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As a high-precision gravity measuring device, a marine atomic gravimeter is highly sensitive to vibration signals. Accurate
measurement and analysis of vibration signal is the primary condition to realize vibration compensation and vibration
suppression. Denoising plays a crucial role in the processing of these vibration signals. The vibration signals of a marine
gravimeter contain numerous nonlinear and nonstationary components. In this paper, a vibration signal denoising method of
marine atomic gravimeter based on improved variational mode decomposition (VMD) was put forward to effectively suppress
the noise. An improved genetic particle swarm optimization (GPSO) was first adopted for the parametric optimization of
VMD by taking minimum permutation entropy (PE) as fitness function and adaptively determining the optimal parameters of
VMD. PE was then utilized to calculate the proportion of noise-containing components in the intrinsic mode function (IMF)
components obtained by VMD. The components were classified into noise and signal components by searching for the
mutation points of two adjacent IMF permutation entropies. On this basis, noise components were denoised by Savitzky-Golay
(SG) filter. In the end, the denoised components were reconstructed with the signal components to generate denoised vibration
signals. To verify the effectiveness, the proposed method was applied in denoising, simulated and measured vibration signals of
a marine atomic gravimeter, and compared with Daubechies (db) wavelet, Symlets (sym) wavelet, and empirical mode
decomposition (EMD). The results showed that the proposed method could effectively remove the noise from nonlinear
vibration signals and retain the authentic and useful information, so that it was able to provide the supporting data for gravity
compensation of marine atomic gravimeter.

1. Introduction

As a high-precision absolute gravimeter, an atomic gravime-
ter may be applied in inertial navigation and earth gravity
field measurement [1]. In terms of marine measurement,
Bidel et al. [2] employed an atomic gravimeter in marine
gravity measurement for the first time. An atomic gravime-
ter was attached to a gyroscope stabilized platform, so that
it could always measure the actual virtual component of
gravity field regardless of waves and sways. The platform
overcame effectively the poor verticality of a ship-borne
atomic gravimeter in measurement. Based on an inertial sta-
bilized platform, Cheng et al. [3] conducted an absolute

measurement experiment with a ship-borne atomic gravi-
meter when the ship was moored, and Li et al. [4] performed
a further lake test of an atomic gravimeter in absolute gravity
measurement.

During measurement, an atomic gravimeter is severely
affected by the vibration of Raman retroreflection mirror
since its measurement precision and reliability are highly
restricted by vibration noise. For this reason, vibration noise
isolation and attenuation are crucial to obtaining accurate
atomic interference phase and realizing accurate gravity field
information detection. In order to guarantee the measure-
ment precision of an atomic gravity, vibration isolation tech-
niques [5, 6] and vibration compensation methods [7–9] are
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often employed for vibration noise suppression. The noise in
the marine environment is very complex and vulnerable to
impulse noise, so it is difficult to process the signal [10].
In the structure of a ship, noise is mainly caused by the
vibration of main engine, diesel engine, main propulsion
system, main propeller, and other devices. The noise
caused by crew activities intermittently is also coupled into
the signals of main vibration noise. These vibration signals
are nonlinear and nonstationary [11–14]. For the purpose
of vibration noise suppression in measurement with an
atomic gravimeter, accurate measurement and analysis of
vibration signals lays a basis for vibration compensation
and suppression. Normally, an accelerometer is utilized
to gather vibration signals, but these vibration signals are
inevitably mingled with ambient noise and circuit noise
in the process. Denoising analysis must be therefore con-
ducted with the gathered vibration data to extract the
actual vibration information of vibration sources, so as to
provide the reliable data for vibration isolation design
and vibration compensation [15].

