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The encryption of network traffic promotes the development of encrypted traffic classification and identification research.
However, many existing studies are only effective for closed-set experimental data, that is to say, only for traffic of known
classes, while there are often lots of unknown classes traffic in the real environment of open sets, and many studies have
difficulty identifying the traffic of unknown classes and can only misclassify them as known classes. How to identify unknown
traffic and classify known traffic in an open-collection environment is one of the focuses of traffic analysis research.
Considering these problems, this paper proposes a novel solution, which applies the open-set recognition method to the
unknown traffic identification, and constructs a model based on deep learning and ensemble learning. The method constructs
a model based on a convolutional neural network and a transformer encoder and then uses a three-stage training and testing
process, combined with a novel loss function, to generalize to the open space to form OpenCBD. Experiments on public
datasets show that the proposed method is significantly better than other open-set identification methods. It can not only
distinguish known traffic from unknown traffic but also identify specific classes of known traffic.

1. Introduction

With the wide application of encryption technology in net-
work traffic, it becomes more and more challenging to effec-
tively monitor and analyze network traffic, and encrypted
traffic analysis technology has also become an important
research topic in the field of network security [1–3]. To ana-
lyze encrypted traffic, it is first necessary to divide the traffic
into different sets according to specific goals, that is, to clas-
sify and identify network traffic. Most of the existing
researches are implemented in a closed environment; that
is, many researches can efficiently and accurately classify
and identify traffic of known classes. For example, Aceto
et al. [4, 5] proposed a practical mobile traffic classification
model based on deep learning which can automatically
extract features. Liu et al. [6] proposed an encrypted traffic
classification model FS-Net based on the recurrent neural
network. Wang et al. [7] proposed App-Net, a mobile appli-
cation recognition model based on RNN and CNN. Nascita
et al. [8] improved a multimodal deep learning traffic classi-

fication model based on explainable artificial intelligence
techniques. But some studies, while valid in closed settings,
often cannot really be applied to the real world. Because
the real-world environment is open, network traffic includes
encrypted and nonencrypted, known and unknown, benign
and malicious, standard protocols and private protocols,
etc. There are many practical problems to be considered
and many difficulties to overcome. If a classification method
trained in a closed set is simply generalized to an open set, it
is easy to misclassify samples of unknown classes into
known classes [9–11]. In order to solve this problem,
researchers need to develop models that can support both
the classification of known class samples and the discovery
of unknown class samples, so as to actively manage and pre-
vent abnormal traffic and further create and maintain a good
network environment.

In real-world identification and classification tasks, it is
often difficult to obtain labels for all samples during training,
but it is desirable to have the ability to identify unknown
classes during testing. Therefore, open-set recognition
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describes such a scenario. During testing, samples of
unknown classes that have not appeared in training will
appear. The classifier can not only accurately classify known
samples but also identify unknown classes. In a real network
environment, there are known classes of encrypted traffic
and unknown classes of encrypted traffic. This is similar to
the scenario of open-set recognition. Therefore, some
open-set recognition methods can be used to solve the
unknown traffic identification. This paper proposes an
unknown traffic identification method OpenCBD based on
open-set recognition. It first performs a pretraining process
based on self-supervised learning on unlabeled data, so that
the CBD model (CBD model was proposed in [12]; it is a
self-supervised learning model containing three modules;
the three modules are the CNN module—based on a convo-
lutional neural network, BERT module—based on a trans-
former model encoder, dense module—based on a fully
connected network) has a certain understanding of the basic
characteristics of encrypted traffic. Then, the training and
testing process based on ensemble learning is designed in
the open set. During training, the individual model is trained
based on a specific loss function on some known classes.
Then, all known classes are trained through the ensemble
strategy, so that the ensemble model can achieve accurate
classification of known classes and identification of
unknown classes in the process of open-set testing. The con-
tributions of this paper are summarized as follows:

(i) A novel unknown traffic identification model
OpenCBD is designed. It uses the idea of open-set
recognition, combines deep learning and ensemble
learning, learns the basic characteristics of
encrypted traffic from unlabeled data, and then
trains on known classes of traffic to classify and
identify traffic in an open environment

(ii) A general training method suitable for open-set rec-
ognition is proposed. The method only needs to be
trained on the data of the known classes and can
identify the data of the unknown classes. The
method adopts two-stage training: first, it randomly
selects part of the known classes data to train the
individual model and then integrates the individual
model to train with all known classes data, so that
the model can learn the special knowledge between
classes

(iii) A loss function that combines the cross-entropy loss
function commonly used in classification models
and the II-loss function proposed for open-set rec-
ognition is proposed. The combination of the two
loss functions can train the model more efficiently,
making the model fit faster and more accurately,
so that the classification of known classes and the
identification of unknown classes can be better
completed at the same time

(iv) The OpenCBD model achieves good results in
unknown traffic identification and known traffic
classification tasks. Furthermore, the OpenCBD

model outperforms significantly compared to the
baseline methods

The rest of the paper is organized as follows. Section 2
summarizes the basic knowledge and related work of open-
set recognition and unknown traffic identification. Section
3 details the structure and methodology of the overall model.
Section 4 introduces the specific details of the experiments
and evaluates and compares the experimental results.
Finally, Section 5 concludes the paper.

2. Preliminary and Related Work

This section mainly introduces the basic knowledge and
researches in recent years of open-set identification and
unknown traffic identification.

2.1. Open-Set Recognition. First, some definitions in open-set
recognition are given.

Definition 1 (open space [13]). Given a label set K , the
known class label is a positive integer, and the unknown
class label is 0. For the feature x ∈ℝd , define f ∈H to be a
measurable recognition function, f yðxÞ > 0 means that the
class y can be recognized, and f yðxÞ ≤ 0 means that y is

not recognized, where H : ℝd ⟶ℝ is the appropriate
smooth space for the recognition function. For any known
class of training samples xi ∈K , i = 1,⋯,N , the open space
O is defined as

O = SO −
[
i∈N

Br xið Þ, ð1Þ

where BrðxiÞ is a closed sphere with the training sample
xi as the center and radius r. SO is a sphere of radius ro,
including all known positive training samples x ∈K and
open space O.

Definition 2 (open space risk [13]). Open space risk is
defined as the relative measure of positive labeled open space
compared to the overall measure of positive labeled space.
Then, the probabilistic open space risk ROð f Þ of class y is

RO fð Þ =
Ð
O
f y xð ÞdxÐ

SO
f y xð Þdx : ð2Þ

Definition 3 (openness [14]). Openness refers to the degree
of openness of an open space, which consists of training
classes, target classes, and test classes,

O = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × CTRj j

CTAj j + CTEj j

s
, ð3Þ

where CTR, CTA, CTE represent training classes, target
classes, and testing classes, respectively. Sometimes O < 0
may occur, so the openness after calibration is only related
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to training classes and test classes,

O∗ = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × CTRj j

CTRj j + CTEj j

s
: ð4Þ

Definition 4 (open-set risk [13]). The open-set recognition
problem is to minimize both traditional empirical risk and
open space risk. Given an empirical risk function Rε, the
open-set risk is defined as

arg min
f ∈H

RO fð Þ + λrRε fð Þf g, ð5Þ

where λr is the regularization constant.

