Hindawi

Wireless Communications and Mobile Computing
Volume 2022, Article ID 1830201, 12 pages
https://doi.org/10.1155/2022/1830201

Research Article

WILEY | Q@) Hindawi

An Android Malware Detection Leveraging Machine Learning

Ahmed S. Shatnawi®),’ Aya Jaradat )2 Tuqa Bani Yaseen,’ Eyad Taqieddin )2
Mahmoud Al-Ayyoub,’ and Dheya Mustafa®

"Department of Software Engineering, Jordan University of Science & Technology, Irbid 21110, Jordan
Department of Network Engineering and Security, Jordan University of Science & Technology, Irbid 21110, Jordan
’Department of Computer Science, Jordan University of Science & Technology, Irbid 21110, Jordan

*Department of Computer Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan

Correspondence should be addressed to Ahmed S. Shatnawi; ahmedshatnawi@just.edu.jo

Received 4 December 2021; Revised 23 March 2022; Accepted 8 April 2022; Published 6 May 2022

Academic Editor: Mohamed Elhoseny

Copyright © 2022 Ahmed S. Shatnawi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Android applications have recently witnessed a pronounced progress, making them among the fastest growing technological fields
to thrive and advance. However, such level of growth does not evolve without some cost. This particularly involves increased
security threats that the underlying applications and their users usually fall prey to. As malware becomes increasingly more
capable of penetrating these applications and exploiting them in suspicious actions, the need for active research endeavors to
counter these malicious programs becomes imminent. Some of the studies are based on dynamic analysis, and others are based
on static analysis, while some are completely dependent on both. In this paper, we studied static, dynamic, and hybrid analyses
to identify malicious applications. We leverage machine learning classifiers to detect malware activities as we explain the
effectiveness of these classifiers in the classification process. Our results prove the efficiency of permissions and the action
repetition feature set and their influential roles in detecting malware in Android applications. Our results show empirically
very close accuracy results when using static, dynamic, and hybrid analyses. Thus, we use static analyses due to their lower cost
compared to dynamic and hybrid analyses. In other words, we found the best results in terms of accuracy and cost (the trade-

off) make us select static analysis over other techniques.

1. Introduction

Cybersecurity has become a primary area of immediate con-
cern to computer scientists and network engineers that satis-
factory solutions to many issues are in order. As a result of
the rapid evolutions in technology developments and their
inherent integrations in all aspects of our lifestyles, a variety
of malware applications and their intended targets have
become well studied and identified. Among the malware
variety that has received attention lately is Android malware
which is found to occupy considerable attention in the web
world. Android is one of the most common operating sys-
tems that dominates the operating system market. In 2020
[1], the Android system accounted for 85% of the total num-
ber of smartphones that harness the Android system as the
operating system of choice.

In general, an Android system inherently supports a whole
host of applications. At the end of April 2020, the number of
these applications exceeded the 2.8 million mark [2]. The vari-
ety of these applications are commonly found on Google Store,
which is home to most Android applications. Moreover, the
increasing reliance on this system by application developers
and users together with its friendly nature has made it more
prone for malware to sneak into these applications [3]. This
is by nature of the fact malicious programs execute their func-
tionalities in a seamless manner and are assisted by several key
factors. These include, amongst others, calling a third-party
code, the environment under which an Android application
operates [4], in addition to the level of permissions allowed.

Malware invasive techniques continue to evolve with the
aim of evading detection [5], as some malware applications
contain more than 50 variables that make detecting them a
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great challenge. Therefore, it is necessary to work on finding
methods capable of dealing with the continuous evolution of
Android malware to detect it, where it happens, and deacti-
vate/remove it effectively [6]. All such challenges did indeed
preoccupy researchers in the area and prompted them to do
research to discover malware and tackle it in a proper man-
ner [7]. As a result, researchers were able to develop three
mechanisms to detect Android malware that fell under
static, dynamic, and hybrid analyses techniques. Static anal-
ysis is harnessed with the objective of extracting the features
that help us identify harmful behavior for an application
without a need for actual application deployment. However,
this type of analysis was found to suffer from code obfusca-
tion techniques that help malware authors to evade static
detection techniques [8]. Dynamic analysis, however, is lev-
eraged to determine the malware behavior of an application
during its runtime such as during system calls. Generally, the
static analysis feature provides the ability to locate the mal-
ware component through the source code, as the dynamic
analysis feature provides the ability to identify the malware
location through in a runtime environment [4].

In this paper endeavor, we propose a model for Android
malware detection based on a combination of static and two
dynamic analyses (hybrid analysis) together with machine
learning classifiers. In the hybrid analysis part, we set out by
conducting experiments through which we would extract
those features that can provide the maximum possible amount
of important information about the application’s behavior by
rank selection. After that, we apply different machine learning
(ML) algorithms and compare the performance of each to
identify the most accurate algorithm. In this, ML is one of
the modern technologies currently widely used in many areas,
including malware detection, as it is used in the classification
process and the selection of features.

