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A principal singular vector based on multiple Toeplitz matrices is proposed to solve the accuracy problem of direction-of-arrival
(DOA) estimation for coherent signals. First, the data matrix received by uniform linear array (ULA) is transformed into a
Toeplitz matrix. An equivalent covariance matrix is obtained by square weighted summation method using the Toeplitz
matrix. Then, a polynomial containing DOA information is constructed because the signal space and the steering matrix have
the same column space; the Toeplitz matrix is built using polynomial coefficients. The problem is transformed into solving
linear equations by establishing the relationship between the Toeplitz matrix and the signal subspace. Furthermore, the
weighted least square method is used to obtain multiple candidates for linear equations. Finally, the maximum likelihood (ML)
rule is used to select source signal candidates from multiple candidates. In comparison with currently known algorithm, the
proposed algorithm has the characteristics of high estimation accuracy, low-complexity, and strong anti-interference ability
and resolution. Even when the signal-to-noise ratio (SNR) is low, the snapshot number is small, and multiple signals exist; this
method can still provide good estimation performance and resolution, which is more than 90% in most cases. Simulation
experiments verify the superiority of the algorithm.

1. Introduction

Array signal processing is a crucial research issue in signal
processing and has been extensively used in radar [1, 2],
sensor [3, 4], remote sensing [5–7], target detection [8, 9],
and wireless communication [10–12].

As one of the most important research contents in array
signal processing, direction-of-arrival (DOA) estimation has
been the focus of scholars for decades. Scholars have put
forward many excellent algorithms. Among them, DOA
algorithm based on subspace is the most representative
method in DOA estimation, including multiple signal classi-
fication (MUSIC) [13], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [14], and its
variants [15–20]. MUSIC replaces data matrix by construct-
ing sampling covariance matrix and then obtains DOA by
spectral peak search, which has high signal source detection

resolution. However, due to coherent signals, the perfor-
mance of the algorithm degrades and DOA cannot be
accurately estimated. ESPRIT algorithm uses the rotation
invariance between signal subspaces caused by sensor arrays
with translational invariance structure; it is used to obtain
high-resolution DOA information. Similar to the MUSIC
algorithm, the detection accuracy of DOA decreases seri-
ously in the face of coherent signal detection.

Many techniques and algorithms for processing coherent
signals, such as forward-only spatial smoothing (FOSS) [21]
and forward/backward spatial smoothing (FBSS) [22], have
been proposed by scholars to process coherent signals. These
methods divide the total array into several subarrays and
then use the average value of the subarray covariance matrix
to solve the coherent signal direction finding. However, the
disadvantage of these methods is that they reduce the array
aperture, resulting in reduced resolution of closely spaced
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arrivals. In addition, signal subspace fitting (SSF) [23] and
maximum likelihood (ML) [24–26] can solve the coherent
signal by reducing the multidimensional problem to the
1D problem, without the need for feature decomposition in
the process; it is insensitive to the coherence between signals.
However, the number of signals greatly influences the esti-
mation accuracy of the algorithm, and more signals indicate
greater influence.

Recently, DOA algorithm based on polynomial solution,
such as the method of direction estimation (MODE) [27, 28],
the enhanced principal-singular-vector utilization for modal
analysis (EPUMA) [29], and its variants [30–33], has
received remarkable attention from scholars. MODE is
similar to ML, but it can process coherent signals without
complex computation and has no convergence problems.
EPUMA is a low-complexity algorithm; it generates (P + K)
DOA candidates for K sources and then selects K to obtain
coherent signal DOA information. Scholars have obtained
good results by using these algorithms to solve coherent
signals. However, in the low SNR and small snapshot num-
ber, they cannot accurately estimate, because the algorithm
cannot accurately obtain sufficient signal information. If the
source signal is highly correlated, then this situation will be
exacerbated.