Definition 5 (open world recognition [13]). The solution for
open world recognition is represented by the quintuple ½F,
φ, ν, L, I�. FðxÞ: Rd ⟶N is a multiclass open-set recogni-
tion function. The i-th class in FðxÞ is identified by the vec-
tor function φðxÞ of the measurable recognition function
f iðxÞ, and the detector νðφÞ: Rito½0, 1� is determined, where
i ∈K t , νðφÞ determine whether the output vector of the rec-
ognition function is from an unknown class. LðxÞ: Rd ⟶
N + is the labeling process. LðxÞ applies new unknown data
Ut to time t, resulting in label data Dt = fðyj, xjÞg, where
yj = LðxjÞ∀xj ∈Ut . Assuming that the label finds m new clas-
ses, the set of known classes becomes K t+1 =K t ∪ fi + 1,
⋯,i +mg. Itðφ ;DtÞ: H i ⟶H i+m is the incremental learn-
ing function. Itðφ ;DtÞ extensibly learns and adds new mea-
surable functions f i+1ðxÞ⋯ f i+mðxÞ to the measurable
recognition function vector φ. Each measurable function
minimizes the corresponding open space risk.

Suppose that each f kðxÞ outputs the probability of
belonging to the k classes. And assume that f kðxÞ is normal-
ized across each class. Let φ = ½ f1ðxÞ,⋯,f kðxÞ�, then the mul-
ticlass open-set recognition function is

F xð Þ =
0, if ν φ xð Þð Þ = 0,

y∗, otherwise,

(
ð6Þ

where

y∗ = arg max
y∈K ,f y xð Þ∈φ xð Þ

f y xð Þ: ð7Þ

At this point, an easy way to detect is to set an acceptable
minimum threshold τ and minimize the open space risk, i.e.,

ν φ xð Þð Þ = f y∗ xð Þ > τ: ð8Þ

Since open-set recognition was proposed, many research
methods have been proposed, mainly including discrimina-
tive models and generative models. Among them, the dis-
criminative models are mostly constructed by traditional
machine learning methods and deep neural network
methods, and the generative models are divided into

methods based on instance generation and methods based
on noninstance generation according to whether there is
instance generation. There are also some studies using neu-
ral networks in these two methods. The following mainly
introduces some methods based on deep neural networks,
which include not only discriminative models but also gen-
erative models.

In 2016, Bendale and Boult [15] proposed OpenMax, the
first open-set recognition method based on deep neural net-
works. OpenMax was used as a new model layer that esti-
mated the probability that the input came from an
unknown class and provided a bounded open space risk.

In 2017, Ge et al. [16] proposed a multiclass open-set rec-
ognition method Generative OpenMax (G-OpenMax). Unlike
some existing studies, the unknown class was not inferred
from the features of the known classes or the decision distance.
It extended OpenMax by employing Generative Adversarial
Networks (GANs) for new classes of image synthesis.

In 2018, Yoshihashi et al. [17] proposed an open-set rec-
ognition classification reconstruction learning method
CROSR, which used latent representations for reconstruc-
tion and achieved robust unknown detection without reduc-
ing the classification accuracy of known classes.

In 2019, Oza and Patel [18] proposed an open-set recog-
nition algorithm C2AE, which used a class-conditional auto-
encoder, as well as closed-set classification training and
open-set recognition training. The encoder and decoder
were trained in two stages, and the reconstruction error
was modeled using the extreme value theory of statistical
modeling to find a threshold that identified samples of
known and unknown classes.

In 2020, Hassen and Chan [19] proposed a representa-
tion method based on a neural network and used this repre-
sentation method to propose an open-set recognition
mechanism. In this representation, instances from the same
class were close to each other, while instances from different
classes were further apart.

In 2020, Liu et al. [20] proposed an algorithm that uses
the meta-learning technique PEELER to solve the problem
of open-set recognition. It combines randomly selecting a
new set of classes per episode, maximizes the loss of posten-
tropy of these class instances, and then learns a new metric
formula based on the Mahalanobis distance.

In 2021, Joseph et al. [21] proposed an open-world
object detector ORE, which was based on contrastive cluster-
ing and energy-based unknown identification. Identifying
and characterizing unknown instances helped reduce confu-
sion in incremental object detection settings. In this setting,
state-of-the-art performance could be achieved without
additional methodologies.

In 2022, Geng and Chen [22] proposed a batch decision
strategy that was aimed at extending existing open-set recog-
nition methods for new class discovery while considering
correlations between test instances. By modifying the Hier-
archical Dirichlet Process (HDP), a collective decision-
based open-set recognition framework CD-OSR was pro-
posed. CD-OSR did not need to define decision thresholds
and could realize open-set recognition and new class discov-
ery at the same time.
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Table 1 summarizes several open-set recognition
methods mentioned in Section 2.1.

2.2. Unknown Traffic Identification. In the field of network
traffic analysis, unknown traffic identification has always
been an important research direction. Researchers usually
use unsupervised learning or semisupervised learning to
solve the tasks of identifying and detecting unknown traffic.

In 2011, Finamore et al. [23] proposed an unsupervised
algorithm to identify traffic classes within aggregates. This
algorithm utilized the K-means clustering algorithm and
added a mechanism to automatically determine the number
of traffic clusters.

In 2013, Zhang et al. [24] proposed an approach to
address the problem of unknown applications in the critical
case of small supervised training sets. The proposed method
had a superior ability to detect unknown traffic generated by
unknown applications and exploited the correlation infor-
mation between real-world network traffic to improve the
classification performance.

In 2013, Zhang et al. [25] proposed an iterative method
to extract unknown information from a set of unlabeled traf-
fic flows. The method combined asymmetric bagging and
flow correlation to guarantee the purity of the extracted neg-
atives and demonstrated significantly better than state-of-
the-art flow classification methods under unknown
applications.

In 2014, Yu et al. [26] proposed a method to classify ele-
phant traffic using service-based statistical features for clus-
ter analysis. Elephant traffic refers to unknown traffic
generated by only a few or some types of applications.

In 2015, Shaikh and Harkut [27] proposed a framework
that classifies unknown flows in the network, solving the
problem of applying unknowns in critical situations with lit-
tle supervised training data. Flow label propagation was pro-
posed, which automatically and accurately labeled more
unlabeled flows to enhance the ability of Nearest
Clustering-based Classifiers (NCCs). Composite classifica-
tion was also proposed, which combines many flow predic-
tions to more accurately classified Bag of Flows (BoF).

In 2015, Lin et al. [28] proposed a semisupervised learn-
ing method to address the problem of an unknown protocol
in critical cases where the labeled training sample set was
small. With the help of flow-related information and semi-
supervised clustering ensemble learning, the method had a
superior ability to detect unknown samples generated by
unknown protocols to improve classification performance.