The process of selecting and extracting features is one of
the most critical steps in an Android malware detection pro-
cess. The efficiency in feature extraction readily determines
the detection quality. Hence, extracting and selecting certain
features from the hotspots must be given particular attention
in the malware detection process [9-11]. Nonetheless, there
are some concerning obstacles that could be encountered in
the feature selection process:

(i) The feature extraction process may consume con-
siderable time due to the large size of the Android
data file; as the number of features may be in mil-
lions, the entire process of extracting features could
pose some serious burdens. Furthermore, it is also
possible for the malware detection process to
become ineffective depending on the choice of some
of the features that may have a low impact on the
accurate Android malware detection

(ii) As a result of the rapid development and evolution
of Android applications, the process of extracting
and selecting features is observing continuous
improvement due to a large reservoir of different
behaviors of the applications and the various forms
that have emerged; it is quite possible to reach a fea-
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ture that had not been met/identified before which
ultimately could interject significant bearing
towards a more accurate detection process

(iii) It is often that a feature could get selected undercut-
ting the algorithm’s ability to skip unnecessary pro-
gram execution paths, rendering the detection
accuracy ineffective for all potential cases. Therefore,
one aim of this study would be so to choose the fea-
tures accurately towards the “best” detection accuracy

Therefore, the main contribution of our paper is to
detect malware based on a hybrid analysis scenario, whereby
we combine several dynamic and static features together.
Here, the permissions represent the static feature that is
extracted from the manifest file, which can either be the port
and/or the IP address, whereas the action repetition repre-
sents the dynamic features that were extracted during the
implementation of the application. The action repetition fea-
ture is one of the features that is being explored for the first
time, including its use with the permissions. In the work pre-
sented here, we used four machine learning classifiers with
particular abilities to classify correctly when selecting the
features appropriately. The results of our evaluation have
shown that our system is fairly competitive in terms of the
accuracy attained in the malware detection process.

In short, the contribution in this research work fulfills
several objectives:

(i) Introduce a new feature, which was never addressed
in the literature. This is particularly manifested in
the action repetition, whereby actions are monitored
and tracked, with the repetition number leading to
the detection of a harmful behavior

(ii) Contrive a new, practical and highly effective system
capable of detecting malware, leveraging a set of fea-
tures, the most important of which are action repeti-
tion and permissions. The objective, here, entails
arriving at experimental results that reflect high
accuracy and suflicient efficacy, in an effort to dem-
onstrate the effectiveness of our proposed system

The rest of this paper is organized as follows: Sections 2
and 3 shed some light on related background work. Section 4
describes the methodology proposed in this paper. Sections
5 and 6 discuss the experimental setup used and evaluation
of results, respectively. Section 7 arrives at key conclusive
remarks of the work addressed in this paper.

2. Background

Malware is a term used to refer to software with inherent
malicious objectives. They present illegal activity targeted
by attackers towards theft of data or user credentials [12].
Applications form an attack vector through which mal-
ware can be delivered on mobile devices. Most users have
limited expertise to identify the permissions required by an
application nor the exploits that may appear through them.
Furthermore, installing the process of selecting and
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extracting features is one of the most critical steps in an
Android malware detection process.

Many researchers use traditional malware analysis tech-
niques wherein they are restricted between two practical
approaches to detect such malware. The Android malware
detection analysis-based approaches are static, dynamic,
and hybrid. The following subsections introduce these anal-
ysis methods, briefly summarizing their employed features.
Static-based malware binary classification static analysis
involves unpacking the application to analyze the code for
any malicious content. By decompiling the files, it is possible
to identify critical parts of the code [13]. This may also
involve extracting features from the disassembly of the
underlying Java code and the AndroidManifest.xml file [13].

This type of analysis does not involve any execution of the
application. Accordingly, it does not require large resources
and is considered faster in comparison to other approaches
[14]. However, with the explosive growth in the number of
Android applications, it has become rather challenging to rely
solely on such an approach as some malicious applications use
repackaging or obfuscation to bypass detection. Meanwhile,
dynamic-based malware classification analysis leverages activ-
ities associated with an application as the application is being
executed. It may involve some interaction from the user or
other processes in order to trigger the malicious behavior
[15]. Here, the actions of the application are monitored to
detect abnormalities in the system call, network activity, pro-
cessor load, phone calls initiated, or SMS sent in order to
extract the dynamic features. Dynamic analysis has an advan-
tage of recording the applications’ behavior and detecting any
dynamic code being loaded at runtime, which makes it favor-
ably popular for malicious code analysis [16]. However, a
major drawback of this form of analysis is the added overhead
on the operating system, which makes it harder to implement.
Furthermore, it takes a long duration to complete due to the
fact that monitoring the activities may not yield useful results
without proper triggers.

Hybrid analysis malware classification is a type of analy-
sis that mix of both the static and dynamic analyses to ben-
efit from their combined advantages. It involves analyzing
the source files of the application along with monitoring
the behavior at runtime. Here, although it achieves higher
detection accuracy, it has been found to suffer from the
drawbacks of both previous approaches in terms of long
duration for detection and consumption of the operating
system resources [17].

