
time, thus avoiding data conflict to a certain extent, but in
the case of a large amount of data, due to the duty cycle,
the data delay will be increased. In the case of a large amount
of data concurrency, its advantages are not obvious. In addi-
tion, LoRaWAN also introduces a CAD [27] mechanism to
reduce the probability of LoRa conflict, but this undoubtedly
increases the power consumption of LoRa. The most impor-
tant thing is that this does not improve the situation of LoRa
nodes crowding the channel and increase the capacity of the
gateway. At present, the Class A mode in LoRaWAN still
uses pure ALOHA. According to calculations, the channel
utilization of the pure ALOHA protocol is only 18.4%, and
most nodes send collisions in the channel. Therefore, how
to improve LoRa to increase its gateway capacity and reduce
the collision rate has become a major research point in the
industry.

To this end, the industry has also done a lot of work and
research on LoRa collision optimization. Edward et al. [28]
expect to increase the capacity of the gateway by introducing
Interleaved Chirp Spreading LoRa- (ICS-LoRa-) based mod-
ulation. In [29], The authors optimize the transmission
parameters of a LoRaWAN system in high density smart city
traffic environment using golden section search and para-
bolic interpolation. Floris et al. [30] used ns-3 to simulate
and analyze the LoRa network. The analysis shows that
increasing gateway density can ameliorate but not eliminate
this effect, as stringent duty cycle requirements for gateways
continue to limit downstream opportunities. Reynders et al.
[31] present a scheme to efficiently optimize the packet error
rate fairness inside a LoRaWAN cell. This is achieved by
optimizing the power and SF for each node while avoiding
near-far problems by allocating distant users to different
channels. In [32], Abdelfadeel et al. present results of a study
of the data rate fairness among nodes within a LoRaWAN
cell. In order to make the rate of each node more relatively
fair, they secondly develop a transmission power control
algorithm to balance the received signal powers from all
nodes regardless of their distances from the gateway for a
fair data extraction. But this algorithm only considers the
case where the set of nodes is close to the network.

As a new intelligent decision-making algorithm, AI has
been widely used in many fields. In network resource sched-
uling, many scholars have also introduced AI for scheduling
and decision optimization. Jiang et al. [33] used reinforce-
ment learning to optimize the throughput and transmission
time interval of NB-IoT. Yang et al. [34] utilize deep neural
network (DNN) to configure optimized NOMA for network
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resource management. The DNN not only greatly improves
the computational efficiency but also improves the summa-
tion rate of the system. In [35], a DQN method is used to
control the Handover (HO) procedure of the User Equip-
ments (UEs) by well capturing the characteristics of wireless
signals interference and network load. Experimental results
show that the proposed scheme can reduce HO rate and
guarantee the system throughput, which is better than the
traditional HO scheme.

In this article, we consider using the reinforcement
learning algorithm to further improve and optimize the
distance-based optimization algorithm and redistribute the
SF of the nodes to reduce the collision rate of the channel
with the growth of nodes or data explosion. Finally, increase
the capacity of channel nodes under a single gateway. In Sec-
tion 3, we will first introduce LoRa’s communication colli-
sion model and the problem formulation will be presented
as follows.

3. System Model and Problem Analysis

3.1. LoRa Communication Model. On the basis of the LoRa
physical layer, the LoRa Alliance released the LoRaWAN
protocol to adapt to the LoRa physical layer. In LoRaWAN
[36], Class A mode must be implemented by default, and it
mainly uses the ALOHA protocol for data transmission
[37]. The basic idea is that each node can send data frames
at any time, and then monitor the channel to see if there is
a conflict. If a conflict occurs, then the node will wait for a
random period of time to retransmit until the retransmis-
sion is successful. The collision process is shown in Figure 1.