In addition, scholars have also proposed other excellent
DOA algorithms [34–40]. In [34], a direction-of-arrival esti-
mation algorithm based on low-rank reconstruction of the
Toeplitz covariance matrix is proposed by scholars. In order
to fully utilize the underlying received information in the
presence of missing elements in the difference coarray, inter-
polation is performed and a dual variable rank minimization
problem is formulated. The scholars recast the problem as a
multiconvex form and developed an alternative optimization
mechanism to solve the problem through cyclic iterations. In
[35], a modified scheme based on forward and backward
partial Toeplitz matrices reconstruction named as FB-
PTMR is proposed. The scholars exploited half rows of the
sample covariance matrix (SCM) to reconstruct the data
matrix to overcome the performance deterioration of
ESPRIT-like algorithm. In [36], the scholars used the exist-
ing decoherence algorithm, where the sample covariance
matrix of each row is formed into a full-rank Toeplitz matrix
to achieve decoherence, and then a new cost function to
obtain DOA via a 1-D search. The advantage of the algo-
rithm is that it does not require to know the source number
information. In [37], aiming at the fact that conventional
algorithms based on the convex relaxation is computation-
ally expensive, the scholars proposed a nonconvex acceler-
ated structured alternating projection-based direction-of-
arrival estimation approach without solving semidefinite
programming. In [38], the scholars proposed a new real-
valued transformation for DOA estimation with arbitrary
linear arrays by exploiting the virtual steering of linear
arrays, which achieve a better performance in terms of both
estimation accuracy and computational complexity. In [39],
a DOA algorithm based on correlation matrix rearrange-
ment is proposed. The algorithm can effectively deal with
coherent signals in both 1D and 2D. In [40], an algorithm
called MTOEP is proposed. MTOEP uses Toeplitz matrix

and the observation data of each sensor to calculate a set
of correlation matrices and then sums the square weighted
of these correlation matrices to form the full-rank equivalent
data covariance matrix. However, when multiple related
signals and independent signals coexist, the error of this
algorithm increases; a higher degree of correlation that exists
between signals indicates greater error.

We propose a principal singular vector algorithm based
on multi-Toeplitz matrix to eliminate the weakness of the
existing algorithm. The proposed algorithm constructs a
new covariance matrix and polynomial containing signal
information by using the characteristic matrix, where the
received data moments and signal space have the same col-
umn space as the steering matrix. The estimation problem
is transformed into a linear equation problem, and the
proposed algorithm has a better resolution effect. This
algorithm combines the advantages of Toeplitz matrix and
polynomial solution to obtain a high precision estimation
algorithm without noise processing and auxiliary matrix.
Subsequent experiments prove that the proposed algorithm
can process multiple signals with low SNR, or the snapshot
number is small and still has good performance.

This paper is organized as follows: we introduce the
proposed algorithm in Section 2. In Section 3, we perform
a series of simulation experiments. Finally, we summarize
the study.

1.1. Notations. Superscripts ð⋅Þ†, ð⋅ÞT , ð⋅ÞH , ð⋅Þ−1, and ð⋅Þ∗
represent the matrix pseudoinverse, matrix transpose,
matrix conjugate transpose, matrix inversion, conjugate,
and traces of matrix, respectively. The operator diag f⋅g,
Ef⋅g, vecf⋅g, and ⊗ indicate diagonalization, expectation,
vectorization, and Kronecker product, respectively. IM
and 0M×N denote M ×M identity matrix and M ×N zero
matrix, respectively.

2. Proposed Algorithm

2.1. Signal Model. The uniform linear array (ULA) consists
of 2M+1 isotropic sensors, each spaced d = λ/2 apart,
assuming that K narrow band signals impinge on the array
in the distance. The received signal is expressed as follows:

x tð Þ = As tð Þ + n tð Þ, t = −M,⋯,M, ð1Þ

where A = ½aðθ1Þ⋯ aðθKÞ� is the steering matrix, sðtÞ =
½s1ðtÞ⋯ sKðtÞ�T denotes the K × 1 source signal vector, nðtÞ
is Gaussian white noise vector with zero mean and variance
σ2
n, and snapshot number is N . The incident angle of the kth

signal is θK , and the steering vector due to the kth source is
expressed as follows:

a θkð Þ = e−j2πM sin θkð Þd/λ,⋯,1,⋯,ej2πM sin θkð Þd/λ
h iT

, ð2Þ

where λ is the carrier wavelength.