In 2017, Ma and Qin [29] proposed a method using deep
learning techniques to identify unknown protocols in com-
plex network environments. The method identified the pro-
tocol in the network flow according to the application layer
protocol type and found out the unknown protocol. This
method only used the payload information in the captured
200,000 traffic flows and achieved well unknown protocol
traffic identification accuracy.

In 2018, Fu et al. [30] proposed a scheme, FlowCop, to
implement traffic detection that did not belong to any prede-
fined application in network traffic classification. It divided
the test traffic into N classes and one unknown class by

building multiple one-class classifiers. A feature subspace
algorithm was also proposed to select salient features for
each class of classifiers.

In 2019, Sabeel et al. [31] proposed two methods to pre-
dict unknown DoS and DDoS attacks based on DNN and
LSTM. The method demonstrated how well deep learning-
based methods perform in unknown situations and to what
extent deviations from the trained model could be handled.
This method can effectively identify unknown attacks.

In 2019, Zhang et al. [32] proposed a network intrusion
detection method based on open-set recognition. This
method fits the recognition results of known classes to Wei-
bull distribution and then builds an Open-CNN model to
estimate the probability of unknown classes from the activa-
tion scores of known classes, so as to achieve the purpose of
detecting unknown attacks.

In 2020, Zhang et al. [33] proposed an autonomous
learning framework to correctly classify unknown classes.
The framework efficiently updated deep learning-based traf-
fic classification models during active operation. The core of
the proposed framework consisted of a deep learning-based
classifier, a self-learning discriminator, and an autonomous
self-labeling model. The discriminator and self-labeling pro-
cess generated new datasets during active operation to sup-
port classifier updates.

In 2020, Mohamed et al. [34] proposed a method for
handling unknown applications. This method enabled effi-
cient network classification with limited supervised training
sets. The proposed model applied multiple neural network
algorithms to predict unknown applications. The method
improved Internet performance, reduced Internet traffic,
and reduced delays in transmitting data.

In 2021, Wang et al. [35] proposed an unknown protocol
parsing method based on a convolutional neural network.
The protocol data was preprocessed into an image, and the
converted image was inputted to the convolution layer for
convolution. After convolution, the data was flattened, and
the flattened data was put into a fully connected neural net-
work to analyze and predict unknown protocols.

In 2021, Li et al. [36] proposed a lightweight unknown
traffic discovery model, LightSEEN, which realized traffic
classification and model update in the open world under
practical conditions. The overall structure of the method
was based on the Siamese network, and each side used a
multihead attention mechanism, a one-dimensional convo-
lutional neural network, and a residual network to facilitate
the extraction of deep flow features and the convergence
speed of the network.

In 2021, Xu et al. [37] proposed the KCC (Known Cen-
tral Clustering) method to deal with the open-set-based
intrusion detection problem. By introducing CD-loss (Class
Distance-loss), the centers of different clusters were
obtained. By introducing negative samples as unknown clas-
ses for training, the threshold of known classes was obtained.
Unknown intrusions were rejected by comparing with fuzzy
distances.

Table 2 makes a simple classification and summary
according to the specific methods used in the above-
mentioned several unknown traffic identification literatures.
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We combine unknown traffic identification with open-set
recognition. According to the characteristics of network
encrypted traffic, we design a new open-set recognition
method based on a discriminant model. Through self-
supervised learning and supervised learning, it can effec-
tively complete known traffic classification and unknown
traffic identification tasks at the same time.

3. Proposed Method

To identify unknown classes that have not appeared in the
training set, we propose OpenCBD, a deep learning and
ensemble learning-based approach. The CBD model was
proposed in [12], but it can only complete the classification
task in datasets with known class traffic. In this paper, the
CBD model is regarded as an individual model. First, the
loss function is used to train the individual model, and then
through the ensemble strategy, the individual model is fused
into an ensemble model, which is extended to OpenCBD
suitable for open-set data. Classify known classes and iden-
tify unknown classes in the world. The CBD model includes
the CNN module, BERT module, and dense module. The
detailed structure is given in Section 3.3. The overall process
of OpenCBD is shown in Figure 1.

First, pretraining is performed on unlabeled data to
obtain a pretrained individual model, including a CNN
module with a fixed structure and parameters and a BERT
module with a fixed structure and no fixed parameters.
Then, perform data preprocessing on the raw data partici-
pating in the training, then input them into multiple individ-
ual models for training after obtaining the training set, then
input the training set into the ensemble model for training,
and then obtain the training results. Finally, data preprocess-
ing is performed on the raw data participating in the test,
and after the test set is obtained, it is inputted into the
trained ensemble model, and the prediction results are the
outputs.

The training process includes two stages, namely, closed-
set individual training and closed-set ensemble training. The
testing process is implemented in the open set. The block
diagram of the three stages is shown in Figure 2.

In the following, we will introduce the data preprocess-
ing process, pretraining process, and detailed process of the
three stages.

3.1. Data Preprocessing. Data preprocessing is an essential
step to achieve the goals of classification and identification.
Data preprocessing mainly includes four parts: traffic split,
traffic cleaning, traffic conversion, and time interval

Table 1: Different models for open-set recognition.

Model Reference
Open-set
recognition
category

Methodology
Extreme
value
theory

Advantages

OpenMax [15]
Discriminative

model

EVT-based
calibration
classification

√ First deep open-set classifier without using background
samples

G-OpenMax [16]
Generative
model

Unknown
generation
classification

√ Combining generative adversarial networks and OpenMax

CROSR [17]
Discriminative

model
Distance √ First neural network architecture which involved hierarchical

reconstruction blocks

C2AE [18]
Discriminative

model
Reconstruction

error
√ Algorithms using class conditional autoencoders

Neural-network-
based
representation

[19]
Discriminative

model

EVT-free
calibration
classification

×
A loss function was proposed such that instances from the
same class are close to each other, while instances from

different classes are farther apart

PEELER [20]
Discriminative

model
Distance × Combining few-shot classification and open-set recognition

ORE [21]
Discriminative

model
Distance × An incremental object detector is proposed

CD-OSR [22]
Discriminative

model

EVT-free
calibration
classification

× Automatically reserve space for unknown classes under test,
naturally bringing new class discovery capabilities

Table 2: Summary of methods for identifying unknown traffic.

Statistical methods Deep neural networks
Supervised learning Semisupervised learning Unsupervised learning CNN-based Open-set recognition Others

[25] [28] [23, 24, 26, 27, 30] [29, 32, 33, 35, 37] [32, 35, 37] [31, 34]
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Outputs

…
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Inputs
Training

data
Data
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Testing

data
Inputs

Outputs

Individual
model2

Individual
modelw

Figure 1: Overall flow chart of proposed method. The orange part represents the pretraining process, the blue part represents the training
process, the green part represents the testing process, and the black part represents the process involved in both training and testing
processes.
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N-class
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v2
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X
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k-class
classificationIndividual modeli
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k classes from N
classes X y

2

3

Encoder2

Figure 2: Block diagram of proposed method. (1) Closed-set individual training: randomly select a part of the known class data to train the
individual model including the encoder and the classifier. 2) Closed-set ensemble training: using all known class data to train encoders and
classifiers in w individual models, where the weights of the encoders are locked. (3) Open-set testing: the ensemble model producesM results
to be identified. If the largest to-be-identified result is greater than or equal to the threshold, the test sample is classified into one of the M
classes; otherwise, it is classified as unknown.
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integration. Following the description in [12], we summarize
the preprocessing process as Algorithm 1.