In LoRa, there are four main parameters that generally
affect the conflict between data, namely center frequency,
SF, Bandwidth(BW), and Coding Rate(CR). Through rea-
sonable configuration, there can be a variety of mutually
orthogonal combinations to avoid conflicts [38]. The four
parameters are described as follows

(1) CR. The coding rate is the ratio of the useful part of
the data stream. LoRa uses cyclic error correction
coding for forward error detection and error correc-
tion. However, using this method will generate
transmission overhead. The specific overhead is
shown in Table 1

(2) Center Frequency. The frequency in the middle of the
filter passband, in LoRa, the corresponding fre-
quency needs to be set according to laws and regula-
tions. There is a random frequency hopping
mechanism in LoRaWAN. This mechanism is
mainly to deal with the regulations of LoRa duty
cycle, so as to solve the problem of transmitting large
data packets. This mechanism can also be effective in
reducing collisions at certain times

(3) BW. The signal bandwidth is to limit the lower fre-
quency and upper frequency of the signal allowed
to pass through the channel. In LoRa, increasing

the BW can improve the transmission rate of the
payload, but it will also reduce the receiver sensitivity
while reducing the transmission time

(4) SF. LoRa spread spectrum modulation is realized by
representing each bit of data in the payload informa-
tion with multibit chip information. Since different
SFs are orthogonal to each other, the SFs must be
known in advance in a group of transceiver links

The modulation modes of LoRa signals are orthogonal to
each other under different SF and BW combinations, and
data transmission can be performed using Code Division
Multiple Access (CDMA). In the same channel, if the BW
is unchanged, the multichannel orthogonal data can be
transmitted without interfering with each other by changing
the SF. The SF ranges from 5 to 12, and a total of 8 addresses
are used. In LoRaWAN, a total of six addresses are used
from 7 to 12, and the rate corresponding to each multiple
access is also different. The speed will affect its air flight time,
and the air flight time can be calculated by the following for-
mula.

ToA =Nsym ∗
2SF
BW : ð1Þ

ToA is the air time, and Nsym is the number of symbols.
Due to the different modulation parameters, the calculation
of the number of symbols is also different, and the specific
calculation is given in the following formula.

For SF = 5, and SF = 6,

Nsym =Nsympream + 6:25 + 8 + ceil max Nbit , 0ð Þ
4 ∗ SF

� �
,

Nbit = 8 ∗Nbp +NbitCRC − 4 ∗ SF +Nsymheader:

ð2Þ

For other SF,

Nsym =Nsympream + 4:25 + 8 + ceil
max Nbit , 0ð Þ

4 ∗ SF

� �
,

Nbit = 8 ∗Nbp +NbitCRC − 4 ∗ SF + 8 +Nsymhead ,
ð3Þ

When CRC is turned on, NbitCRC = 16, otherwise it is 0.
Nsymhead = 20 in explicit header mode, 0 in recessive header
mode. Nbp represents the byte payload. The air interface
time required for different SFs and different packet lengths
can be calculated through the above calculation formula.
The air time is shown in Figure 2.

If the air time of transmission is longer, it means that the
time of occupying the channel is longer. At this time, if other
nodes in LoRa transmit with the same SF, the data of the two
nodes will interfere with each other, which will cause the
gateway to fail to receive. At this time, the node will retrans-
mit when no response is received. The larger the SF, the
smaller the capacity of the channel and the greater the prob-
ability of collision. How to make a reasonable distribution of
the SF becomes a problem we are concerned about. In the
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next subsection, we will further analysis of the success rate of
data reception by LoRa’s SF.

3.2. Problem Analysis and Description. In LoRa, there are
four main factors that affect the collision of node data,
namely, Frequency Collision, SF Collision, Power Collision,
and Timing Collision. SF is an important parameter of LoRa
communication transmission. The effect of setting different
SFs on collision is particularly obvious. In order to verify
the impact of LoRa nodes using different SFs on the success
rate of network data transmission, this paper uses the
Python simulation simulator LoRaSim to simulate the colli-
sion of LoRa nodes and verify the impact of different SFs on
the success rate of LoRa gateway data reception. Nodes are
randomly distributed within a radius of 2 kilometers with
the gateway as the center. The spreading factor SF ∈ ½7, 8,
9,10,11,12�, which ensures that each node can communicate
with the LoRa gateway normally. The packet sending inter-
val of each node is 5 minutes; the packet load length is 20
bytes; the bandwidth is 125 kHz, and the number of gateway
channels is 1. The total simulation time is 2 hours. Finally,
under different SFs, as the number of nodes increases, the
graph of the successful data reception rate is obtained, as
shown in Figure 3.