2.2. Equivalent Covariance Matrix Is Constructed Based on
Toeplitz Matrix of Data Matrix. We use data matrix xðtÞ
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to construct ðM + 1Þ × ðM + 1Þ Toeplitz matrix, whose
expression is as follows:

RX tð Þ =

x0 tð Þ x1 tð Þ ⋯ xM tð Þ
x−1 tð Þ x0 tð Þ ⋯ xM−1 tð Þ
⋮ ⋮ ⋱ ⋮

x−M tð Þ x−M+1 tð Þ ⋯ x0 tð Þ

2
6666664

3
7777775

= RAs tð Þ + RN tð Þ,

ð3Þ

where

RAs tð Þ =

y0 tð Þ y1 tð Þ ⋯ yM tð Þ
y−1 tð Þ y0 tð Þ ⋯ yM−1 tð Þ
⋮ ⋮ ⋱ ⋮

y−M tð Þ y−M+1 tð Þ ⋯ y0 tð Þ

2
6666664

3
7777775
,

RN tð Þ =

n0 tð Þ n1 tð Þ ⋯ nM tð Þ
n−1 tð Þ n0 tð Þ ⋯ nM−1 tð Þ
⋮ ⋮ ⋱ ⋮

n−M tð Þ n−M+1 tð Þ ⋯ n0 tð Þ

2
6666664

3
7777775
,

ð4Þ

are the ðM + 1Þ × ðM + 1Þ Toeplitz matrix constructed by
the AsðtÞ and the noise vector nðtÞ, respectively. Therefore,
we can obtain the correlation matrix between Rxi and the
ith isotropic sensor output xiðtÞ, as follows:

RXi = E RX tð Þx∗i tð Þ½ � = E RAS tð Þy∗i tð Þ½ � + E RN tð Þn∗i tð Þ½ �
= RAsi + σ2n~I M+1ð Þ,i,

ð5Þ

where ~IðM+1Þ,i is an ðM + 1Þ × ðM + 1Þ matrix whose
elements are zero, except the ith diagonal, which is unity
element. We fully use Rxi information to avoid the decrease
in the estimation accuracy caused by noise suppression and
array output covariance matrix. The advantage of this
approach is that the noise term is diagonalized to improve
the estimation accuracy without the need for denoising.
Then, we have the following:

~R = 〠
M

i=−M
RYiR

H
Yi

= 〠
M

i=−M
RXi + σ2n~I M+1ð Þ,i

� �
RXi + σ2

n
~I M+1ð Þ,i

� �H
� �

= 〠
M

i=−M
RXiR

H
Xi + 〠

M

i=−M
RXiσ

2
n
~I
H
M+1ð Þ,i + 〠

M

i=−M
σ2
n
~I M+1ð Þ,iR

H
Xi

+ 〠
M

i=−M
σ4
n
~I M+1ð Þ,i~I

H
M+1ð Þ,i:

ð6Þ

According to formula (6), an equivalent covariance
matrix can be obtained. In addition, to further improve
performance, FBSS technology was used to further optimize
the obtained equivalent R, which is expressed as follows:

R = ~R + J~R
∗
J , ð7Þ

where J is a ðM + 1Þ × ðM + 1Þ matrix with antidiagonal,
and the other element is zero. Then, singular value decom-
position of R is obtained as follows:

R̂ = Ûs
bΛ sÛ

H
s + Ûn

bΛnÛ
H
n , ð8Þ

where R̂, Ûs, Ûn, bΛ s, and bΛn represent the estimated values
of R, Us, Un, Λs, and Λn; Λs contains the signal eigenvalues,
and Λn contains the noise eigenvalues.

2.3. Toeplitz Matrix Containing DOA Information Is
Constructed. Us and A have the same column space, accord-
ing to linear prediction (LP) theory; thus, each column of Us
is a sum of P sinusoids. From [41], we obtain the following:

zPk + 〠
P

i=1
riz

P−i
k = 0, ð9Þ

where zk = ej2π sin ðθkÞd/λ, k = 1,⋯, K , and ri represents the LP
coefficients. According to LP coefficients, Toeplitz matrix
BðrÞ consists of polynomial formula (9) coefficients con-
taining signal information, as follows:

B rð Þ = Toeplitz rK0TM−P−1
� �T , rK ⋯ r110TM−P−1

� �� �

=

rK rK−1 ⋯ r0 0 0 0

0 rK rK−1 ⋯ r0 0 0

⋱ ⋱ ⋱ ⋱ ⋱

0 0 0 rK rK−1 ⋯ r0

2
6666664

3
7777775

H

:
ð10Þ

2.4. Multiple DOA Candidates Were Obtained by Solving
Linear Equations. The matrix form of formula (9) is as
follows:

ek = Fkr − gk = 0M−P ð11Þ

where

Fk =

uk½ �P uk½ �P−1 ⋯ uk½ �1
uk½ �P+1 uk½ �P ⋯ uk½ �2
⋮ ⋮ ⋮

uk½ �M−1 uk½ �M−2 ⋯ uk½ �M−P

2
666664

3
777775, ð12Þ

r = − r1 ⋯ rP½ �T , gk = −½½uk�P+1 ⋯ ½uk�M�T , and ½uk�M is the
mth element in uk.
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Let F̂ and ĝ become estimates of F and g, and then we
have the following:

F̂kr ≈ ĝk ð13Þ

formula (13) cannot be solved directly due to noise. There-
fore, the relationship between Toeplitz matrix BðrÞ and
formula (13) should be established. In the case of noise, we
find that

vec B rð ÞUð Þ = vec B rð Þ Us + ΔUsð Þð Þ = 0 M−Pð Þ×k: ð14Þ

By combining formulas (11) and (14), the following can
be obtained:

vec B rð ÞUð Þ = Fkr − gk = 0 M−Pð Þ×k: ð15Þ

2.5. Weighted Least Square Method Used to Solve the Linear
Equation. The weighted least square (WLS) method [42] is
used to obtain a more accurate estimate, and the cost func-
tion is set as follows:

êð ÞHWê, ð16Þ

where W = ðE½êðêÞH �Þ−1, and ê = F̂r − ĝ. Then, the solution
of formula (16) is as follows:

r̂ = F̂
� 	H

WF̂
� �−1

F̂
� 	H

Wĝ, ð17Þ

where we replace r by r̂. However, we cannot obtain the
value of r̂ directly, becauseW is unavailable. Thus, we obtain
an estimate of W by combining formulas (14) and (16), as
follows:

Ŵ = Γ ⊗ B rð ÞBH rð Þ� 	−1, ð18Þ

where W is replaced by Ŵ, and

bΓ =

bλ1 − bσ2
n

� �2

λ1

⋱

bλK − bσ2
n

� �2

bλK

2
66666666664

3
77777777775
,

δ2 = 1
M −N

〠
M

i=N+1
λi:

ð19Þ

Then, by plugging formula (18) into formula (17), we
have the following:

r̂ = F̂
� 	H

ŴF̂
� �−1

F̂
� 	H

Ŵĝ:: ð20Þ

2.6. Maximum Likelihood Rule Used to Obtain DOA. Multi-
ple r̂ are iteratively obtained, and then the maximum likeli-
hood rule is used

to obtain the exact DOA. First, the initial value of r̂ is
obtained by calculation, which can be obtained from for-
mula (13), as follows:

r̂0 = F̂
� 	†

ĝ, ð21Þ

and then formula (21) is substituted into formula (18) to
obtain new Ŵ. The new Ŵ is substituted into formula (20)
to obtain r̂. After several iterations, we obtain all the DOA
candidates as follows:

bθ i = sin−1 λ∠r̂i
2πd


 �
, i = 1,⋯, k: ð22Þ

Table 2: Main step complexity of the proposed algorithm.

Main steps Complexity

R̂ O 3M3 + N + 1ð ÞM2� 	
EVD of R̂ O M3� 	
Ŵ

−1 O M − Pð Þ3� 	
r̂ O 2P2K M − Pð Þ + 2PK M − Pð Þ2 + P3 + PK M − Pð Þ� 	

Table 1: Implementation steps of the proposed algorithm.

(1) An equivalent R̂ is obtained through calculation of formulas (3), (5), (6), (7) and (8)
(2) The Toeplitz matrix containing DOA information is constructed by using formula (10)
(3) Formulas (14)–(16) were combined to obtain formula (18)
(4) Initialize B rð Þ by using r̂0 in formula (21), and utilize the B rð Þ to construct Ŵ via formula (18)
(5) The exact r̂ is obtained through several iterations of formulas (18) and (20)
(6) All DOA candidates were obtained by calculating formula (22)
(7) DOA values were obtained from all DOA candidates via formula (23)
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Finally, we select estimates from all DOA candidates by
maximum likelihood rule, as follows:

L Θð Þ = tr IM − A Θð Þ AH Θð ÞA Θð Þ� 	−1
AH Θð Þ

� �
R̂

� �
, ð23Þ

where LðΘÞ contains the desired DOA information. The
proposed algorithm is summarized in Table 1.