3. Related Work

Several efforts related to Android malware detection have
been addressed in the literature. In the sequel in this section,
we present a rundown of the most relevant papers with
respect to static, dynamic, and hybrid malware analysis.
The work presented in [18] introduced a static-based
malware detection method. There, the authors consider the
API call feature by extracting it using correlative analysis.
Furthermore, three machine learning algorithms, support
vector machine (SVM), random forest (RF), and k-nearest
neighbor (KNN), were used to train the feature in order to

classify the application as either benign or malicious. The
RF classifier produced the best results in terms of accuracy.
In [19], Ratyal et al. introduced a model in which they use
the features of Android permissions and Android destina-
tions to detect malware. According to the authors, these
two features resulted in improved detection. Another
approach for static analysis was introduced in [20]. The fea-
tures were determined based on three steps: graph creation,
sensitive node extraction, and method creation. The authors
employed four classifiers, of which RF was the best in terms
of classification accuracy.

Static analysis was also addressed in [21] by checking
open sockets, message digest, and reflection code. The paper
develops a process of identifying malware which resulted in
96% accuracy leveraging RF machine learning methodology.

Cai [22] studied the sustainability problem for ML-based
app classifiers. He defined sustainability metrics and com-
pared them among five state-of-the-art malware detectors
for Android. He also built an infrastructure to mine a mobile
software ecosystem with three elements; the mobile plat-
forms, user apps built on the platforms, and users associated
with the apps [23]. Fu and Cai investigated the deterioration
problem of defense solutions against malware using machine
learning classification for four state-of-the-art Android mal-
ware detectors [24].

The work in [25] proposes an estimation method that is
based on an entropy approach in choosing the best features,
thereby averting the need for a standard procedure that
chooses all the features to differentiate between benign and
harmful malware, particularly that APK files possess many
features, making any standard process rather cumbersome
and infeasible. The approach in [25] was shown to achieve
an accuracy of 96.9% in KNN and SVM machine learning.

Meanwhile, several works in the literature have addressed
different approaches of classification harnessing dynamic
analysis. In [26], three input generation techniques were used:
state-based, random-based, and hybrid techniques. There, the
authors use the DroidBot and Monkey tools to extract features
from the generated log files. Their results indicate that the best
classification results were achieved using RF. The works in [27,
28] also use dynamic analysis to create the permissions then
use WEKA to collect the permissions. The main difference
between the two papers lies in the number of classifiers used.
The former uses five classifiers, with the best results reported
were achieved when using the simple logistic (SL), J48, and
RF techniques. On the other hand, the work in [28] uses seven
classifiers and shows the best classification outcomes when
employing RF techniques.

Authors in [29] extract the dynamic analysis features by
using the structure, safety, and intercomponent communica-
tion dimensions. They found that the features that were
extracted using the dimensions of the structure were more
important than the other two.

Cai and Jenkins targeted a sustainable Android malware
detector that, once trained on a dataset, can continue to
effectively detect new malware without retraining [30]. Droi-
dEvolver [31] is an Android malware detection system that
can automatically and continually update itself during mal-
ware detection without any human involvement.
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FIGURE 1: Proposed hybrid analysis approach.

In [16], the authors introduce a malware detection
mechanism in which they rely on hybrid analysis features,
namely, API calls, permissions, and system calls. They use
the tree augmented naive Bayes to capture the interrelation
between static and dynamic features. The mechanism used
in [29] was shown to achieve a detection accuracy of 97.

The SAMADroid and StormDroid techniques presented
in [32, 33],, respectively, offer hybrid analysis tools. The
SAMADroid approach combines static and dynamic analy-
sis on both local and remote hosts. The tool uses SVM, RF,
and naive Bayes (NB) and achieves high accuracy in detect-
ing malicious programs. It further adds the advantage of low
energy consumption and improved storage efficiency. The
StormDroid approach, on the other hand, extracts static
and dynamic features from permissions and sensitive API
calls by sequencing them directly in the source code.

Another more recent hybrid approach is addressed in
[16]; the malware detection model presented is based on a
tree augmented naive Bayes (T'AN), which uses conditional
dependencies against both static and dynamic features such
as API permissions and system calls. It then detects mali-
cious behavior by combining the outputs of both of these
features as gained from the classifier. Although the model
shows 97% accuracy, it does not show the android version
or user input generated during dynamic analysis.

In [34], a different hybrid detection system is proposed.
The model uses SVM and a linear classifier based on a new
open source framework called CuckooDroid. The frame-
work enables Cuckoo Sandbox’s features by a misuse detec-
tor—“an approach in which attack patterns or unauthorized
and suspicious behaviors are learned based on past activities
and then the knowledge about the learned patterns is used to
detect or predict similar subsequent such patterns in a net-
work.”. Misuse detection is commonly adopted to detect
well-known malware and classify android malware by com-
bining static and dynamic analysis techniques together. The
proposed model benefits from the low false-positive rate of
misuse detection and the ability of anomaly detection to

detect zero-day malware and is evaluated using 5560 mal-
ware and 12000 benign samples. This model was shown to
achieve 98.79% accuracy detection rates when classifying
98.32% of the malware samples.

In [35], the authors extract the API and permissions
from the source code to access the static analysis features.
They also consider the total time needed for the system to
extract the dynamic analysis features. The detection accu-
racy reached based on this came out to be 93.33%. Along
the same context, authors in [17] apply the static, dynamic,
and hybrid analysis techniques and draw their comparisons.
They conclude that the hybrid analysis approach was the one
to achieve the better results.