In Figure 3, there are differences in the data transmission
success rates corresponding to different SFs under the same
number of nodes, which shows that the low SF has a higher
data transmission success rate, while the high SF has a lower
data transmission success rate. As the number of nodes
increases, the success rate of data transmission is also
affected by the SF. When SF = 12, the number of nodes
exceeds 300; the success rate of data transmission is already

lower than 30%, which seriously affects the reliability of the
network.

Since a higher SF has a stronger anti-interference ability,
the transmission of the same size of data needs to occupy the
channel for a longer time, and the energy consumption is
also higher. Additional energy consumption is also required
for data retransmission due to packet loss or data collision.
Figure 4 shows the energy consumption of data transmission
with different SFs. Therefore, when the data is reachable, a
lower SF is generally preferred for transmission.

The optimal SF transmission has its advantages, but in
the case of a large number of nodes, if many nodes select
the optimal SF, the collision rate of the optimal SF will
increase. Due to the orthogonal relationship between the
SFs, the LoRa gateway can receive a variety of node data with
different SFs or bandwidths at the same time. The communi-
cation multiple access that LoRa can be expressed is as fol-
lows:

Nchannel =NSF∗〠NBW

BW ∈ 62:5,125,250,500½ �
ð4Þ

In the actual deployment situation, letting all nodes
select the optimal SF may increase the collision rate instead.
With the help of LoRa’s feature that different SFs can be
demodulated at the same time, how to allocate SFs more rea-
sonably, so as to maximize the utilization of network
resources and reduce the collision rate of nodes can be
described as follows:

NodeSFi = argmin〠 β ∗Ncollision
i + γ ∗N lost

i

� �
ð5Þ

The formula describes that the optimal SF allocated
should be the smallest collision rate and no packet loss. In
Formula (5), i ∈M, M is the number of nodes; β and γ are
reduction coefficients. In order to prevent packet loss as
much as possible, gamma weights should be larger.
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Figure 1: The collision process of the pure ALOHA protocol.

Table 1: CR Parameters.

CR Cyclic coding rate Overhead ratio

1 4/5 1.25

2 4/6 1.5

3 4/7 1.75

4 4/8 2
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4. SF Allocation Based on DRL

A reinforcement learning algorithm is an AI algorithm that
optimizes itself according to changes in the environment.
It is mainly composed of agents and environments. The
agent observes some state parameters required by itself from
the environment, and gives corresponding action parameters
according to the state parameters. At present, reinforcement

learning algorithms have shined in many fields, such as
game AI, autonomous driving, etc.

In order to optimize the distribution of the SF, in this sec-
tion, the reinforcement learning algorithm combined with the
distance optimization algorithm of LoRa is proposed to be
embedded in the LoRa network server. Figure 5 shows a sche-
matic diagram of the Deep Reinforcement Learning (DRL)
algorithm embedded in the network server.
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In Figure 5, the AI algorithm is designed to be embedded
in the network server, and the LoRa gateway performs the
forwarding function of the node. The LoRa node sends
uplink data based on the ALOHA mechanism. Only when
the data does not collide in the channel can the LoRa gate-
way successfully receive the data sent by the node (Data)
and forward it to the network server, which also includes
the channel environment information (Channel INF); after
the network server receives the data, it will parse it; through
the environment information recorded by each node
(whether retransmission occurs, sending time, etc.), it deter-
mines if there is a collision between nodes. The AI algorithm
will give the corresponding adjustment strategy according to
the node information and channel information. The strategy

will be forwarded through the gateway, and the gateway will
send the MAC command when the node’s receiving window
is opened, so as to adjust the channel parameter settings of
each node to maximize the use of each channel resources
and reduce the collision rate of data.

4.1. Deep Reinforcement Learning Algorithm Model. The
deep reinforcement learning algorithm plans to use the Deep
Q Network (DQN) algorithm [39]. The DQN algorithm is a
method of approximating the value function of Q-learning
through a neural network [40]. Q-learning is a model-free
reinforcement learning technique proposed by Watkins in
1989. For a given environmental state, it can have relatively
good operational expectations without the need for an envi-
ronmental model. At the same time, it can handle random
transitions and reward issues without adjustment. It has
been shown that, for any finite MDP, Q-learning will even-
tually find an optimal policy, i.e., starting from the current
state, the expected value of the total return over all successive
steps is the maximum achievable [41]. Before learning
begins, Q is initialized to a possibly arbitrary fixed value.
Then, at each time t, the agent chooses an action at , gets a
reward Rt and enters a new state St+1, and the Q value is
updated. Its core is the value function iteration process,
namely,

