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*e increasing need for capacity has led the railway industry to explore new train control systems based on a concept called virtual
coupling. Inspired by the platooning of autonomous vehicles, the safe operation of virtual coupling is guaranteed by a relative
brake distance-based train separation method. *is paper proposes a novel long short-term memory (LSTM)-based model
predictive control (MPC) method for train operations. An MPC-based control design for virtual coupled train operations is
presented.*e LSTM is introduced to model the dynamics of the preceding train to approximate the actual train operations. With
the train dynamics models, the operation trajectories of the preceding train are predicted based on planned control inputs. A study
of a metro line in Chengdu was chosen to analyze the proposed control approach. *e simulation results of different scenarios
show that compared with the conventional MPC methods, the proposed LSTM-based MPC can reduce the speed differences and
position differences of tracking trains by up to 35% and 25%, respectively.

1. Introduction

*e ever-increasing railway transport demand of passengers
and goods has been challenging infrastructure managers to
continuously expand the capacity of existing networks.
*erefore, the railway industry is looking into the adoption
of advanced control systems. Virtual coupling is a novel train
control systems concept [1]. It cancels mechanical couplers
that maintain vehicles to move within the same train couple.
In virtual coupling, the safe vehicle running distance is
maintained by vehicle-to-vehicle communication-based
train operation controls. *is system uses a relative braking
distance to separate trains [2]. *is method can achieve a
smaller train tracking distance. Without the mechanical
coupler, trains can be dynamically coupled or decoupled
during running. It can increase the line capacity by dy-
namically coupling two or more trains to form a new
convoy. With virtual coupling, capacity can be flexibly
adjusted on demand instead of based on a fixed schedule.
*erefore, it can adapt to different transportation demands

[3]. Furthermore, the railway operations department can
fulfill its demand of supporting optimum train operation.

One of the main challenges in virtual coupling is the
synchronous operations of virtually coupled trains. With
synchronous operations, a smaller tracking distance between
trains can be achieved. Specifically, the following train needs
to maintain a stable distance while moving between stations.
An unstable tracking distance between trains results in a
longer arrival time of virtually coupled trains at a station.
*is decreases the transport capacity.

Model predictive control is considered a feasible control
method for virtual coupling. One of its advantages relies on
its optimal control characteristics. Compared with road
vehicles, a train is a large inertial body whose control ca-
pability is truly weaker. *is results in a long time to change
train operation states. In traditional train control, the train
operates according to the preplanned speed curve and
protection curve. However, in the virtual coupling, the
distance between the preceding train and the following train
needs to be kept small during the train operation. *e

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1859709, 17 pages
https://doi.org/10.1155/2022/1859709

mailto:hjliu2@bjtu.edu.cn
https://orcid.org/0000-0002-4360-3181
https://orcid.org/0000-0003-3047-1885
https://orcid.org/0000-0001-8268-4618
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1859709


following train cannot synchronize with the preceding train
by tracking the target curve. *erefore, the control target of
the following train is a predicted operation state of the
preceding train. In conventional control methods of virtual
coupling, the approximation and prediction of the preceding
train occur through the rule-based dynamics model of the
train [4, 5]. Unfortunately, the prediction accuracy of these
methods is limited, and they are unable to achieve ideal train
convoy stability.

To solve this problem, we propose a long short-term
memory (LSTM) based method to predict the operations of
preceding trains. Train dynamics are modeled with an LSTM
neural network trained from historical operation data. With
this model, the operation of the preceding train is predicted
with planned train control inputs. *e prediction result is
used to optimize the control of the following train in the
MPC framework.

*e existing literature studies the operation control of
virtual coupling from different points of view. Some studies
focus on control strategies for virtual coupling [6]. In virtual
coupling, the extremely small distance may cause unstable
train operation. For this reason, some studies present control
systems that keep a constant distance [7, 8]. Liu et al. [9]
proposed an optimal control method to maintain the speed
of all trains in the virtual coupling consistent and safe
distance. Ling and others [10] combined the dispatch op-
eration in the virtual coupling scenario with the coordinated
control of the train to determine the running route and the
train order to optimize station operating time. Di Meo and
others [11] defined a multiagent system control poly for
virtual coupling. *is approach aims to maintain the desired
distance between trains and enrich the ERTMS/ETCS with
virtual coupling without changing its working principles.
Sliding mode control is used to achieve the same control
effect [12].

*e operation control method of virtual coupling can
refer to recent developments in the field of safe platooning of
autonomous vehicles and connected automated vehicle
(CAV) platoons [13, 14]. *e CAV platoon has an inter-
connection containing the leading vehicle (i e., the leader)
and the following vehicle (i e., the follower). *e leader is set
to track a given trajectory, and the follower continues
tracking the preceding vehicle with desired spacing and
consistent speed. Compared with the CAV platoon, the
virtual coupling control system has the same platoon con-
cept due to the longitudinal movement of trains through the
rail. *e preceding train tracks the predefined speed profile
and the following trains keep maintaining the minimum safe
spacing and consistent speed. *ere are effective and
available methods such as model predictive control [15] and
feedback control [16] in linear and nonlinear CAV platoon
control problems. *ese methods can maintain platoon
cohesion. *ese methods have brought some inspiration to
virtual coupling controller design.