Note, however, that although the hybrid analysis
approach was shown to be superior to static or dynamic,
the feature selection process remains the most critical factor
in determining the detection accuracy.

Several studies investigated Android application permis-
sion system. REAPER [36] is a tool that traces the permis-
sions requested by apps in real time and discriminates
them from other permissions requested by third-party
libraries linked with the app. Fasano et al. [37] proposed a
formal method to detect the exact point in the code of an
Android application where a permission is invoked at run-
time. Dilhara et al. [38] proposed a technique to automati-
cally detect the incompatible permission used in a given
app and repairs them when found.

4. Methodology

This section presents our proposed methodology to the clas-
sification process. The general methodology of the proposed
malware detection Android systems is shown in Figure 1.
Commensurate with the figure, the hybrid approach is
divided into two stages: (1) static analysis and (2) dynamic
analysis. In the first phase of the static analysis stage, APK
files are converted from XML to JSON. After that, the pro-
cess of scanning JSON files begins to extract the permissions
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pertinent to the application involved. Once these permis-
sions are made available via static analysis leveraging
machine learning, the application is classified as either mali-
cious or suspicious. With this, the static analysis stage termi-
nates, as the dynamic analysis stage commences. The
dynamic analysis phase aims to do more checks for any suspi-
cious application. By analyzing the application’s runtime
behaviors, the application in question is executed to determine
the observed dynamic features such as system call, score,
intent, and action. The dynamic features obtained are made
available for dynamic analysis based on machine learning for
final classification. In the process, suspicious applications are
classified as either malicious or benign. The applications that
get classified as malware are added to the list of malware, as
applications that got classified as benign get added to the list
of benign applications for future reference.
Each step will, in turn, be separately explained below.

4.1. Dataset. Several studies presented and tested a large-
scale datasets of android applications including runtime
traces for research community, such as AndroCT [39] and
AndroZoo [40]. In this paper, we use a dataset that consists
of benign, malware, and Greyware applications. Palo Alto
Networks collected these data over a month period back in
2017 [41]. It was derived from a series of mixed Android
APK files containing an XML report representing the meta-
data built during the static and dynamic analyses.

4.2. Extraction of Features. In recent times, it has become
common practice to come across datasets containing hun-
dreds of thousands of features. Over time, it became more
noticeable that the number of features often converges to
the number of observations stored in the database, some-
thing that results in attaining a machine learning model that
suffers from overfitting [42].To avoid this problem, the ten-
dency is to reduce the number of features by creating a new
set of features deduced from the original set, as we create a
set of features capable of reducing most of the data’s original
features. Therefore, in this proposed work, we aim to extract
the most prominent features out of dynamic and static anal-
ysis while marginalizing the less valued features to create a
new set of dynamic and static features.

In reviewing various dataset files emanating from a mul-
titude of applications, it was observed that certain features
(over others), both dynamic and static, could particularly
impact the classification process altogether. More precisely,
we noticed that certain actions were frequently repeated in
multiple malware files. We also noticed that three ports were
the most that were being used: 443, 80, and 5200. Addition-
ally, we noticed certain IP addresses that were often used,
which were sources for further attention and suspicion.

In our database there are two types of analysis:

(1) In the database files subject of our investigation, we
conducted two types of analysis: static analysis: the
features emanating from this were extracted directly
from the source code of the applications. Moreover,
among the features that could, also, be extracted
from APK applications include the following:

()

(i) Permissions: on Android systems, the permission
mechanism is relied upon to protect the privacy
of users, with the particular objective of request-
ing permission from the application in order to
access data and system features such as calls and
camera as most of the time these programs want
to request a special set of permissions. Hence, it
is good to scrutinize this with care when extract-
ing the anticipated features

(ii) Intent: usually, some malware families use
intent to activate their malicious activity directly
after restarting smart devices

(iii) Suspicious API calls: it is a set of application
interfaces that can be used to access sensitive
resources and information, as it sometimes
leads to harmful behavior without any permis-
sion request

(iv) Restricted API calls: this type of API call aims to
achieve roughly the same goal as would suspi-
cious API calls, save for the fact that it is pro-
tected by permissions

Dynamic analysis: this type of analysis addresses the
features that can be extracted during the implemen-
tation of an application under a safe environment
where the implementation process is recorded. In
our research, there is a number of dynamic features
that can be extracted from Android applications.
Features that can be extracted during the implemen-
tation of the applications include the following:

(i) DNS query: it is a request which requires infor-
mation sent from the user to the server. It is
considered one of the solutions used to discover
and block DNS queries for malicious behavior

(ii) IP address: there is a number of factors that can
make an IP address a suspicious address.
Amongst these factors is the sending a lot of
spam and linking to devices full of malware
and other different suspicious patterns of behav-
ior. Therefore, it is rather essential to be able to
differentiate between the IP addresses are they
benign or those that arouse suspicion

(iii) Port: the port feature is a virtual site that estab-
lishes connection to the network from the
beginning right to the end of the interval of
interest, as when sending a package or a group
of specific IP address packets. The computer
would identify the port to which the packets will
be directed commensurate with the components
of the application or package

(iv) Action: this feature refers to an application’s
activity and is represented in the number of
diverse behaviors and activities, which are rep-
resented by patterns of access that may be nor-
mal or suspicious. Therefore, identifying these



activities is very important because they lead to
identify the particular suspicious activity and its
source, thereby mitigating any damage caused
by such activities

4.3. Feature Selection. After completing the stage of features
extraction and identifying new features, we move on to select-
ing the features stage. The feature selection process is one of
the most important steps with which we aim to choose the fea-
tures from the pool of newly identified features in such a way
as to achieve an increase in accuracy, a reduction in complex-
ity, and, in the meantime, avoid any overfitting. Researchers
have traditionally applied a number of feature classification
approaches to detect malware in applications. In this
endeavor, we particularly employ the feature rank approach,
as this method leverages certain crucial elements in the
arrangement of features due to its ability to choose the appro-
priate features needed to build the malware detection models.