Q st , atð Þ⟵Q st , atð Þ + α ·Ut+1Ut+1
= rt + γ max

π
Q st+1, atð Þ −Q st , atð Þ: ð6Þ

However, when encountering a large number of state
spaces or a continuous state, Q-learning will face the disaster
of dimensionality or the difficulty of storing rough retrieval,
so a neural network is introduced to approximate the value
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function [42, 43]. After the introduction of the neural net-
work, the whole process becomes how to determine θ to
approximate the value function. In this paper, gradient
descent is used to minimize the loss function to debug the
network weight θ. At this time, the Loss Function is defined
as follows:

Li θið Þ = E s,a,r,sið Þ~U Dð Þ r + γ max
a′

Q s′, ai ; θ−i
� �

−Q s, a ; θið Þ
� �2

" #
:

ð7Þ

In the given formula, we use two neural networks; one is
called the Q neural network, and the other is called the target
neural network. The purpose of introducing the target neu-
ral network is to reduce the correlation between the current
Q value and the target Q value, thereby improving the stabil-
ity of the algorithm. Specifically, θ−i is the target network
parameter of the i iteration, and θi is the current Q neural
network parameter.

In addition, experience playback is also introduced to
store the past state, and the method of random sampling
from the experience pool is adopted to update the neural
network parameters, thereby breaking the correlation
between data and improving the utilization of data. The
learning process of DQN is shown in Figure 6.

4.2. DQN Parameters Design. In this section, we will intro-
duce how DQN integrates and interacts with LoRa’s network
server, including some specific parameters of the environment
state as well as the action parameters generated by DQN.

4.2.1. State. The LoRa network server receives the packet
data in the LoRaWAN format from the gateway. The data
packet includes the node ID, packet length, transmission
interval, SF, encoding rate, and bandwidth. Each node
has a unique ID number. From the node number informa-
tion, the network server can know the location of each
node and the distance dis from the forwarding gateway.
At the same time, it is also possible to know whether
retransmission has occurred from the information of the
data packet. If the data packet is retransmitted, it means
that the data packet has a data collision or is lost. Then,
the state of the environment can be represented as a 7-
dimensional vector.

snodet = sid , sdis, ssf , sbw, slen, sinterval , scol
È É

: ð8Þ

sdis represents the distance between the gateway and
the node device. This data is added to the network server
when the node is initialized to join the network for the
first time. The SF is an integer of 7-12, and the BW
optional frequency bands are 125, 250, and 500.

 (st, at, rt, st + 1)
Replay memory

Copy data every
 C time step

Online network Target network

LoRa Environment

s a
Current state

Input (st) Input (st + 1)

DQN Loss function

Gradient descent

 (r, st) 

 (rt)

Q (s, a ; θ) maxa`Q (st + 1, at + 1 ; θ–)

argmaxaQ (s, a ; θ)

(a)

Figure 6: DQN algorithm framework.
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4.2.2. Action. The action parameter consists of two parts,
namely, the selection of the SF and the selection of the band-
width. There are a total of 18 combinations of the two to
choose from. So the output of the neural network is an 18-
dimensional vector, and the one with the largest value is
selected from the 18-dimensional vector.

at = argmax asf 1,bw1, asf 1,bw2, asf 1,bw3,⋯asf 12,bw3
È É

: ð9Þ

4.2.3. Reward. In reinforcement learning, the agent’s goal is
formally represented as a special signal, called a reward,
which is passed to the agent through the environment. At
each instant, the reward is a single scalar value. In this paper,
the expected maximum goals are the collision rate between
nodes and the packet loss rate of nodes. The reward function
in this paper is set as follows:

rti = −
Ncol +N lost
1 +Nrec

−
f lost + f col

1 +Nrecð Þ/ 1 +Ncol +N lostð Þ , ð10Þ

where

f lost/col =
1, either collision or packet lost,
0, neither collision nor packet lost:

(
ð11Þ

The goal of RL is to maximize the cumulative discounted
reward functions by finding an optimal policy. We then
define long-term reward Vi as the accumulated and dis-

counted reward.