Wavelet transform denoising is a denoising method
suitable for nonstationary signals. It has been widely
applied in engineering, but its final effect is affected by
the selection of threshold and wavelet basis function
[16]. In 1998, Huang et al. put forth an analysis method
for nonlinear and nonstationary signals based on Hilbert-
Huang transform, that is, empirical mode decomposition
(EMD), which could adaptively decompose a signal into
a number of intrinsic mode functions (IMFs) with actual
physical implications. The method had been widely
applied in denoising nonlinear and nonstationary signals.
Kopsinis and McLaughlin combined wavelet decomposi-
tion with EMD to denoise signals and used different
thresholds for IMFs in filtering and reconstruction to real-
ize signal denoising [17]. Rezaee and Osguei [18] made an
improvement to EMD by introducing a new parameter to
obtain a new local mean. In this way, they enhanced the
precision and efficiency of EMD and effectively applied it
in the analysis of vibration signals. Nevertheless, the appli-
cation of EMD was also troubled by end effect and mode
mixing especially when the signal to noise ratio (SNR) was
low. In order to resolve this problem, some improvements
of EMD have been explored including ensemble empirical
mode decomposition (EEMD), improved complete ensem-
ble empirical mode decomposition (ICEEMD), and partial
ensemble empirical mode decomposition (PEEMD) [16,
19, 20]. Nevertheless, these methods can inhibit mode
mixing to some extent but intrinsically extract local extre-
mum and interpolate envelopes. They are still empirical
and lack a solid mathematic basis.

In order to effectively inhibit the mode mixing of
EMD, Dragomiretski and Zosso [21] put forward varia-
tional mode decomposition (VMD) in 2014. Based on
the three-dimensional variational constraint theory, this
algorithm estimated multiple modes simultaneously by
virtue of nonrecursion and improved the computational
efficiency while guaranteeing the integrity of features.
Hence, it could satisfactorily resist noise and reduce
mode mixing. With its solid mathematic basis for the

decomposition of nonstationary signals, VMD has been
applied in earthquake time-frequency analysis, signal fil-
ter denoising, and ground vibration attenuation, which
is a sufficient proof of its effectiveness and superiority
in signal decomposition [22–24]. Nevertheless, number
of decomposed modes K and penalty term α must be
artificially set in the VMD of signals. If the value of K
is set too high, overdecomposition may be caused to
generate false components. If it is set too low, under
decomposition occurs and results in the mixing of
modes close to frequency. Moreover, the penalty factor
α also affects the extraction of single-component modes.
If it is set too large, the bandwidth will be narrower for
single modes, causing to intercept the effective frequency
components outside bandwidth. If it is set too small, the
bandwidth will be wider, and the two adjacent modes
will share the center frequency and result in information
redundancy [25, 26].

In order to adaptively decompose signals, some methods
have been developed to determine the K value based on kur-
tosis [27] and energy factor [28]. In these methods, only the
number of decomposed modes K is optimized while
the penalty factor α is ignored. Therefore, optimal decompo-
sition cannot be achieved with these methods. Along with
the emergence of intelligent optimization algorithms,
attempts have been made to apply some optimization algo-
rithms in the optimization of VMD parameters, and satisfy-
ing results have been obtained [24, 29, 30]. Zhou et al. [31]
put forward the particle swarm optimization (PSO) to opti-
mize the VMD parameters. In this method, they used mean
permutation entropy (MPE) as its fitness function and deter-
mined the optimal combination of K and α by searching for
the minimum of the fitness function. It was an efficient
search algorithm because of its fast convergence while
requiring the setting of fewer parameters. Nevertheless, the
PSO is troubled by premature convergence and faces slower
convergence in the late stage since population diversity dis-
appears in the searched space. Meanwhile, it cannot be fur-
ther optimized after reaching a certain precision of
convergence, so that its final precision is not good. Based
on genetic algorithm (GA), Kumar et al. took kernel-based
mutual information (KEMI) as fitness function to find out
the optimal parameters K and α of VMD [29]. The GA algo-
rithm has strong global search capability and avoids local
optimum, but it may be easily affected by such problems as
premature convergence, numerous computations, slow con-
vergence, and poor stability.

To solve the above problems, a vibration signal denois-
ing method combining improved VMD parameter optimi-
zation algorithm and Savitzky-Golay (SG) filter is
proposed in this paper. Firstly, the improved genetic parti-
cle swarm optimization (GPSO) is applied to VMD, and
the permutation entropy (PE) is used as the fitness func-
tion to optimize the VMD parameters and decompose
the noisy vibration signal. Secondly, the noise proportion
in IMF is calculated by PE, and the IMF component is
divided into noise component and the signal component.
SG filter was applied for denoising noisy components.
Finally, the denoised component and signal component
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are reconstructed to obtain the denoised vibration signal.
The method is applied to the analysis of vibration simula-
tion signals and measured signals.