The feature rank process is based on the random forest
[43], as it is one of the ML methods, due to its relatively good
accuracy, simplicity, ease of use, and strength. All of these har-
vested advantages have made it a powerful way to choose fea-
tures. The random forest (RF) approach consists of a group of
decision trees. Each node in the decision tree represents one
particular feature, which makes measuring the importance of
the feature a fairly simple process. When training a decision
tree, we calculate the amount of each feature that reduces
impurities in the tree. When applied to the forest, the average
impurity reduction for each feature is calculated to arrange the
features according to the average number of impurities.

The feature selection process, depending on random for-
ests, can be summarized as follows:

(i) As a first step, we work towards classify each feature
separately by implementing a random forest algorithm

(ii) As a second step, we work on classifying features
based on minimizing impurities, as the features of
less importance are removed, while other features
are preserved

(iii) In the third step, we basically reapply the random
forest algorithm to the retained features, with the
objective of accessing the final essential features

Our dataset contains several features, as we may use all
of these features in the process of detecting malware.

After completing the feature selection process based on
RF, we obtain the top dynamic and static features:

(1) Dynamic: action repetition

(2) Static: permissions

4.4. Machine Learning Techniques. Machine learning is an
integral part of artificial intelligence. It is based on self-
learning and development depending on vast amounts of
data without clear programming. Machine learning is
divided into supervised machine learning, unsupervised
machine learning, semisupervised machine learning algo-
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rithms, and reinforcement machine learning algorithms.
Supervised machine learning algorithms are the most widely
used because they depend on the classification of a dataset.
This is particularly so due to their ability to analyze the
training dataset, and they can classify them into classes
according to their characteristics [42].

In this paper, we opted to implement four machine
learning algorithms: naive Bayes (NB) that is based on the
principle of maximum likelihood; random forest (RF),
which is based on the initiation of packing and the random
characteristic for decision making; the decision tree (DT),
which is based on the principle of computing all traits and
then making the decision; and XGBoost which enhances
parallel tree boosting with a fast and accurate mechanism
together with gradient boosting. In the sequel, we discuss
the features for each algorithm separately, as follows:

(1) The random forest (RF) algorithm: RF is one of the
standard algorithms used for the intended purpose;
it is based on decision trees, leading to better predic-
tion accuracy. The nomenclature (forest) draws on
the fact that it contains a group of decision trees,
and it is used with the objective to develop the trees
based on independent subsets of the dataset. The
algorithm stands out due to its ease of calculation
and ability to adapt quickly, and it is considered a
stable algorithm

(2) The decision tree (DT) algorithm: DT is one algo-
rithm that leverages the training process to build
data structures resembling a tree structure. It is used
to make predictions about the test data. The tree that
is established as such consists of decision nodes and
leaf nodes. This algorithm has gained wide popular-
ity due to its simplicity. Further, its achieves higher
accuracy based on fewer decisions taken [44]

(3) XGBoost: this is an algorithm that is considered one
of the improved algorithms. It was first derived with
the objective to set up an algorithm that achieves
high efficiency, portability, and fast calculations. It
is now one of the most widely used algorithms in
machine learning due to its ability to deal effectively
in handling a whole host of problems, be they regres-
sion or classification type problems; and it has
proven itself well in terms of speed and robustness

(4) The gradient boosting algorithm: the idea behind
this algorithm arose from the idea of reinforcement.
It functions based on iterative learning, and how
many weak learners there exists, in order to obtain
a robust model capable of dealing with classification
and regression problems. It represents an algorithm
capable of improving the cost function [45]

5. Experiment Setup

In this section, we will discuss the steps that were followed in
this work to achieve detection of malware in more elaborate
detail.
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For X in range Files

PN R

open path file_ dynamic

9. dynamic_feature= load data
10. open path file_ static

11. static_feature= load data

12. Insert [id = dynamic_feature,
13. port = dynamic_feature,

14. Ip=dynamic_feature,

16. action =dynamic _features,

18. permission=static _feature
19. end

Create array of action from apk_ api.
Create array,it have malware permissions which are used by applications.
Read the File dynamic and Static analysis.

Path File _Dynamic= files [dynamic _json_ file_ path][x]
Path File _Static= files [static _ json_ file_path][x]

15. If dynamic features.get(action)==action[i]

17. If static features.get(permission)==permission/[i]

ArcoriTHM 1: Pseudocode of the selection features.