Vi = 〠
T−1

t=0
γtrti : ð12Þ

Initialize LoRa node based on LoRaWAN
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q− with weights θ− = θ
For episode =1,M do do

Initialize and choose state
Ssf ,bw from LoRa network server(MAC)
For t = 1, T do
With probability ε select a random action at otherwise select at = argmaxaQðst , a ; θÞ execute action at in emulator
Observe reward rt and next state st+1
Store experience ðst , at , rt , st+1Þ⟶D
D⟶ ðsi, ai, ri, si+1Þði∈BÞ
If episode terminates at step j +1 then

yj = r j
Else

yj = r j + γa′Q
−ðsj+1, a′ ; θ−Þ

End if
Perform a gradient descent step on ðyj −Qðsj, aj ; θÞÞ2 with respect to the network parameters θ
If batch size >=memory capacity then

Update Q− ⟵Q
End if

End for
End for

Algorithm 1: Procedure of deep Q network.

Table 2: Environmental parameters.

Parameter Value

Working channel (MHz) 471.5

Max BS receive 8

γ 2.08

d0 40

Lpl 127.41

Bandwidth(kHz) 125, 250, 500

SF 7, 8, 9, 10, 11, 12

C/R 4/5

Table 3: DQN algorithm parameters.

Parameter Value

Greedy policy ε 0.9

Batch size 256

Reward discount γ 0.9

Target update frequency 100

Memory capacity 5000

Actions 18

States 7
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γ is the reduction coefficient, which belongs to ½0, 1�.
When the reduction coefficient is 0, it means that only cur-
rent interests are considered. When the reduction coefficient
is larger, it means that longer-term interests are considered.

At the end of this section, we present the procedure of
the DQN-based SF allocation optimization algorithm. The
algorithm will be shown in Algorithm 1.

5. Performance Evaluation

In this section, we will first introduce the LoRa network
environment and the settings of related parameters, and
secondly, we will optimize the algorithm model for train-
ing based on the LoRaSim simulator. Finally, we will give
a performance comparison of LoRa based on different
algorithms.

5.1. Parameter Settings. We will use the Python-based LoRa
simulator LoRaSim to simulate the LoRa network communi-
cation environment. In LoRaSim, the process of communi-
cation between multiple nodes and gateways is simulated
through the SimPy-based discrete event library, and each
node and gateway is maintained by a thread. When each
thread is simulating sending packets, a collision function will
be used to simulate whether a collision occurs. The settings
of the collision function include SF collision, frequency col-
lision, and time collision. In order to be as close to the real
communication environment as possible, the parameters of
the network environment will be set according to the LoRa-
WAN protocol. The specific environment parameter settings
are shown in Table 2.

For the neural network model, considering that the
number of states and actions are not large, the two neural
network models in DQN adopt a three-layer network model

with 50 neurons in each layer. Other algorithm parameters
are shown in Table 3.

In the training simulation environment of the algorithm
model, we set 1500 nodes and initialize the default allocation
of SF = 7; the data volume of each node is 50 bytes; the send-
ing interval is 5 minutes, and the total simulation time is 2
hours. In order to prevent overfitting, the number of rounds
is taken as the first 10000. Three different learning rates are
set, and the training curve of the algorithm is presented in
Figure 7.

As shown in Figure 7, when the learning rate is 0.001
and 0.01, the training requires a large number of rounds
to achieve a good effect, and after the algorithm conver-
gence, its collision rate is still higher than that of the algo-
rithm with a learning rate of 0.1. Therefore, we choose a
learning rate of 0.1.

5.2. Algorithm Performance and Comparison. In the LoRa
simulation experiment in this article, we will select two
widely used algorithms for comparison, namely, Min-
distance and Min-airtime. The Min-distance allocation
strategy allocates the SF according to the range of the RSSI
value received by the gateway. A low RSSI value corre-
sponds to a high SF, and a high RSSI value corresponds
to a low SF. This method uses a low SF to improve the
success rate of data transmission but does not fully con-
sider the orthogonality between SFs. It assigns almost all
nodes to SF = 7 and SF = 8. The Min-airtime allocation
strategy is to adaptively select the minimum combination
of air transmission time corresponding to bandwidth, SF
and coding rate according to the situation of the node
itself. Compared with Min-distance, this deployment has
better flexibility.
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Figure 7: Different learning rate of training DQN.
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In this experiment, the number of nodes in the range
from 100 to 1000 will be selected, and the value will be taken
every 100 nodes. The node location information is initialized
and fixed when entering the network. The transmission time
interval is set to 5 minutes, and the packet length is set to 50
bytes. The total simulation time is 12 hours. The DQN algo-
rithm proposed in this paper and the comparison of the two
algorithms are shown in Figure 8.