2. Theoretical Background

2.1. Variational Mode Decomposition. As for the structural
variation of signals in VMD,Wiener filter is introduced to solve
variation by virtue of iterative computation. Each input signal is
decomposed into K IMFs with different center frequencies ωk.
The variational model is correspondingly described by
Equation (1).
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where fukg = fu1,⋯,ukg is K IMF components after decom-
position, fωkg = fω1,⋯,ωkg is the center frequency of each
component, δðtÞ is the unit pulse function, j is the imaginary
unit, ∗ is the convolution operation, and ∂t is the partial deriv-
ative with respect to t. Lagrangian multiplier λ and secondary
penalty term α are introduced to obtain the optimal solution of
constrained variation as follows:
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The alternation ofmultiplication operators is conducted to
iteratively update uk, ωk, λ and obtain the optimal mode com-
ponent uk, center frequency ωk, and Lagrangian multiplier λ.

ûn+1k ωð Þ = f̂ ωð Þ −∑i≠kûi ωð Þ + bλ ωð Þ/2
1 + 2α ω − ωkð Þ2 , ð3Þ
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where ∧ is the Fourier transform, τ is the fidelity coefficient,
and n is the iteration times. Iteration is constantly updated
but halted when relative error is less than convergence preci-
sion. The decomposition result uk is eventually outputted.
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2.2. GPSO Optimized VMD. The effect of VMD depends sig-
nificantly on the number of decomposed modes K and
penalty term α. Considering their limitations in VMD,
GA and PSO are combined in this paper. In this way,
genetic computation is adopted to obtain the optimal solu-
tion of PSO. Under specific conditions, genetic operations
including reproduction, crossover, and mutation are carried
out for particles and their displacement rate, so that the
particles can be alienated from local optimal to obtain the
global optimal solution. The GPSO has quicker convergence
and better grouping quality than traditional PSO. The com-
bined algorithm makes full use of the advantages of both
GA and PSO, so as to guarantee the quick convergence to
global optimal solution. The process flow is presented in
Figure 1. The specific steps are given as follows:

(1) Randomly initialize the particles in a population and set
their corresponding parameters. Generate n particles
randomly with Xi = hpi, viiði = 1, 2,⋯,nÞ, where pi
and viare the geometrical location and velocity vector.
So the initial generation of particle swarm t = 0 is
identified as

Ye s

Input vibration
signal

Initialize and set parameters. Initial position and
velocity of randomly generated particles

Choose a random combination K and 𝛼 as the initial
parameter setting

Calculate the fitness value of each particle (PE), and
find out the individual optimal fitness value and the

global optimal fitness value

Updates the speed and position of each particle

Genetic operation, crossover and mutation

Calculate the fitness value and update the global optimal
solution and local optimal solution

Update the optimization parameter [K, 𝛼]

No

T = T+1

Does the current iteration number T
satisfy the termination condition?

Output the optimization parameter[K, 𝛼]

Figure 1: Process flow of VMD parametric optimization by GPSO.
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X 0ð Þ = X1 0ð Þ, X2 0ð Þ,⋯,Xn 0ð Þð Þ
= p1 0ð Þ, v1 0ð Þh i, p2 0ð Þ, v2 0ð Þh i,⋯, pn 0ð Þ, vn 0ð Þh ið Þ:

ð7Þ

(2) VMD Decomposition. Calculate the fitness of individ-
uals in the initial population, and select the
individual’s optimal value PpbðtÞ and the global optimal
value PgbðtÞ in the particle swarm. In this paper, PE is
taken as the fitness function, and minimum PE is
employed to determine optimal solution. By calculating
the fitness function, the complexity of the signal is
obtained from the PE value. The more complex the sig-
nal is, the greater the calculated PE value is, vice versa.
After the vibration signal is decomposed by VMD, if
there are many noise components included in the
IMF component, the higher the complexity of the signal
is, the greater the PE value is. If a few noise components
are included in the IMF component, the stronger the
regularity of the signal, the simpler the signal, and the
lower the PE value.