Line 2 is the traffic split. For bidirectional flow, randomly
intercept 10 consecutive data packets and define these ten
packets as a flow. A total of n flows are intercepted, that is,
a total of 10n data packets.

Lines 4-9 are the traffic cleaning. Read the payload part
of each packet, then unify the length, truncate the first 256
bytes of each packet, and add 0 to the insufficient, to obtain
the raw sequence x,

x = b1, b2,⋯,b8×256ð Þ, bi ∈ F2, i = 1,⋯, 2048: ð9Þ

Line 10 is the traffic conversion. Convert the elements in
the raw sequence into decimals according to bytes to obtain
a 256-dimensional vector x,

x = x1, x2,⋯,x256ð Þ, xi ∈ F28 , i = 1,⋯, 256: ð10Þ

Lines 11-16 are the time interval integration, which was
first proposed in [38]. It means that according to the statis-
tical results of the time interval of two adjacent data packets
in different classes, for the interval of more than 1 s, insert a
blank data packet and ignore it within 1 s. The blank data
packet is represented as a 256-dimensional all-one vector
x0 = ð1,⋯,1,⋯,1Þ256.

The payload vector x and the time interval vector x0 are
formed into a set X in chronological order, and the model
can be directly inputted in the next step.

3.2. Pretraining. Pretraining adopts a common pretraining
method in the field of encrypted traffic analysis proposed
in [12], which starts from the packet level and the flow level,
and can directly deepen the model’s understanding of
encrypted traffic from unlabeled real-world data. This paper
summarizes the method into a detailed Algorithm 2.

Lines 1-15 are the packet-based methods. For an unla-
beled packet, first extract the payload part to get x = fx1, x1
,⋯, xng, and then calculate the entropy of each packet,

H = −〠
n

i=1
P xið Þ log2P xið Þ, 1 ≤ i ≤ n,

H xð Þ <H0, x ∈Xplain,

H xð Þ ≥H0, x ∈Xcipher:

( ð11Þ

Set the threshold of entropy H0 = 4. When H ≥H0, the
data packet label is a ciphertext data packet; when H <H0,
the data packet label is a plaintext data packet. Train a
CBD model with labeled packets.

Lines 16-31 are the flow-based methods. First, construct
positive and negative sample sets. The positive sample set S+

contains n positive samples, and the positive sample s+ is
defined as a continuous flow F; each flow contains 10 con-

secutive packets,

S+ = s+1 , s
+
2 ,⋯, s+nf g,

s+i ≜ Fi = xi1, x
i
2,⋯, xi10

� �
, 1 ≤ i ≤ n:

ð12Þ

The number of negative sample set S− is the same as the
positive sample set S+, including n negative samples, and the
negative sample s− is defined as a discontinuous flow �F. It is
obtained by transforming the positive samples. Each packet
in the positive sample is replaced with other bags with a cer-
tain probability, and the replaced sample is called a negative
sample.

S− = s−1 , s
−
2 ,⋯, s−nf g,

s−i ≜ �Fi = f xi1
� �

, f xi2
� �

,⋯, f xi10
� �� �

, 1 ≤ i ≤ n,

f xij
� �

=
xij P = 0:7ð Þ

xi′
j′ P = 0:3ð Þ

8<
: , i′, j′

� �
≠ i, jð Þ, 1 ≤ j ≤ 10:

ð13Þ

Train a CBD model with a labeled set of positive and
negative samples. After completing the pretraining, enter
the three-stage training and testing process.

3.3. Closed-Set Individual Training. The first stage is closed-
set individual training. After the data is preprocessed, the k
class data is randomly selected to train the individual model,
and the k classification is completed. Each individual model
is a randomly selected k class with replacement. The specific
structure diagram of the individual model is shown in
Figure 3.

3.3.1. Encoder. The encoder and classifier are two important
parts in the individual model. The encoder is mainly used
for feature extraction, the input is a matrix X, and the output
is a vector v,

Encoder : X ⟶ v ∈R240, ð14Þ

where X is a n × 256-dimensional matrix on F28 . The
encoder mainly includes the CNN module and BERT
module.

The CNN module is inputted in sequence by a row vec-
tor; that is, for the input X = ðxT1 ,⋯,xTn Þ of the encoder, xi
represents the i-th input of the CNN module, i = 1, 2,⋯, n.
Define f Cð·Þ as the CNN module function, f con j

ð·Þ is the

convolution function of the j-th layer in the CNN module,
fmp j

ð·Þ is the maximum pooling function of the j-th layer

in CNN module, and Oj
i is the j-th layer output for the i

-th input in the CNN module, j = 1, 2, 3, 4; then, the output
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of the CNN module is

f C xið Þ =O4
i ∈R

242,

O4
i =max 0, fmp4

f con4 O3
i

� �� �� �
,

O3
i =max 0, fmp3

f con3 O2
i

� �� �� �
,

O2
i =max 0, fmp2

f con2 O1
i

� �� �� �
,

O1
i =max 0, f con1 xið Þ

� �
:

ð15Þ

After the CNN module is a fully connected layer, which
is used to change the dimension of the vector to facilitate the
input of the subsequent BERT module. Define f fcð·Þ to be
the fully connected function and zi ∈R

240 to be the output
of the fully connected layer, then

z i ≜ f fc O4
i

� �
=W1O

4
i + Bi =Wif C xið Þ + Bi, ð16Þ

where Wi is the weight matrix and Bi is the bias matrix.
This is followed by a Concat layer that stitches together

the outputs after n CNN modules and fully connected layers.
Define ⊕ as the splicing symbol and Z as the output of the
Concat layer, then

Z = zT1 , z
T
2 ,⋯,zTn

� �
= z1 ⊕ z2 ⊕⋯ ⊕ zn = ⊕

i=1

n
zi, Z ∈ℝn×240:

ð17Þ

The BERT module consists of m transformer encoders,
and Z is the input of the BERT module. Define f Bð·Þ as the
BERT module function, f tet ð·Þ as the t-th layer transformer
encoder function in the BERT module, and v as the output
of the encoder, then

v ≜ f B Zð Þ = f tem ⋯f tet ⋯f te1 Zð Þ
� �� �

, t = 1, 2,⋯,m:

ð18Þ

3.3.2. Classifier. The classifier is mainly used to predict
results, the input is a vector v, and the output is a specific
class y,

Classifier : v⟶ y ∈ 1, 2,⋯,kf g: ð19Þ

The classifier consists of a dense module and Softmax
layer. In the dense module, define f Dð·Þ to be the function
of the dense module and FðXÞ to be the output of the dense
module, then

F Xð Þ ≜ f D vð Þ =max 0, Wv + Bð Þð Þ, ð20Þ

where W represents the weight matrix and B represents
the bias matrix.