5.1. Data Preparation. At the onset of this research
endeavor, we reviewed numerous files for benign and
malware-infected applications. Particularly, we had to deal
with a total of 195623 applications, consisting of 104747
malware-containing applications and 90876 benign applica-
tions. However, the application files would contain some
unwanted/unnecessary files that must be removed before
pursuing any of the steps prescribed herein as they would
not offer adequate pertinent information. Consequently, we
ended up having to deal with 166710 files.

With that, we had to split out the static benign files pur-
suant with their size as the variation in file size ranged from
2.17KB to 4.12 MB. Files got divided it into two groups; the
first group contained files the sizes for which were found to
exceed 1 MB; the other group contained data that was less
than 1 MB in size. Meanwhile, there was no need to make
a similar split for the dynamic benign files. This was not par-
ticularly needed as the variations in the file sizes exhibited a
smaller range: 498 bytes to 1 MB. Finally, the malware files
were split out according to the family labels, which were
made up of five families: Trojan, Pup, Adware, Spyware,
and Riskware.

5.2. Extract and Select Features. In the next phase, the most
important features were extracted and selected based on
the classification process prescribed earlier. Algorithm 1
illustrates the feature selection process where we first read
all the dynamic and static files within the field. Then, we
load the essential features and rely on the following dynamic
feature: being action repetition. In the process, we extracted
all actions for malware and benign applications with a total
number of 176 actions. We also relied on the static permis-
sions feature and extracted the most important permissions
that referred to malware applications, where we extracted
668 permissions from a total of 4276 permissions. In the
sequel, we will elaborate further on the importance of the
permission and the action repetition features. Additionally,

TaBLE 1: Permission for static analysis.

Importance Features name

0.587484 android.permission. WRIT _EXTERNAL_STORAGE
0.088250 com.google.android.c2dm.permission.RECEIVE
0.049034 android.permission.READ_LOGS
0.033341 android.permission.vending. BILLING
0.018864 android.permission.USE_CREDENTIALS
0.014858 android.permission. GET_PACKET_SIZE
0.013001 android.permission.ACCESS_NETWORK_STATE
0.012275 android.permission.GET_TASKS
0.011658 android.permission.SYSTEM_ALERT_WINDOW
0.010321 android.permission. CAMERA

we will scrutinize some of the permissions and the action
repetitions with the highest bearing on the classification
process:

(1) Permissions: Android permissions are one of the
most important security features that can be pro-
vided in Android systems as most applications that
are downloaded through the Android Play Store
are accompanied by a set of permissions that each
application requires. Therefore, it is one of the
important features that has a great impact on the
process of detecting malware. In our experience, a
number of permissions were extracted that had the
top impact on the classification process, as shown
in Table 1

(2) Action repetition: monitoring the actions of Android
applications is an important process, as it is one of
the features that helps to identify harmful proce-
dures from others, but we have depended on our
work on the frequency of these procedures in the
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TABLE 2: Action repetition for dynamic analysis.

Importance Features name

0.302175 APK file removed the launcher icon

0.197239 File tried to connect to a malicious URL

0.090943 APK file deleted a file

0.080813 APK file displayed a float window

0.026626 APK file uploaded geolocation information to the remote server

0.025072 APK file fetched the information of apps installed on the device

0.023656 File wrote a file on the device

0.021470 APK file tried to connect to the URL

0.020729 File wrote an ELF library file on the device

0.017581 APK file sent out an SMS message

classification process, being that sometimes the pro-
cedure may not indicate the presence of malware
programs, but repetition may lead to the discovery
of these programs. Table 2 shows ten of the top
actions relied in classification

5.3. Training of Machine Learning-Based Classifiers. During
this stage, we split the dataset into training dataset (70%),
testing dataset (15%), and validation dataset (15%). The
training dataset is used to build the model. Once the model
is established, we use the test dataset to determine whether
the model was trained properly in order to provide the most
accurate results. The training dataset used consists of 104747
malware applications and 90,876 benign applications. The
training process for a machine learning-based static and
dynamic analyzer begins by analyzing an Android applica-
tion into JSON files to extract the permission-related fea-
tures; the extracted permissions are out of a total of about
668 unique permissions. Furthermore, about 176 actions
are collected by the dynamic analyzer. As the training pro-
cess commences both static and dynamic features are identi-
fied concurrently.

Meanwhile, to handle the malware families, we broke
them down commensurate with the data split ratios as
shown in Table 3.

6. Results and Discussion

In this section, we provide the details of the steps that were
taken to investigate the results that were obtained. We, also,
analyze the performance of the various classifiers used in the
study, showing the results for four different machine learn-
ing algorithms (RF, DT, XGBoost, and gradient boosting)
used in detecting malware with the grid search mechanism
being employed for hyperparameter tuning. This is illus-
trated in Table 4.

We applied classifiers to dynamic and static features,
each applied independently to the appropriate type of fea-
tures involved. Our results have been categorized commen-
surate with results based on dynamic features without
permissions, results based on static features without action
repetition, and results based on dynamic and static features.

TaBLE 3: Malware family details.