2.7. Complexity Analysis. The main steps of the proposed
algorithm are as follows:

(1) Calculation of R̂ and its EVD

(2) Calculation of Ŵ
−1

(3) Calculation of r̂

The complexity of the main steps of the proposed algo-
rithm is summarized in Table 2.

The sample covariance matrix and EVD complexity
of the proposed algorithm are Oð3M3 + ðN + 1ÞM2Þ and

OðM3Þ, respectively. The computational Ŵ
−1

complexity is
mainly caused by BðrÞBHðrÞ, which is about OððM − PÞ3Þ.
The complexity of calculating r̂ is Oð2P2KðM − PÞ + 2PK
ðM − PÞ2 + P3 + PKðM − PÞÞ. Finally, the complexity of
DOA is obtained by maximum likelihood rule, that is,
OðGðM3 + 3MK2 + K3ÞÞ. Thus, the complexity of the pro-
posed scheme is:

O 4M3 +M2 N + 1ð Þ + I M3 − K3 − 11MK2 − 2M2K
��

+ 4K3M + 4K2M2	 + G M3 + 3MK2 + K3� 		
,

ð24Þ

where I is the number of iterations, and G = ðP + KÞ!/K!P!.
Due to G≫ I and isotropic sensors M≫ K , the complexity
is reduced to OððN + 1ÞM + GM3Þ.

3. Results and Discussion

In this section, we present a series of experiments to verify
the superior performance of the proposed algorithm and
consider ESPRIT [14], MODE [27], MODEX [31], EPUMA
[29], FB-PTMR [35], and MTOEP [40] for comparison. The
Cramér–Rao Bound (CRB) is used as a measure of perfor-
mance in the experiment. In addition, FBSS [21] and FOSS
[22] technologies are used to improve the ability of ESPRIT
to process coherent signals. During the experiment, we
assume that all signals are narrowband signals, and the
ULA composed of M = 10 sensors is used to receive K sig-
nals. In order to demonstrate the advantage of the proposed
algorithm in dealing with coherent signals, in the following
experiments, coherence coefficient is 1. Furthermore, 3000
Monte Carlo experiments are performed for each experi-
ment to obtain more accurate experimental data. The root
mean square error (RMSE) of DOA is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3000K 〠
K

k=1
〠
3000

i=1
bθk,i − θk

� �2

vuut , ð25Þ

where bθk,i is the experimental value and θk is the true value.
In the first experiment, we study the effect of different

SNR on the RMSE and resolution of the algorithm. Three
signals with DOAs being [–5°, 0°, 25°]are consider (K=3),
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Figure 1: Algorithm RMSE versus SNR for two coherent signals and one uncorrelated signal with DOAs being [−5°, 0°, 25°] when N = 100.
(a) SNR increased from −10 dB to 0 dB; (b) SNR increased from 0 dB to 10 dB.
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where the first two signals are coherent and uncorrelated
with the third one. We can obtain RMSE from (25), and
the snapshot number is N = 100. As shown in Figure 1, when
SNR < 0dB, the RMSE of all algorithms are far from the

CRB, FB-PTMR, and MTOEP, and the proposed algorithms
are slightly better than the other algorithms. When SNR > 0
dB and K = 3, the RMSE of all algorithms is reduced, as well
as the FB-PTMR, MTOEP, and the proposed converge to the
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Figure 2: Algorithm RMSE versus SNR for two coherent signals and two uncorrelated signals with DOAs being [−5°, 0°, 25°, 31°] when
N = 100. (a) SNR increased from −10 dB to 0 dB; (b) SNR increased from 0 dB to 10 dB.
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Figure 3: Algorithm probability versus SNR for two coherent signals and two uncorrelated signals with DOAs being [−5°, 0°, 25°] when
N = 100. (a) SNR increased from −10 dB to 0 dB; (b) SNR increased from 0 dB to 10 dB.
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CRB when SNR = 5dB. Meanwhile, due to the lack of array
aperture, although ESPRIT optimized by FOSS and FBSS
can process coherent signals, the RMSE of the optimized
ESPRIT does not completely converge to the CRB until SN
R = 10dB. The performance is the best when using EPUMA

and MODEX on SNR > 6dB, MODE always has a large dis-
tance from the CRB, and its ability to process coherent sig-
nals is poor.