(3) Update the position and velocity of each particle. For
each particle XiðtÞ = hpiðtÞ, viðtÞi, we let

pi t + 1ð Þ = pi tð Þ + vi t + 1ð Þ, ð8Þ

vi t + 1ð Þ = C1vi tð Þ + C2r1 0, 1ð Þ Ppb tð Þ − Pi tð Þ
� �

+ C3r2 0, 1ð Þ Pgb tð Þ − Pi tð Þ
� �

,
ð9Þ

where r1ð0, 1Þ and r2ð0, 1Þ are the random numbers in (0, 1),
C1 is the inertia weight, and C2 and C3 are the learning fac-
tors. Therefore, the t + 1th generation of particle swarm is
formed as follows:

X t + 1ð Þ = X1 t + 1ð Þ, X2 t + 1ð Þ,⋯,Xn t + 1ð Þð Þ
= p1 t + 1ð Þ, v1 t + 1ð Þh i, p2 t + 1ð Þ, v2 t + 1ð Þh i,⋯, pn t + 1ð Þ, vn t + 1ð Þh ið Þ:

ð10Þ

Larger inertia weight helps get out of local minimum
point and facilitates global search, while smaller inertia
weight is conductive to precise local search in the current
region of search and helpful to the convergence of algorithm.
For this reason, a linearly changing weight can be employed.
An inertia weight decreases linearly from the maximum
value Cmax to the minimum value Cmin. It varies with the
iteration times of the algorithm as follows:

C1 = Cmax −
t ∗ Cmax − Cminð Þ

tmax
, ð11Þ

where t is the current iteration steps, tmax is the maximum
iteration steps, and Cmax and Cmin are the maximum and
minimum inertia weights, respectively, which are set to 1.2
and 0.6 in this paper.

Signal-dominated IMFs Noise-dominated IMFs

Reconstruction

< l

Input original signal

Use GPSO to decompose
the original signal

Calculate the PE value of
each IMF

>= l
Find the mutation point IMFl

of PE value

Savitzky-Golay filter
denosing

Denoised dignal

Figure 2: Process flow of the proposed denoising method.
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(4) Crossover Operation. Apply a crossover operator to a
population, and switch some chromosomes in each
selected pair of individuals at a probability to gener-
ate new individuals. The crossover probability is set
to 0.8 in this paper.

(5) Mutation Operation. Apply a mutation operator to
the population. Change any or some genes of the
selected individuals to other allele(s) at a probability.
For a population PðtÞ, selection, crossover, and
mutation operations are conducted to obtain its
next-generation population Pðt + 1Þ, whose fitness
is calculated. The fitness is then used for sequencing.
These genetic operations will be repeated. The cross-
over probability is set to 0.3 in this paper.

(6) Recalculate the fitness of particles in the new popula-
tion, update the optimal solution (PpbðtÞ and GgbðtÞ)
of the population based on the fitness, and calculate
the optimal particles XpbðtÞ = hPpbðtÞ, vpbðtÞi that
have been found so far for each particle i. Calculate
the optimal particles XgbðtÞ = hPgbðtÞ, vgbðtÞi that
have been found so far for the current population
XðtÞ.

(7) Determine whether the conditions for the end of
iteration are satisfied. If not, return to Step 3.

2.3. Fitness Function. When the GPSO is employed to opti-
mize the VMD parameters, a fitness function must be deter-

mined to evaluate its optimization results. PE is a mean
entropy parameter to measure the complexity of one-
dimensional time series, which can be used to detect
dynamic mutation and time series randomness [32]. Phase
space reconstruction is carried out for a set of time series
fXðiÞ, i = 1, 2,⋯,Ng to obtain a matrix Y:

Y =

x 1ð Þ x 1 + τð Þ ⋯ x 1 + d − 1ð Þτð Þ
x 2ð Þ x 2 + τð Þ ⋯ x 2 + d − 1ð Þτð Þ
x jð Þ x j + τð Þ ⋯ x j + d − 1ð Þτð Þ
⋮ ⋮ ⋮

x Kð Þ x K + τð Þ ⋯ x K + d − 1ð Þτð Þ

0
BBBBBBBB@

1
CCCCCCCCA
, j = 1, 2,⋯, K ,

ð12Þ

where d is the embedding dimensions, τ is the delay time,
K is the number of reconstructed components, and xðjÞ is
the components in the Jth column of the reconstruction
matrix. The elements in each column of the reconstruction
matrix Y are reorganized in ascending order, so that a
group of symbol sequence SðlÞ = fj1, j2,⋯,jdg can be
obtained for each column of the matrix Y. The occurrence
probability of each symbol sequence P1, P2,⋯, Pk can be
calculated. At this time, the PE Hp of K different symbol
sequences for the time series XðiÞ can be defined in the
form of Shannon entropy as HpðdÞ = −∑k

j=1Pj ln ðPjÞ.
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Figure 3: Time-frequency waveform of each subsignal in simulation signals.
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In the above definition, the value of Hp represents how
time series is stochastic. A smaller value implies simpler time
series, while a larger value leads to more complex and sto-
chastic time series. Hence, minimum PE is taken as a fitness
function in this paper and then solved to determine optimal
decomposition parameters.

Time (s)

–6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–4
–2

0
2
4
6

x

0 50 100 150 200 250 300 350 400
Frequency (Hz)

0

1

A
 (m

/s
2 )

A
 (m

/s
2 )

0.2
0.4
0.6
0.8

1.2

x1+x2+x3+x4
x

x1+x2+x3+x4
x

Figure 4: Time-frequency waveform of simulation signals.
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Table 1: Comparison of optimization results.

Method Best parameter (α/K) Time (s)

GA-VMD 2077.6/5.5 2262

PSO-VMD 2359.8/4.4 1805

GPSO-VMD 2219.4/5.1 1627
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2.4. Savitzky-Golay Filter. SG filter, a method put forth by
Savitzky and Golay, is widely applied in denoising the nonsta-
tionary signals containing non-Gaussian noise [33]. In the
method, univariate P-order polynomials are adopted to fit
the fixed length neighborhood of each data point in the
selected data. Least squares criterion is followed to determine
the polynomial coefficients by minimizing fitting error, so as
to obtain the optimal fitted value of the data point, which is
the value obtained after denoising. In this way, signals are
denoised. At the time of denoising, the SG filter method can
effectively retain the variation information of signals.

min 〠
m

j=−m
Y j − yj
	 
2

,

s:t: Yi = c0 + c1i + c2i
2+⋯+cpip:

ð13Þ

3. The Proposed Vibration Signal
Denoising Method

In this paper, a vibration signal denoising method combin-
ing improved VMD parameter optimization algorithm and
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1 1.5 2 2.5 3 3.5 4 4.5 5
IMFs

0.69

0.6905

0.691

0.6915

0.692

0.6925

0.693

0.6935

PE

X 1
Y 0.69161

X 2
Y 0.69315

X 3
Y 0.69044

X 4
Y 0.69296

X 5
Y 0.69278

Figure 7: PE of each IMF component.

7Wireless Communications and Mobile Computing



SG filter is proposed. This method adopts the improved heu-
ristic method GPSO and takes PE as the fitness function to
automatically determine the number K of modal compo-
nents and the penalty factor α of VMD. The optimal
parameters K and α are used to perform the VMD of
noise-containing vibration signals and obtain a number of
IMFs. Subsequently, PE is employed to calculate the portion
of noise in decomposed signal components. The compo-
nents are classified into noise and signal components by
searching for the mutation points of two adjacent IMF per-
mutation entropies. Noise components are denoised by vir-
tue of SG filter. In the end, the denoised components are
reconstructed with signal components to eventually obtain
denoised vibration signals. Through decomposition and
reconstruction, the main information of the signal is
retained and a large amount of noise contained in the signal
is eliminated. This method can be adaptively select optimi-
zation parameters and noise components. We do not
directly abandon noise-containing components but optimize
them to prevent overfiltering from causing signal distortion.
The signals reconstructed after denoising contain more sig-
nal information. The denoising process of the proposed
algorithm is given in Figure 2. The exact procedures of the
proposed algorithm can be expressed as follows:

Step 1. Taking PE as the fitness function, GPSO-VMD is
applied to decompose the vibration signal, and K and α at
the minimum PE value are taken as the optimal decomposi-
tion values.