EiD ke e Tt Vi
Adware 4661 3263 699 699
Riskware 5 3 1 1
Trojan 82425 57697 12364 12364
Spyware 54 38 8 8

Pup 17603 12323 2640 2640

Equations (1), (2), (3), and (4) show the measures that
were taken in the process of testing the performance for each
machine learning algorithm. Pursuant with the equations
shown, FP (false positive) refers to the number of applica-
tions classified as malware when, in reality, they are benign.
FN (false negative) refers to the number of applications clas-
sified as benign but, in reality, can readily be classified as
malware. TP (true positive) indicates the number of applica-
tions that are properly classified as malware, while TN (true
negative) indicates the amount of applications that are prop-
erly classified as benign.

TP
Recall= -+ 1
A TPIEN v
TP
P .. = 2
recision TP ¥ FP ( )
TP + TN

A = >
Y = TP FP+ TN + EN

2 * Precious * Recall
F1 - Score = - . (4)
precious + Recall

The static, hybrid, and dynamic models would normally
be expected to achieve high F1 score, accuracy, recall, and
precision. We trained the analysis tool used on some dataset
and used optimized parameters for machine learning. In the
proposed mechanism, we firstly do the static analysis part
comprising the manifest file, which includes permission.
Following this, the mechanism, as prescribed, invokes the
dynamic classification model and detects it under a control
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TaBLE 4: Grid search setting.

Classifier Parameter
Permission Only:{learning rate’:0.1, max_depth’:10,’n_estimators’:500, subsample’:0.5}
XGBoost Action Only:{learning rate’:0.1,’max_depth’:10,’n_estimators’:200, subsample’:1.0}

Permission & Action:{’learning rate’:0.1,’max_depth’:5,n_estimators’:500, subsample’:0.5}

Permission Only: {’learning rate:0.1, max_depth’:10, n_estimators’500, subsample’:0.5}

Gradient boosting

Action Only:{’learning rate’:0.1,’max_depth’:10,’n_estimators:200, subsample’:1.0}

Permission & Action:{’learning rate":0.1,max_depth’:5, n_estimators’:500, subsample’:0.5}

Permission Only:{’criterion’’gini’ ;) max_depth’:10 ;' max_features’’auto’, n_estimators’:100};
DT Action Only:{’criterion’: ’gini’, 'maxdepth’: 7,' maxf eatures': log2} nestimators': 10}
Permission & Action:{’criterion’’entropy’, max_depth":7, max_features’’auto’,’n_estimators’:10}

Permission Only:{criterion’’gini’,; max_depth’:10,’max_features’’auto’, n_estimators":100}
RF Action Only:{’criterion’: ’gini’, ‘'maxdepth’: 7,' maxf eatures':' log2) nestimators': 10}
Permission & Action:{’criterion’’entropy’, max_depth’:7, max_features’’auto’,’n_estimators’:10}

TaBLE 5: The summary of results of validation file.

(a) Static feature result

Classifier Accuracy Precision Recall FL

(b) Dynamic feature result

Accuracy Precision Recall

(c) Hybrid feature result

F1 - F1
~  Accuracy Precision Recall »

score score score
Sggj:;lg 0.9954 0.996  0.9967 0.9964 0.993 0997 0992  0.994 0.997 0998 0.99  0.997
XGBoost 0.9956 0.9959 09971 0.9965 0.993 0997 0992  0.99%4 0.998 0999  0.997 0.998
Decision tree 0.9946  0.99501 0.9964 0.9947 0.987 0991  0.989  0.987 0.996 0997 099  0.996
Random forest 0.962 0947 0994  0.970 0.943 0967 0941 0954 0.976 0994 0967 0.980

TaBLE 6: The summary of results of test file.

(a) Static feature result

Classifier Accuracy Precision Recall Fl

(b) Dynamic feature result

—  Accuracy Precision Recall
core

(c) Hybrid feature result

FL Accuracy Precision Recall FL

score score
Sggj:iig 0.995 0994  0.9969 0.996 0.993 0997 0991 0.99%4 0.997 0999  0.997 0.998
XGBoost 0.995 0.9946  0.997 0.9958 0.993 0997 0991 0.994 0.998 0997 0997  0.998
Decision tree 0.9941 0.994  0.9969 0.9942 0.987 0991  0.988 0.987 0.995 0997  0.996  0.996
Random forest 0.946 0.951 0994 0972 0.943 0965 0942 0953 0.974 0993 0966 0.979

environment. Finally, the proposed method would apply the
hybrid model. In this way, we would have tested the applica-
tion against the three different models explained.

The static, hybrid, and dynamic models would normally
be expected to achieve high F1 score, accuracy, recall, and
precision. We trained the analysis tool used on some dataset
and used optimized parameters for machine learning. In the
proposed mechanism, we firstly do the static analysis part
comprising the manifest file, which includes permission.
Following this, the mechanism, as prescribed, invokes the
dynamic classification model and detects it under a control
environment. Finally, the proposed method would apply
the hybrid model. In this way, we would have tested the
application against the three different models explained.

Table 5 shows a summary of validation results file. The
results show comparable results when XGBoost and gradient
boosting are used while reflecting favorably better results
than when both DT and RF are implemented. Further,

Table 6 shows a summary of the test file results. The results
reveal comparable results when both XGBoost and gradient
boosting are used and better results than when both DT and
RF are applied.