To further verify the performance of the proposed algo-
rithm, an uncorrelated signal (K = 4) is added. Figure 2
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Figure 4: Algorithm probability versus SNR for two coherent signals and two uncorrelated signals with DOAs being [−5°, 0°, 25°, 31°] when
N = 100. (a) SNR increased from −10 dB to 0 dB; (b) SNR increased from 0 dB to 10 dB.
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shows that, similar to K = 3, when SNR < 0dB, the RMSE of
all algorithms is large and far from the CRB. The RMSE of
the proposed algorithm is smaller than that of other algo-
rithms. When SNR = 6dB and SNR > 8dB, the proposed
algorithm and EPUMA converge to the CRB, respectively.
FB-PTMR and MTOEP still have a gap with the CRB even
when SNR = 10dB. Compared with K = 3, when K = 4, only
the proposed algorithm is unaffected by the number of sig-
nals, whereas the other algorithms are affected by the num-
ber of signals, among which MODEX is the most affected.

The influence of SNR on algorithm resolution is shown
in Figures 3 and 4. When K = 3, SNR<0 dB, the resolution
of FB-PTMR, MTOEP, and the proposed algorithm is lower
than 80%, whereas other algorithms are lower than 50%.
With the increase in SNR, the resolution of all algorithms
increases rapidly. Except for MODE, when SNR = 10dB,
the performance reached or exceeded 90%. When K = 4,
SNR < 0dB, the resolution of the proposed algorithm is
much higher than that of the other algorithms but lower than
80%. When SNR = 10dB, only the resolution of EPUMA,
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Figure 6: Algorithm probability versus snapshot number when SNR = −5 dB. (a) Two coherent signals and one uncorrelated signals with
DOAs being [−5°, 0°, 25°]; (b) two coherent signals and two uncorrelated signals with DOAs being [−5°, 0°, 25°, 31°].
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MTOEP, FB-PTMR, and the proposed algorithm reaches or
even exceeds 90%, whereas that of the other algorithms is
lower than 90%.

This group of experiments verifies that the proposed
algorithm has good anti-interference ability and can still
effectively process coherent signals when facing multiple sig-
nals and different SNR, with small error and high resolution,
which is unavailable in other algorithms. Under certain
conditions, the resolution of the proposed algorithm even
reaches 95%, whereas that of other algorithms is greatly
affected by the number of signals. In addition, the error
increases evidently, and the resolution decreases when pro-
cessing multiple signals. Furthermore, this group of experi-
ments show the advantage of the proposed algorithm in
processing coherent signals at low SNR, and the next
experiments will further study the ability of the proposed
algorithm to handle coherent signals in different situations
when SNR = −5dB.

In the second experiment, we study the effect of different
snapshot numbers on the RMSE and resolution of the algo-
rithm. The experimental conditions are the same as the first
experiment. Figure 5 shows that the performance of the
proposed algorithm is better than that of the other algo-
rithms. When K = 3, with the increase in snapshot number,
the proposed algorithm converges rapidly, and RMSE
decreases. Although the RMSE of MODEX, FB-PTMR,
MTOEP, and EPUMA is also reduced, it is not as good as
the proposed algorithm. However, FOSS, FBSS, and MODE
almost remain unchanged, and their errors are much higher
than those of the other algorithms, even if the snapshot
number is 1000. When K = 4, the proposed algorithm still
has better processing ability and is unaffected by the number

of signals. EPUMA is less affected by the number of affected
signals, and RMSE is basically unchanged, but not as good as
the proposed algorithm. However, the other algorithms are
greatly affected by the number of signals, and the RMSE
increases.

Figure 6 shows that when K = 3, the resolution of
EPUMA and MTOEP can be close to or reaches 80%,
whereas when K = 4, the resolution of MTOEP decreases
seriously and is lower than 50%. Other algorithms have
low resolution in any case, but the proposed algorithm can
still have a resolution higher than 90% under any condition.

Therefore, compared with other algorithms, the pro-
posed algorithm can effectively use snapshot to detect signal
information, and the estimation accuracy is high. It can pro-
cess multiple signals with a high resolution of more than
90%, whereas other algorithms are inferior to the proposed
algorithm with a low resolution.