Input: the original network traffic dataset D, the number of classes of traffic c.
Output: packet vector set X ;
1: For i = 1,⋯, c do
2: Randomly select ni consecutive 10 packets to form ni flows;
3: For j = 1,⋯, 10ni do
4: Read the payload part of the packet xi,j;
5: If jxi,jj < 2048 then
6: xi,j = ½xi,j, zerosð1, 2048 − jxi,jjÞ�;
7: Else
8: xi,j = xi,j½1 : 2048�;
9: End if
10: xi,j = int ðxi, j ′, 10Þ;
11: couti, j = timeðxi,j+1Þ − timeðxi,jÞ;
12: If couti,j < 1 second then
13: Continue;
14: Else
15: Add x0 between xi,j and xi,j+1;
16: End if
17: End for
18: Generate packet vector set Xi = fxi,1,⋯,x0,⋯,xi,10nig;
19: End for
20: Return packet vector set X = X1

S
X2
S

⋯
S
Xc.

Algorithm 1: Preprocessing algorithm for traffic data.
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Input: unlabeled dataset D1 = fx1,1,⋯,x1,Ng, D2.
Output: pretrained model;
1: For i = 1,⋯,N do
2: Extract the payload of x1,i, x1,i = fx11,i, x21,i,⋯,xn1,ig;
3: For j = 1,⋯, n do
4: Hðx1,iÞ = 0;
5: Hðxj1,iÞ = −Pðxj1,iÞ · log2Pðxj1,iÞ;
6: Hðx1,iÞ =Hðx1,iÞ +Hðxj1,iÞ;
7: End for
8: If Hðx1,iÞ <H0 then
9: labðx1,iÞ = 0 (plaintext);
10: Else
11: labðx1,iÞ = 1 (ciphertext);
12: End if
13: End for
14: D1 ′ = fðx1,1, labðx1,1ÞÞ,⋯,ðx1,N , labðx1,NÞÞg;
15: Model =ModelðD1 ′Þ;
16: Randomly select m consecutive 10-packet payload parts in D2 to form S+, S+ = fs+1 ,⋯,s+mg;
17: For a = 1,⋯,m do
18: s+a ≜ Fa = fxa,1, xa,2,⋯,xa,10g;
19: S− =∅;
20: For b = 1,⋯, 10 do
21: If P = 0:3 then
22: f ðxa,bÞ = xa′,b′, where ða′, b′Þ ≠ ða, bÞ;
23: Else
24: f ðxa,bÞ = xa,b;
25: End if
26: s−a ≜ Fa ′ = f f ðxa,1Þ, f ðxa,2Þ,⋯,f ðxa,10Þg;
27: S− = S−

S
s−a ;

28: End for
29: End for
30: D2 ′ = S+

S
S−;

31: Model =ModelðD2 ′Þ;
32: Return pretrained model.

Algorithm 2: Pretraining algorithm for network traffic model.
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Figure 3: Structure diagram of individual model.
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The last is the Softmax layer, defining f smð·Þ as the Soft-
max function, then

y = f sm f D vð Þð Þ = arg max
l

P y = l Xjð Þ,

P y = l Xjð Þ = eFl Xð Þ

∑k
p=1 e

Fp Xð Þ ,
ð21Þ

where l, p ∈ f1, 2,⋯,kg is the index of the class.
So the output of the entire individual model is

y = f sm f D vð Þð Þ = f sm f D f B Zð Þð Þð Þ = f sm f D f B ⊕
i=1

n
zi

� �� �� �
= f sm f D f B ⊕

i=1

n
Wif C xið Þ + Bið Þ

� �� �� �
:

ð22Þ

3.3.3. Loss Function. Individual models are trained with a
combination of cross-entropy loss and II-Loss [19].

The cross-entropy loss function is often used in classifi-
cation problems, which can measure the similarity between
several classes. Given a batch of samples fX1, X2,⋯,XAg,
for a matrix Xa, a = 1, 2,⋯, A, define its label as labðXaÞ ∈
f1, 2,⋯,kg, then the cross-entropy loss of this batch of sam-
ples is

CE‐Loss = −
1
A
〠
A

a=1
〠
k

l=1
sgn Xa, lð Þ log P Xa, lð Þ,

sgn Xa, lð Þ =
1, lab Xað Þ = l,

0, lab Xað Þ ≠ l,

( ð23Þ

P Xa, lð Þ = P lab Xað Þ = lð Þ, ð24Þ

where sgn ðXa, lÞ is a symbolic function, which deter-
mines whether the label of Xa is the class l. PðXa, lÞ is a prob-
ability function that calculates the probability that the label
of Xa is the class l.

The II-Loss function can make samples of different clas-
ses farther apart and samples of the same class closer by
maximizing the distance between different classes and min-
imizing the distance between samples and their class mean.
Given a batch of samples fX1, X2,⋯,XAg, define the sample
set of class l as Cl, the number of samples in Cl is jClj, the
mean output of the dense module in Cl is μl, then

X1, X2,⋯,XAf g = C1 ∪ C2∪⋯∪Ck,

μl =
1
Clj j〠

Clj j

q=1
F Xq

� �
, q = 1, 2,⋯, Clj j:

ð25Þ

The II-Loss of this batch of samples is

II‐Loss = Dis intra classð Þ −Dis inter classð Þ

=
1
A
〠
k

l=1
〠
Clj j

i=1
μl − F Xlð Þk k22

 !
− min

1≤p,r≤k&p=r
μp − μr

			 			2
2


 �
:

ð26Þ

The final loss function is

Loss = CE‐Loss + II‐Loss = −
1
A
〠
A

a=1
〠
k

l=1
sgn Xa, lð Þ log P Xa, lð Þ

 !

+
1
A
〠
k

l=1
〠
Clj j

i=1
μl − F Xlð Þk k22

 !
− min

1≤p,r≤k&p=r
μp − μr

			 			2
2


 �
:

ð27Þ

3.4. Closed-Set Ensemble Training. The second stage is
closed-set ensemble training. After the data is preprocessed,
the ensemble model is trained with all N class known data to
complete N-classification. The integrated strategy of the
ensemble model adopts the learning method, which is a
method of combining individual learners by training the
learners. First, the encoder in the individual model is trained
using a subset of the raw training dataset. Then, the ensem-
ble model is trained with the raw training set using the out-
put of the encoder as a feature. See Algorithm 3 for the
ensemble strategy.