From the results obtained, note that all the classifiers
have achieved good results. In our work, we particularly
relied on the action repetition feature in which the actions
are related to each other. Moreover, the results indicate that
we, in fact, have identified a feature which had not been tar-
geted directly, namely, action repetition. Finally, we observe
from the our work done on each of the features separately,
or when applying the hybrid analysis method, that we have
achieve good results in the classification process. Now, in
order to analyze the required cost needed in terms of device
memory and CPU for every model we evaluated in our
experiments, we captured the cost needed for both training
and execution using the IPython command which was par-
ticularly used to capture these factors:
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TABLE 7: Permission.
Train Test Validate
Classifier CPU times Wall time CPU times Wall time CPU times Wall time
User System User System User System
Gradient boosting 9min 17 5499ms  17min 23s 1.07 s 20 ms 1.09s 1.09s 24 ms I.ls
XGBoost 53 min 45s 1.81s 2min 44s 1.64s 1ns 91.8 ms 1.76s 4.401 ms 142 ms
Decision tree 16.5s 996 ms 6.33s 515ms 36 ms 121 ms 530 ms 20.1 ms 123 ms
Random forest 241s 56 ms 2.49s 57.7 ms 1ns 55.6 ms 57 ms 7 Ms 54.9 ms
TABLE 8: Action.
Train Test Validate
Classifier CPU times Wall time CPU times Wall time CPU times Wall time
User System User System User System
Gradient boosting 56s 696 ms 10 min 40's 707 ms 64 ms 898 ms 731 ms 68 ms 918 ms
XGBoost 2min 23s 292 ms 16.8s 1.94s 60 ms 357 ms 191s 64 ms 356 ms
Decision tree 969 ms 852 ms 1.84s 222 ms 136 ms 385 ms 217 ms 140 ms 385 ms
Random forest 1.77 s 100 ms 1.98 ms 130 ms 64 ms 342 ms 108 ms 104 ms 357 ms
TaBLE 9: Action and permission.
Train Test Validate
Classifier CPU times . CPU times . CPU times .
User System Wall time User System Wall time User System Wall time
Gradient boosting 8 min 48 s 792ms  16min4s  797ms 116 ms 1.04s 814 ms 112 ms 1.06s
XGBoost 38 min 53s 2.06s 1 min 58 s 2.86s 128 ms 414 ms 2.62s 96 ms 399 ms
Decision tree 1.83s 1.38s 2.94s 309 ms 184 ms 521 ms 326 ms 176 ms 539 ms
Random forest 5.04s 76 ms 5.25s 174 ms 120 ms 4 464 ms 177 ms 160 ms 486 ms

(i) %%time: time of the execution for the entire cell. From
this command, we were able to get the CPU times for
the amount of time the CPU takes for running exclu-
sively the code, the amount of time the CPU takes on
system calls, combined user and system times, and the
actual time taken by a computer to complete a task (it
is the sum of three terms: CPU time, I/O time, and the
communication channel delay)

(ii) %memit: measure the memory use of a single state-
ment. From this command, we were able to get the
background memory usage from the Python inter-
preter itself and also the memory needed each line
of code affects the total memory needed

According to data revealed in Tables 7-9, the time took
for the model to be trained was shown not to exceed a few
seconds (3.21s and 5.12s) for the random forest and deci-
sion tree models and a few minutes (8 min 49 s) for the gra-
dient boosting model. Moreover, for the XGBoost, it was
observed that XGBoost consumed longer times due to the
formations of trees and parameters involved in the process
(38 min 54s). Meanwhile, however, the time needed in the
process is seen as an “optimal” amount of time considering
the large number of applications on which models are
trained. As for the testing phase, the time observed has been
rather short. In particular, when calculated for one applica-

tion, it was noted that the time needed would not exceed
few microsecond (199.26 us). Furthermore, it was noted that
the amount of memory used in the action model is reason-
ably small commensurate with the number of features used
in the model. By running a comparison upon the classifier
models, XGBoost was found to consume a significant
amount of memory due to the repetition of building the tree,
pursuant with what was elaborated earlier(3721.53 MiB).

7. Conclusion

Recent research endeavors across the literature and current
technologies deployed that seek to detect malicious pro-
grams have lacked a more complete study addressing the
collective impact of both action repetition and permissions
deployed together to classify Android applications as being
malicious or otherwise. In this paper, we investigated the
performance of four machine learning classifiers that seek
to detect malware depending on the dynamic (action repeti-
tion) and static (permissions) features. These features were
found to have significant bearing and a key role in the clas-
sification process. In particular, we applied the four classi-
fiers in three stages. In the first stage, we leveraged the
dynamic features in the dataset. In the second stage, we used
the static features involved, while the third stage encom-
passed a combination of both dynamic and static features.
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In the three stages used, the results indicate that classifica-
tion was done to high accuracy. As we implemented the pro-
posed methodology, we, leveraging the results obtained,
have shown that new features, never addressed before, can
be extracted in the process. We have also demonstrated that
a combination of the permissions and action repetition fea-
tures has achieved good results in detecting malware in
Android applications. Also, the results showed that accuracy
achieved from static, dynamic, and hybrid analyses was
above 94%, so using static analyses alone should be efficient
and less in cost for classification in our case.

As future work, we are planning to investigate and get
one step further to develop a novel method based on
machine learning to classify malware families rather than
binary classification.
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