Step 2. Set the obtained K and α as VMD parameters and
decompose the vibration signal into K IMFs.

Step 3. Calculate the PE of IMF obtained by decomposition.
The signal-dominated IMF and noise-dominated IMF are
distinguished by the mutation point of PE of two
adjacent IMF.

Step 4. Apply SG filter to denoise the noise component.

Step 5. Reconstruct the IMFs dominated by the signal and
the IMF component after denoising to obtain the final
denoised signal.

4. Simulation

4.1. Construction of Simulation Signals. The vibration signals
measured by an atomic gravimeter in a ship environment
are very complicated, nonlinear, and nonstationary. These
signals actually contain lots of unpredictable disturbance
noises. In order to verify the effectiveness of the proposed
method, vibration simulation signals were designed with
nonlinear and nonstationary features. The simulation signals
xðtÞ consisted of sinusoidal signal x1ðtÞ, frequency-
modulated signals x2ðtÞ, amplitude-modulated signals x3ðtÞ
, exponentially decayed sinusoidal signals x4ðtÞ, and other
random noises with mean 0, standard deviation 1, and
amplitude 1.4. Moreover, they had t = ½0, 0:001� and sam-
pling frequency 1000Hz. These simulation signals are
defined by Equation (14).
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Figure 8: Simulation signals denoised by different algorithms.

Table 2: Denoising results with different algorithms.

Methods SNR (dB) MSE

Original signal -7.2690 2.0352

db5 -4.4865 2.1325

sym6 -4.4810 2.1436

EMD-PE-SG -0.4277 1.1413

The proposed method 1.2517 0.7204
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x1 tð Þ = 0:6 sin 20πt + π/6ð Þ,
x2 tð Þ = 0:4 cos 60πt + sin 10πtð Þ,
x3 tð Þ = 1 + 0:3 cos 20πtð Þ ⋅ sin 400πtð Þ,
x4 tð Þ = 2e−5t ⋅ sin 600πt,
x = x1 + x2 + x3 + x4 + 1:4 ⋅ rand nð Þ:

8>>>>>>>><
>>>>>>>>:

ð14Þ

The time-frequency domain waveform of each subsignal
is given in Figure 3, and the mixed signal is presented in
Figure 4. As revealed in the frequency domain waveform
of mixed signals, noises had higher power than signals, so
that signals were submerged in a highly noisy environment.
Moreover, noises were evenly distributed in the entire fre-
quency domain of signals, which makes it very difficult to
accurately extract feature signals.

Prior to VMD, number of decomposed modes K and
penalty term α should be properly selected. The improved
GPSO was adopted to optimize the VMD algorithm. Thus,
we set population size 50, crossover 0.8, and mutation prob-
ability 0.3. The number of decomposed modes K was set in
the range [2, 10], while the penalty term α was set in the
range [200, 3000]. Minimum PE was adopted as the fitness
function. The fitness function convergence curve of GPSO
is shown in Figure 5. Convergence was achieved at the time
of the second iteration, when the optimal VMD parameters
K and α were 5.1 and 2219.4, respectively, and rounded to
5 and 2219 since they must be integral. In order to prove
its superiority, the GPSO was compared with GA and PSO
algorithms, respectively. All optimization methods
employed minimum PE as fitness function and had the same
population size and maximum iteration times. The experi-
ment used Windows 10 operating system, Intel Corei7-
8750H and matlab2019a for simulation. The convergence
results of the fitness function for these three algorithms are
presented in Figure 5 and summed up in Table 1.

As shown in Figure 5, the GPSO, GA, and PSO con-
verged after the second, fifth, and seventh iteration, respec-
tively. The GPSO had the lowest fitness after convergence
and achieved the fastest convergence among them, which
proves the strong global search capability and fast
convergence rate.

4.2. Denoising Analysis of Simulation Signals. Noise simula-
tion signals were decomposed in VMD based on the K and
α values obtained by GPSO, so as to gain a number of IMF
components as shown in Figure 6. Obviously, signals could
be effectively decomposed in VMD. The decomposition
results were greatly consistent with simulation signals, prov-
ing the efficacy of the parameters obtained by GPSO.