The training of the ensemble model takes t-fold cross-
validation as an example and divides the known class dataset
D and subset D′ into t datasets D1,⋯,Dt and D′1,⋯,D′t ,
respectively. Let D′j and D′ð−jÞ =D′ \D′j be the test set
and training set corresponding to the jth individual model
execution, respectively. Dj and Dð−jÞ =DDj are the test set
and training set corresponding to the jth ensemble model
execution, respectively. Given w individual learning algo-
rithms, use the sth learning algorithm to train on D′ð−jÞ to
obtain an individual learner hð−jÞs . For each sample Xi in
the test set D′j executed at the jth time, let zis be the learner

hð−jÞs on the Xi output result. Then, at the end of the entire
cross-validation process, a new dataset can be generated by
w individual learners D ∗ = fðzi1,⋯,ziw, yiÞgRi=1; the ensem-
ble learner will use this dataset to train together with the
dataset D \D′ that does not participate in the training of
individual models.

Lines 1-4 are the training of the individual model, which
only uses a subset D′ of the known class data D during train-
ing. Lines 5-12 are the training of the ensemble model,
which uses all of the known class data D during training.
The ensemble model consists of w encoders and 1 classifier.
The encoder is obtained from the first stage of training, and
the fixed structure and parameters remain unchanged. The
classifier has the same structure as the first stage, but the spe-
cific parameters have changed. Define X as the input of the
ensemble model, ypred as the output, f

∗
Dð·Þ as the dense mod-

ule function, GðXÞ as the dense module output, and f ∗smð·Þ as
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the Softmax function, then

Ensemblemodel : X ⟶ ypred ∈ 1, 2,⋯,Nf g,

G Xð Þ ≜ f ∗D 〠
w

s=1
vs

 !
,

ypred = f ∗sm G Xð Þð Þ = f ∗sm f ∗D 〠
w

s=1
vs

 ! !
= arg max

l ′
P y = l′ Xj
� �

,

P y = l′ Xj
� �

=
eGl′ Xð Þ

∑N
p′=1 e

Gp′ Xð Þ ,

ð28Þ

where w is the number of encoders in the ensemble
model, each encoder comes from the corresponding individ-
ual model, and the coefficients remain unchanged. f ∗Dð·Þ and
f ∗smð·Þ have the same structure as the dense module function
f Dð·Þ and Softmax function f smð·Þ in the individual model
but with different coefficients. l′, p′ ∈ f1, 2,⋯,Ng is the
index of the class.

3.5. Open-Set Testing. The third stage is open-set testing. The
real-world data is inputted into the trained ensemble model,
and the ensemble model produces M results Rec to be iden-
tified. Compute the maximum of the M results. If the max-
imum value is greater than or equal to the threshold, the

Input: known classes data D = fðX1, L1Þ, ðX2, L2Þ,⋯,ðXR, LRÞg; individual learning algorithm I 1,I 2,⋯,I w; ensemble learning
algorithm E.
Output: ensemble model H;
1: Randomly selected k classes data from D to form D′, D′ ⊂D;
2: For s = 1, 2,⋯,w do
3: hs =I tðD′Þ;
4: End for
5: D∗ =∅;
6: For i = 1, 2,⋯, R do
7: For s = 1, 2,⋯,w do
8: zrs = hsðXrÞ;
9: End for
10: D∗ = ðD \D′Þ ∪ ððzr1, zr2,⋯,zrwÞ, yrÞ;
11: End for
12: h∗ =EðD∗Þ;
13: HðXÞ = h∗ðh1ðXÞ, h2ðXÞ,⋯,hwðXÞÞ.

Algorithm 3: Ensemble strategy.

Input: training set fX1, X2,⋯,XAg; known classes N .
Output: threshold τ;
1: For i = 1, 2,⋯, A do
2: For j = 1, 2,⋯,N do

3: Pðy = jjXiÞ = eF jðXiÞ/∑k
p=1 e

FpðXiÞ;
4: End for
5: outlierðXiÞ =maxjPðy = jjXiÞ;
6: End for
7: sortðoutlierÞ;
8: Threshold set = last 1% sortðoutlierÞ;
9: Return τ =min ðthreshold setÞ.

Algorithm 4: Threshold estimation.

Table 3: Experimental data classes.

Known/unknown Classes

Known classes

VPN-Facebook-chat

VPN-Facebook-audio

VPN-Skype-chat

VPN-Skype-file

Facebook-chat

Facebook-audio

Skype-chat

Skype-file

Unknown classes

VPN-Hangouts-audio

Hangouts-audio

VPN-Hangouts-chat

Skype-audio

VPN-sftp

Table 4: Experimental environment.

Hardware Specific information

Graphic processing unit (GPU) Nvidia RTX 1060TI

Memory 48GB

Central processing unit (CPU) Intel Core i7 6-core

Number of CPUs
Number of CPU cores: 6

Number of CPU threads: 12

Operating system (OS) Ubuntu 18.04
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test sample is classified as one of M classes; otherwise, it is
classified as unknown.

3.5.1. Threshold Estimation. The threshold for judging data
classes in open-set testing is determined by outliers. Assume

that 1% of the samples in the training set have noise, that is,
they are abnormal outlier samples. When calculating the
outlier distance for all training samples, sort them from
small to large, and the largest 1% distance is the threshold.
The detailed process of threshold estimation is shown in
Algorithm 4.

After the threshold is determined, the to-be-identified
results of the ensemble model will determine the classes of
data according to whether it is greater than or equal to the
threshold.

4. Experiment and Evaluation

This section mainly introduces the specific experimental
content designed for the proposed model OpenCBD, includ-
ing experimental environment and settings, evaluation met-
rics, and specific results. And then, the results are discussed
to verify the validity of the OpenCBD model.

4.1. Experiment Settings. The encrypted traffic data in this
paper is selected from the public dataset ISCXVPN2016
[39]. 8 classes of data are selected as known classes, 5 classes
of data are selected as unknown classes, and the intersection
of known and unknown data is empty. The 13 classes of data

Table 5: Experimental hyperparameters.

Hyperparameter name Hyperparameter value

Epoch 80 in individual model, 60 in ensemble model

Batch 64

Plaintext packets in pretraining 256 bytes of plaintext

Ciphertext packets in pretraining
Randomly selected from ISCXVPN2016, excluding the 13 classes mentioned above,

and classes and sizes are not fixed

Sample numbers of positive and negative sample
sets in pretraining

5000, 5000

k in individual model 3 or 4 or 5 or 6 or 7

Dimensions of CNN module input vectors 256

Number of convolution channels in CNN module 1

Convolution kernel size in CNN module 3

Convolution stride size in CNN module 1

Pooling size in CNN module 3

Dimensions of CNN module output vectors 242

Dimensions of fully connected layer outputs in the
encoder

240

n in Concat layer 15

Dimensions of BERT module input matrix 15 × 240
m in BERT module 8

Head numbers of multihead attention in each
transformer encoder layer

12

Dimensions of BERT module output vectors 240

Dimensions of fully connected layer outputs in
classifier

k in individual model, N in ensemble model

Number of encoders w in ensemble model 4 or 8 or 12

N in ensemble model 8

M in open-set testing N + 1 = 9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

4 8 12

3
4
5

6
7

Figure 4: When the number of encoders in the ensemble model of
OpenCBD is 4, 8, and 12, accuracy of the 2-class classification tasks
(identifying known and unknown classes) varies as the number of
known classes is randomly selected in the first training stage.
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include both Virtual Private Network (VPN) traffic that has
been encapsulated by the VPN protocol and non-VPN traf-
fic that has not been encapsulated by the VPN. 1000 samples
are randomly selected for each class, and each sample con-
tains 10 consecutive data packets. The specific data classes
are shown in Table 3.