In the third experiment, we study the effect of different
angular separation on the RMSE and resolution of the algo-
rithm. The parameters remained the same as in the first
experiment. In Figure 7, when K = 3 and separation is 9,
the MTOEP and the proposed algorithm reach the optimal
state. In addition, the other algorithms are not at their best
even when the separation is 10. When K = 4, only EPUMA
and the proposed algorithm are less affected by the number
of signals, with RMSE decreasing significantly as separation
increases, whereas the RMSE of the other algorithms
decreases but not as much as EPUMA and the proposed
algorithm.

As in the previous experiment, we also tested the angular
separation impact on algorithm resolution. As shown in
Figure 8, when K = 3, the resolution of EPUMA and the
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Figure 7: Algorithm RMSE versus Δθ when SNR = −5 dB. (a) Two coherent signals and one uncorrelated signal with DOAs being
[−5°, 0°+Δθ, 25°]; (b) two coherent signals and two uncorrelated signals with DOAs being [−5°, 0°+Δθ, 25°, 31°].
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proposed algorithm reaches or even exceeds 90%. The res-
olution of MTOEP, FB-PTMR, and MODEX also exceeds
80%, and that of the remaining algorithms does not

exceed 60%. When K = 4, the resolution of all algorithms
decreases seriously. The performance of EPUMA and the
proposed algorithm is reduced from 90% to about 80%,
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Figure 8: Algorithm probability versus Δθ when SNR = −5 dB. (a) Two coherent signals and one uncorrelated signals with DOAs being
[−5°, 0° + Δθ, 25°]; (b) two coherent signals and two uncorrelated signals with DOAs being [−5°, 0° + Δθ, 25°, 31°].

M

10–4

10 15 20 25 30 35 40 45

10–3

10–2

10–1

CP
U

 ti
m

e (
se

co
nd

)

ESPRIT
MODE
MTOEP

EPUMA
Proposed

Figure 9: CPU time versus M when K = 3 and N = 80.

10 Wireless Communications and Mobile Computing



whereas that of other algorithms is lower than or equal to
30%.

This set of experiments demonstrates that the proposed
algorithm is relatively affected when dealing with angular
separation variations of multiple coherent signals (K = 4),
but the resolution is still higher than that of the other
algorithms under the same conditions; the resolution of the
algorithm reaches 80%. When the number of signals is small
(K = 3), the resolution of the proposed algorithm can still
exceed 90%. The performance of other algorithms is far
inferior to that of the proposed algorithm.

Finally, because FB-PTMR, FBSS, and FOSS are all based
on ESPRIT algorithm, MODEX complexity is extremely
huge, so we compare the complexity of ESPRIT, MODE,
MTOEP, EPUMA, and the proposed algorithm. We assume
that three signals are available, N is 80, and we vary M from
10 to 45. Through calculation, we obtain that the complexity
of ESPRIT, MODE, MTOEP, and EPUMA is OðM2N +M3Þ,
Oðð8K3 + 1ÞðM − KÞ3Þ, Oð4M3 + ðN + 1ÞM2Þ, and OðM2N
+GM3Þ, respectively. Figure 9 shows that ESPRIT has sim-
ple computational complexity, whereas the standard MODE
is the most computationally intensive method among the six
competitors. The computational complexity of the proposed
algorithm and EPUMA is similar.

4. Conclusions

An efficient algorithm without auxiliary matrix and noise
preprocessing is proposed by combining the advantages
of polynomial solving DOA signal and Toeplitz matrix
reconstruction. In the face of multiple signals, the perfor-
mance of other reference algorithms has been greatly
affected, whereas the proposed algorithm still has high
estimation accuracy. Simulation experiments show that
the proposed algorithm has the advantage of processing
multiple signals containing coherent signals, and it is less
affected by SNR and snapshot number, which is an advan-
tage that other reference algorithms do not have. Under
certain conditions, the resolution can reach 90% and
sometimes exceed 95%. Although the proposed algorithm
has many advantages, when angular separation changes
and with multiple signals (K = 4), the proposed algorithm
is affected to some extent, and the resolution is only
80%. However, when K = 3, the resolution immediately
increases to 95%. In addition, the proposed algorithm
has low complexity. This paper provides a signal location
method with high estimation accuracy, strong anti-
interference ability, and effective processing of multiple
signals.
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