The IMF components obtained by VMD were arranged
from low frequency to high frequency. Noises were mainly
concentrated in high-frequency components, but there were
still some effective IMF components. If they were simply
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abandoned, some effective signals would be lost. For this rea-
son, effective components must be separated from
noise-containing components, so as to denoise the
latter. For this purpose, PE of each IMF component was cal-
culated separately and used to determine the proportion of
noise-containing components in the IMF components. This
was achieved by calculating the mutation point in the PE of
two adjacent components, that is, β =max jHPðIMFl+1Þ −
HPðIMFlÞj with l for mutated IMF components. The noise-
containing components were denoised by SG filter and then
reconstructed with the effective IMF components to finally
obtain denoised signals. A simulation signal xðtÞ was
decomposed into five IMF components, whose permutation
entropies were calculated separately.

Based on the PE of each IMF component in Figure 7, the
difference between the permutation entropies of adjacent
IMF components was 0.00154, 0.00271, 0.00252, and
0.00018, respectively. The difference between IMF2
and IMF3 was the largest. Hence, IMF3 was a mutation
point, which helped identify IMF3-IMF5 as high-frequency
noise-containing components. These high-frequency noise-
containing components were treated by SG filter to obtain
a signal. In this paper, the SG filter parameters are set as
polynomial order 3 and data frame length 41. This signal
was reconstructed with other signal components including
IMF1 and IMF2 to obtain denoised vibration signal.

We also compared the proposed method with the classic
wavelet denoising and empirical mode decomposition
(EMD) to verify its effectiveness. Daubechies (db) wavelet
and Symlets (sym) wavelet with good orthogonality in the
wavelet transform denoising were selected to denoise simu-
lation signals. The green and cyan signals in Figure 8 show
the results of wavelet transform denoising with five layers
of soft threshold by db5 and sym6 wavelets, respectively.
After analyzing these results, it was found that the denoising
by db5 and sym6 wavelets might achieve the desired effect of
denoising but filtered lots of useful high-frequency
information, resulting in information distortion. The yellow
signal in Figure 8 shows the result of denoising by EMD. In
order to highlight the advancement of the proposed VMD
algorithm, the denoising by EMD was performed in the
same way as the proposed algorithm. A noise was first
decomposed by EMD to obtain a number of IMF compo-
nents. The PE of each component was calculated to find
out the mutation point. The SG filtering was carried out
for the IMF components in front of the mutation point. At
last, the denoised signal was obtained through reconstruc-
tion. Based on the denoising results presented in Figure 8,
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EMD was more effective than db5 and symb6 wavelets in
terms of denoising but still troubled by severe information
distortion, causing the excessive loss of useful information.
The denoising results of the proposed VMD algorithm are
shown in the red signal in Figure 8. Obviously, the proposed
algorithm could effectively retain the information of signals,
achieve good denoising effect, and achieve high consistency
regardless the denoised signal or the original signal.

In order to quantitatively analyze the denoising effect of
the proposed method, we took signal-to-noise ratio (SNR)
and Mean Square Error (MSE) as the indicators to evaluate
the denoising effect with denoised signals and noise-
containing signals [34]. The greater SNR, the better effect
of denoising. The lower MSE, the poorer effect of denoising.
The SNR and MSE values are expressed by

SNR = 10 lg ∑n
i=1x

2
i

∑n
i yi − xið Þ2 , ð15Þ

MSE = 〠
n

i=1

1
n

xi − yið Þ2, ð16Þ

where xi indicates the signals that do not contain noise and
yi means the denoised signals. The SNR and MSE values in
the test of algorithms with simulation signals are presented
in Table 2.

As revealed in Table 2, SNR was -7.2690 after adding
random noise into a simulation signal xðtÞ. It was evident
that the signal had lower power than noise, so that it was
entirely submerged by the latter, making it very difficult to
perform denoising. After being denoised by db5, sym6,
EMD, and the proposed method, the proposed method
achieved SNR 1.2517, which was the largest among them.
Moreover, the proposed method realized the lowest MSE,

revealing the most remarkable improvement by the pro-
posed method. The proposed algorithm proves that denois-
ing can be significantly achieved even in a highly noisy
environment.