During the experiment, 1000 samples of each class were
randomly divided into the training set and test set, with
training set samples : test set samples = 9 : 1; that is, 100 sam-
ples of each class were randomly selected as the test set, and
the remaining 900 samples were the training set. The train-
ing set contains training data and validation data, with train-
ing data : validation data = 9 : 1.

The experimental environment is a personal desktop,
and the specific equipment information is shown in Table 4.

All codes in the experiment are run in the environment
of Python 3.6.5, and the specific hyperparameter settings
are shown in Table 5.

The rest of the unmentioned hyperparameters are set
according to the default values of the corresponding models
in Python.

4.2. Evaluation Metrics. When evaluating model perfor-
mance, the class of interest is usually the positive class and
the other classes are the negative classes. Evaluation metrics

are usually formulated from the following four basic
situations:

(1) True positive (TP): predict the positive class as a pos-
itive class

(2) False positive (FP): predict the negative class as a
positive class

(3) True negative (TN): predicts the negative class as a
negative class

(4) False negative (FN): predicts the positive class as a
negative class

From the above four basic situations, four basic evalua-
tion metrics can be obtained:

(1) The probability of classifying positive samples into
positive classes is called TPR, also known as recall
or sensitivity:

TPR = Recall = TP
TP + FN

: ð29Þ

(2) The probability of classifying a negative class sample
into negative classes is called TNR, also known as
specificity:

TNR =
TN

FP + TN
: ð30Þ

(3) The probability of misclassifying negative samples
into positive classes is called FPR, also known as false
recognition rate:

FPR =
FP

FP + TN
= 1 − TNR: ð31Þ

Table 6: When the number of encoders in the ensemble model of OpenCBD is 4, 8, and 12, accuracy, precision, recall, and F1-score of the 2-
class classification tasks (identifying known and unknown classes) vary as the number of known classes is randomly selected in the first
training stage.

Accuracy Precision Recall F1-score

k
w

4 8 12 4 8 12 4 8 12 4 8 12

3 0.5607 0.603 0.613 0.714 0.6853 0.6951 0.4775 0.6562 0.6612 0.5722 0.6704 0.6777

4 0.6615 0.6853 0.6869 0.7337 0.7459 0.7484 0.7062 0.7412 0.74 0.7197 0.7435 0.7441

5 0.6269 0.73 0.7238 0.7215 0.765 0.778 0.6412 0.81 0.7712 0.67902 0.7868 0.7746

6 0.693 0.7307 0.7207 0.775 0.7952 0.7841 0.7062 0.7575 0.7537 0.739 0.7759 0.7686

7 0.7238 0.7484 — 0.7766 0.7832 — 0.7737 0.8175 — 0.7752 0.7999 —

0
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Figure 5: When the number of encoders in the ensemble model of
OpenCBD is 4, 8, and 12, accuracy of the 9-class classification tasks
(identifying 8 known classes and 1 unknown class) varies as the
number of known classes is randomly selected in the first training
stage.
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(4) The probability of misclassifying positive samples
into negative classes is called FNR, also known as
the rejection rate:

FNR =
FN

FN + TP
= 1 − TPR: ð32Þ

In addition, there are several other commonly used
metrics:

(1) Precision refers to the proportion of true positive
samples among all predicted positive samples:

Precision =
TP

TP + FP
: ð33Þ

(2) F1-score considers precision and recall comprehen-
sively and refers to the harmonic average of preci-
sion and recall:

2
F1‐score =

1
Precision

+
1

Recall
,

F1‐score = 2 × Precision ×
Recall

Preciaion + Recall
:

ð34Þ

(3) Accuracy refers to the proportion of all predicted
correct samples to the total samples:

Table 7: When the number of encoders in the ensemble model of OpenCBD is 4, 8, and 12, accuracy, precision, recall, and F1-score of the 9-
class classification tasks (identifying 8 known classes and 1 unknown class) vary as the number of known classes is randomly selected in the
first training stage.

Accuracy Precision Recall F1-score

k
w

4 8 12 4 8 12 4 8 12 4 8 12

3 0.5315 0.5715 0.5838 0.6462 0.6717 0.6893 0.4593 0.5953 0.6051 0.5019 0.6144 0.6258

4 0.5961 0.653 0.656 0.6241 0.7137 0.723 0.5988 0.6784 0.6813 0.5994 0.6863 0.6929

5 0.6084 0.7007 0.6976 0.6991 0.7425 0.7355 0.6104 0.7446 0.7197 0.6343 0.7385 0.7227

6 0.6646 0.713 0.703 0.7419 0.7704 0.772 0.6613 0.7242 0.7186 0.6845 0.7395 0.7339

7 0.7046 0.7223 — 0.7639 0.7616 — 0.7315 0.7597 — 0.7404 0.7533 —

Facebook-audio

Facebook-audio

Vpn-skype-chat

Facebook-chat

Facebook-chat

Skype-file

Vpn-facebook-chat

Vpn-facebook-chat

Vpn-skype-files

Vpn-facebook-audio

Vpn-facebook-audio

Skype-chat

Unknown type

Unknown type

Figure 6: Confusion matrix diagram for OpenCBD doing the 9-class classification tasks. The x-axis represents the predicted classes of the
output, and the y-axis represents the true classes. Warmer colors indicate larger values, and cooler colors indicate smaller values.
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90%

Figure 7: When the number of encoders in the ensemble model of
OpenCBD is 4, 8, and 12, accuracy of the 2-class classification tasks
(identifying known and unknown classes) varies with increasing
percentage of known classes randomly selected.
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Accuracy =
TP + TN

TP + TN + FP + FN
=
ncorrect
n

, ð35Þ

where ncorrect represents the number of correctly pre-
dicted samples and n represents the total number of samples.

(4) In the multiclassification problem, the F1-score, pre-
cision, and recall are all calculated by macro; that is,
the index of each class is calculated first, and then,
the unweighted average is taken to obtain the final
index:

macro‐F1‐score = 1
C
〠
C

i=1
F1‐scorei,

Macro‐precision = 1
C
〠
C

i=1
precisioni,

Macro‐recall = 1
C
〠
C

i=1
recalli,

ð36Þ

where C represents the number of classes.
The evaluation metrics of this experiment select accu-

racy, precision, recall, and F1-score of binary classification
and multiclassification.

4.3. Results and Discussions. According to the detailed exper-
imental setting in Section 4.1 and the four evaluation metrics
in Section 4.2, we present the specific experimental results in
this section. The first is the experimental results of
OpenCBD when doing 2-class classification tasks.