In Figure 8, the DQN algorithm redistributes the SF, and
as the number of nodes increases, the data collision rate is
significantly reduced compared with the other two algo-
rithms. At 1000 nodes, its collision rate is reduced by 24%.
During the same period, node collisions tend to be clustered.
If a large number of collisions occur in the short-term SF = 7
, due to the need for retransmission, the collision of data
cannot be alleviated in the short-term. And DQN considers
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Figure 8: LoRa collision rate comparison.
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using more spreading factors, including some SF options
with poor rate, in order to reduce the collision explosion
for a period of time. Therefore, compared with the Min-
distance and Min-airtime methods, when there are more
nodes, DQN can play a more significant role in reducing
collisions.

In Figure 9, the energy consumption comparison chart
under the three methods is shown. Due to the assignment
of a higher SF, a larger energy consumption is required to
complete the data transmission. Therefore, its energy con-
sumption is slightly higher than that of Min-airtime, but it
is basically the same as that of Min-distance. SF is
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proportional to energy consumption. Although DQN
reduces the collision of nodes, from the perspective of energy
consumption, energy consumption increases due to the allo-
cation of higher SF.

DQN also brings a certain degree of packet loss after
adjusting the SF. The packet loss problem is due to the
assignment of unreasonable SFs to nodes that suffer from
strong interference. Min-airtime and Min-distance allocate
the SF by calculating in advance to ensure that the node will
not lose packets when sending data, and then select the opti-
mal SF. It can also be found in the simulation experiment
that the packet loss rate of the two methods is 0. DQN will
search for better SF when assigning SF. If an unreasonable
SF is selected, packet loss will occur. In the DQN algorithm,
the packet loss rate of a node has nothing to do with the
number of nodes but is related to the DQN learning explora-
tion rate. The packet loss phenomenon generally occurs in
the stage of DQN learning the environment. As the algo-
rithm observes and learns from the environment, the total
packet loss rate is not more than 3%. The packet loss rate
comparison chart is shown in Figure 10.

In Figure 11, we give the success rate of the gateway
receiving data under different methods. The main factor that
affects the success rate of Min-airtime and Min-distance data
receiving is the conflict between data. In DQN, the algorithm
uses the SF. The adjustment has resulted in a certain degree
of packet loss but greatly reduced the conflict between data.
With the increasing number of nodes, DQN data reception
success rate is better than Min-airtime and Min-distance.
In the case of 1000 nodes, the data reception success rate
of the DQN algorithm is 27% higher than that of Min-
airtime and 28% higher than that of Min-distance.

6. Conclusion

Aiming at the problem that LoRa is prone to data collision in
large-scale node scenarios, this paper proposes an optimiza-
tion algorithm for LoRa SF allocation based on deep rein-
forcement learning. By analyzing the performance of
different LoRa SF and the impact on the collision rate, it is
found that the collision between nodes can be effectively
reduced by reasonably configuring the SF of LoRa nodes.
We developed a LoRa SF allocation optimization algorithm
based on the DQN algorithm. According to the analysis of
the LoRa SF, the environmental state information that has
a major impact on the collision rate was selected, and the
action information was combined and configured. The sim-
ulation results show that as the number of nodes increases,
the algorithm we developed can effectively reduce the data
collision rate between LoRa nodes, and the energy consump-
tion is close to Min-distance.

Due to exploration characteristics of the DRL algorithm,
a small part of the packet loss phenomenon will occur in
LoRa nodes. In the future, we will expect to further optimize
the LoRa packet loss situation. And with the maturity of
satellite-based cooperative communication, the optimization
for joining multimode communication will also become a
research direction. This kind of multiobjective optimization
is very challenging and should be solved in the future.
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