5. Vibration Signal Denoising of Marine
Atomic Gravimeter

5.1. Data Collection. The vibration data of an atomic gravi-
meter was collected by navigation test. The test platform
was composed of an atomic gravimeter, an inertial stabilized
platform, and a vibration measuring device. The collection
of vibration data was performed by a collecting unit formed
by a data collector, an accelerometer, and a computer. The
accelerometer was attached to the atomic gravimeter placed
on the inertial stabilized platform. The accelerometer con-
verted the vibration information into analog voltage output.
The data collector performed the analog-to-digital conver-
sion of analog signals collected by sensors and transferred
the digital information to the computer. Data collection soft-
ware was installed in the computer to store and process the
received digital information. We selected the vibration signal
xsignal and took the data from 1000 sampling points for anal-
ysis, as shown in Figure 9.

5.2. Implementation of Denoising. The GPSO was employed
to optimize the VMD parameters in the proposed method,
so as to obtain the optimal number of decomposed modes
K and penalty term α. We set population size 50, crossover
probability 0.8, mutation probability 0.3, number of decom-
posed modes in [2, 10], and penalty term in [200, 3000]. PE
was used as the fitness function. At the third iteration, the
fitness function has completed convergence, and the mini-
mum PE value is 0.69137. The corresponding optimization
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results were [6, 2301]. The convergence curve of the fitness
function is shown in Figure 10.

Subsequently, the parameters optimized by GPSO were
used in the decomposition by VMD to obtain six IMF com-
ponents. Based on these components, it was found that noise
signals were concentrated in IMF5 and IMF6.

The PE of each IMF component was calculated. Then the
maximum difference between the permutation entropies of
two adjacent IMF components was calculated to find out a
mutation point and classify IMF components into effective
signal IMF components and noise-containing IMF compo-
nents as shown in Figure 11. As revealed in the slope of PE
in Figure 12, the mutation point of PE for the signal xsignal
was IMF, so that the noise components of the signal xsignal
were IMF5-IMF6. The SG filtering was conducted for noise
components. The filtered IMF components were recon-
structed with the effective IMF components to obtain the
denoised vibration signal as shown in Figure 13.

The vibration signal of a marine atomic gravimeter was
measured during navigation, so that it was impossible to
obtain a noise-free original vibration signal. For this reason,
SNR and MSE could not be used to quantitatively analyze
and compare the proposed method with other algorithms.
Figure 13 shows the results of wavelet transform denoising
by five layers of soft threshold with db5 and sym6 wavelets
and the effects of denoising by EMD-PE-SG, respectively.
As revealed in Figure 13, EMD-PE-SG achieved better
denoising than db5 and sym6 wavelets and could retain
more actual information. However, it still lost too much use-
ful information compared with the proposed method, so it
resulted in severe loss and distortion of signal information.

6. Conclusion

A vibration signal denoising method based on improved
VMD is put forward in this paper. In this method, an
improved GPSO based on PSO and GA is first adopted for
the parametric optimization of VMD. Minimum PE is taken
as the fitness function to adaptively search for the optimal
parameters K and α in VMD. Based on the obtained param-
eters K and α, a noise-contained signal is decomposed into a
number of IMF components. PE is utilized to calculate the
proportion of noise-containing components in the signal
components obtained by decomposition. A mutation point
is found with PE of adjacent IMF components to classify
these components into noise and signal components. The
SG filter is carried out to denoise these noise components.
At last, the denoised components are reconstructed with sig-
nal components to generate the denoised vibration signal.
The reconstructed signal contains more physical informa-
tion. The proposed method makes use of signal mode
decomposition to adaptively extract noise but does not use
any fixed priori threshold. In order to demonstrate its effec-
tiveness, the proposed method is applied in denoising with
the vibration data collected by vibration and measured by
a marine atomic gravimeter. As proved in the test, the pro-
posed method can effectively separate noise from vibration
signals and achieve great denoising. Its potential has been

demonstrated in filtering noise and improving the quality
of vibration data to provide the supporting data for the
vibration compensation of a marine atomic gravimeter.
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