As can be seen from Figure 4 and Table 6, OpenCBD
performs best when 7 known classes are randomly selected
in the first stage of training. Because there are 8 known clas-
ses, each individual model randomly selects 7 classes for
training, which enables the individual model to better
understand the differences between different known classes
and makes the model perform better. On the whole, the
increase in the number of encoders helps to improve the
performance of the model, but too many encoders will also
lead to excessive time overhead of the model, and the perfor-
mance improvement is no longer obvious. In Figure 4 and
Table 6, when 7 known classes are randomly selected and
the number of encoders is 12, there is no result. The reason
is that 7 classes are randomly selected from the 8 known
classes, and there are a total of C7

8 = 8 possibilities. If 12
encoders are integrated, there must be repetitions.

While OpenCBD can distinguish known from unknown,
it can also distinguish known classes.

It can be seen from Figure 5 and Table 7 that OpenCBD
performs the best when 7 known classes are randomly
selected in the first stage of training. Accuracy of 9 classes
is over 72%, precision is over 76%, and recall and F1-score
are over 75%.

As can be seen from Figure 6, the probability of
Facebook-audio being wrongly classified into an unknown
class is higher than the other 7 classes. Since there are 5 clas-
ses of data that are regarded as an unknown class, the num-
ber of unknown classes predicted as the unknown class is the
largest and the color is the warmest (red).

In addition, we design different random selection
methods in the first stage of training. A portion of each of
the 8 classes of data is randomly selected, and the results
are as follows.

As can be seen from Figure 7 and Table 8, the results of
this training method are not much different from the origi-
nal results, but the overall results of this method are slightly
higher, all above 70%, and the highest accuracy can achieve
more than 77%, and precision even exceeds 83%. Since all
8 known classes have data to participate in the training of
the individual model in this method, the ensemble model
learns more deeply for each known class.

Table 8: When the number of encoders in the ensemble model of OpenCBD is 4, 8, and 12, accuracy, precision, recall, and F1-score of the 2-
class classification tasks (identifying known and unknown classes) vary with increasing percentage of known classes randomly selected.

Accuracy Precision Recall F1-score

k
w

4 8 12 4 8 12 4 8 12 4 8 12

60% 0.7046 0.72 0.7184 0.753 0.7678 0.7726 0.7737 0.7812 0.7687 0.7632 0.7744 0.7706

70% 0.7038 0.7423 0.773 0.767 0.8015 0.8371 0.745 0.7725 0.7837 0.7558 0.7867 0.8095

80% 0.7046 0.7323 0.7423 0.7619 0.786 0.8047 0.7563 0.7762 0.7675 0.759 0.7811 0.7856

90% 0.7384 0.7315 0.7538 0.7875 0.7909 0.8269 0.7875 0.7662 0.7587 0.7875 0.7784 0.7913

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

4 8 12

60%
70%

80%
90%

Figure 8: When the number of encoders in the ensemble model of
OpenCBD is 4, 8, and 12, accuracy of the 9-class classification tasks
(identifying 8 known classes and 1 unknown class) varies with
increasing percentage of known classes randomly selected.
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As can be seen from Figure 8 and Table 9, when
OpenCBD is doing 9-class classification tasks, the values of
the 4 evaluation metrics increase with the increase of the
number of encoders, and the results are better when the per-
centage of known classes is 70%. The highest accuracy can

reach 73.61%, the highest precision is over 80%, the highest
recall is nearly 75%, and the highest F1-score is 65.85%.

When the individual training selects 70% of the training
set and the number of encoders is 12, the metrics of the two
classes and nine classes are the highest. Therefore, we choose
this ensemble method and compare the area under the ROC

Table 9: When the number of encoders in the ensemble model of OpenCBD is 4, 8, and 12, accuracy, precision, recall, and F1-score of the 9-
class classification tasks (identifying 8 known classes and 1 unknown class) vary with increasing percentage of known classes randomly
selected.

Accuracy Precision Recall F1-score

k
w

4 8 12 4 8 12 4 8 12 4 8 12

60% 0.6746 0.6953 0.6976 0.7342 0.7544 0.7532 0.7104 0.728 0.7242 0.714 0.7363 0.7334

70% 0.6807 0.7207 0.7507 0.7523 0.7835 0.8031 0.6997 0.7326 0.7484 0.7159 0.7502 0.7685

80% 0.6846 0.7123 0.7253 0.7469 0.7779 0.7836 0.7124 0.7346 0.7357 0.7226 0.746 0.7533

90% 0.7192 0.7146 0.7361 0.771 0.7798 0.7939 0.7455 0.7317 0.7317 0.7519 0.7472 0.7526
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Figure 9: Area under ROC of OpenCBD when only identifying
unknown class samples and both known and unknown class
samples.
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Figure 10: Performance comparison of four models on 2-class
classification tasks.
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Figure 11: Performance comparison of four models on 9-class
classification tasks.
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Figure 12: Area under ROC of four models.
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curve (receiver operating characteristic curve) of identifying
only unknown classes and identifying both known and
unknown classes at the same time. The results are shown
in Figure 9.

When verifying the performance of the OpenCBD
model, we also selected several classic open-set recognition
models for comparative experiments. We choose 3 models,
namely, the threshold-based Softmax model [15], OpenMax
model [15], and II-Loss-based model [19].

It can be seen from Figure 10 that the values of the four
metrics in the 2-class classification of the OpenCBD model
are basically around 80%, and the other three are around
70%. Our OpenCBD outperforms the other 3 by around
10% in the 2-class classification tasks. It can be seen from
Figure 11 that in the 9-class classification, the metrics of
the OpenCBD model are between 75% and 80%, and the
other three are basically not more than 70%. Our OpenCBD
outperforms the other 3 models by around 5%-10% in 9-
class classification tasks. Figure 12 compares the area under
ROC of the four models more clearly; the larger the area, the
better the effect; and OpenCBD is significantly better than
the other three.

5. Conclusion

In this paper, we proposed a novel model that can simulta-
neously identify unknown traffic and classify known traffic.
The model could be trained on the known traffic of the closed
set and tested on the network traffic of the open set. Themodel
first combined the convolutional neural network and the
transformer encoder to construct a deep learning-based
model. Then, use the general pretraining method in the field
of encrypted traffic analysis to pretrain from unlabeled traffic
data, so that the model could learn the basic characteristics
of encrypted traffic. Then, according to the characteristics of
the open set, a three-stage training and testing process was
designed. During training, choose the cross-entropy loss func-
tion suitable for classification and the II-Loss function suitable
for clustering. At the same time, using the idea of ensemble
learning, a traffic identification model OpenCBD based on
open-set recognition was constructed. For real-world traffic
data, if it belonged to a known class, the class to which it
belonged can be identified, and if it belonged to an unknown
class, it can be identified to belong to an unknown class.
Experiments were carried out in public datasets, 8 classes of
data were selected as known classes and 5 classes of data were
selected as unknown classes, and a class-balanced dataset was
constructed in the experiment to eliminate possible human
influence to the greatest extent.

In the future work, we can consider the clustering of
unknown classes of encrypted traffic and further separate
unknown traffic according to its characteristics, which is
convenient for further discovery and research of new classes
of traffic.

Data Availability
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able in [39].
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