Many existing kinds of research realize adaptive control
through neural networks [17–19]. Neural networks require
relatively less information about the dynamics of the system.
It also has been maturely proved to be effective in addressing
the control problem of nonlinear systems with unknown

dynamics. Moreover, it has been widely used to propose
control for various nonlinear systems. Many existing studies
are dedicated to combining control algorithms such as MPC
and deep learning. Deep learning and MPC use their ad-
vantages to compensate for their shortcomings to achieve
better control. *e research results also prove that the
control performance can be improved by adopting such a
method. Wang et al. [20] proposed a deep learning-based
model predictive control to model and control the con-
tinuous stirred-tank reactor system. *e convergence and
stability of this control method are analyzed and show better
performance in modeling, tracking, and antidisturbance.
Zhang et al. [21] use a recurrent neural network as the
prediction model in model predictive control to control
multiple unmanned quadrotor formation flights. A recur-
rent neural network (RNN) is used to separately model the
two subsystems in quadrotor flight. *e system model
established through deep learning achieves accurate control.
A collision avoidance control method was proposed in [22].
*rough deep learning technology and an MPC controller,
the automatic driving of vehicles was realized under the
premise of considering maneuverability, vehicle dynamics,
and traffic rules. *ere are also some theoretical analyses on
the combination and application of MPC and deep learning
[23, 24]. However, most of the existing work is to improve
the control accuracy as possible under the premise that the
control target is known. In virtual coupling, it is also im-
portant to set the control target of the following train based
on precise predictions of the preceding train.

Based on the previous research, we proposed an
LSTM-based model predictive control method. Model
predictive control is used as the control architecture, and
LSTM is used to predict control target in the following train
to achieve more accurate tracking to achieve the stability of
the train convoy. Our main contributions are as follows:

(1) An MPC control framework is presented for the
following train in the virtual coupling, according to
the metro infrastructures and their communication
architectures. *e preceding train continuously
sends status information and control information to
the following train. Based on the control architec-
ture, the LSTM-based model predictive control
method is proposed to make successive trains drive
while keeping a desired stable distance.

(2) LSTM neural network is used to predict the pre-
ceding train state and serve as the control target of
the following train. More accurate control targets
improve the stability of the control. Simulations are
conducted, and the traditional prediction method is
compared with the method proposed in this paper. A
section of one metro line in Chengdu is used as the
background to verify the validity of the method.

(3) *e following train dynamics are modeled by deep
learning. Conventional controlled objects are
established by formulas, which cannot entirely reflect
the actual dynamics characteristics of the train.
*rough deep learning, a dynamics model closer to
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the actual train is established using a large amount of
historical data, which can better reflect the accuracy
and practicability of the control algorithm.

*e rest of this paper is organized as follows. In Section
2, the problem of virtual coupling train operations is for-
mulated. Section 3 presents the entire MPC methodology.
Section 4 explains the design of the train dynamics model by
LSTM networks and the overall control structure. Section 5
presents different tests, simulations, and results. Finally, the
conclusions are drawn in Section 6.

2. Problem Statement

2.1. Communication Structure of Trains in Virtual Coupling.
Wireless communications and distributed computing have
promoted the development of vehicle-monitoring systems to
reduce railway system maintenance and inspection re-
quirements while maintaining safety and reliability [25].*e
typical virtual coupling communication framework is shown
in Figure 1. Centralized traffic control (CTC) directs the
train convoy operation. CTC generates a route request
command according to the train’s operation plan and sends
it to the interlocking system. *e interlocking system en-
sures that the train route is safe and useable by controlling
the wayside infrastructure. After a route is set, the inter-
locking sends the route information to the radio block center
(RBC). *e RBC calculates the train movement authoriza-
tion (MA). An MA is a succession of railway sections in
which a train can safely operate. During train operation,
continuous radio communication exchanges train control
information between trains and wayside equipment [26].

In the traditional train control architecture, the fol-
lowing train passively follows the preceding train through
the coupler force control and maintains a stable running
state with the preceding train. In virtual coupling, trains are
supposed to move together, similar to physical coupling.*e
following train can achieve a comparable control effect to the
coupler through active control. *e control strategies for the
preceding train and the following train are different. *e
preceding train tracks the desired speed profile of the MA
area. *e following train tracks the speed of the preceding
train while maintaining a stable distance. Virtual coupling
entails convoys of trains linked via vehicle-to-vehicle
communication to synchronize the speed with the train
ahead to maintain a safety margin in between. In the virtual
coupling system, vehicle-to-vehicle communication be-
comes essential to maximize the probability of message
delivery compared to train-to-track communication only (i
e., fully infrastructure-based communication). Virtual
coupling requires extremely low reaction times and, hence,
latency to synchronize multivehicle behaviors.

*e train control system controls the train speed based
on the target speed curve. *e system uses various control
algorithms to adjust the train speed to make it as consistent
as possible with the target speed in the target speed curve. A
typical train speed curve and target speed curve are shown in
Figure 2. *e greatest recommended speed (GRS) is a speed
curve calculated by the train control system based on the

current line speed limit, used to prevent the train from
overspeeding. *e train operation process can be divided
into three phases: traction phase, cruise phase, and braking
phase. *e control algorithm designed in this paper aims to
control the following train in the cruise phase.

2.2. Dynamics Model of Virtual Coupling Trains. First, we
consider the dynamic model of a single train. *e external
forces that a train is subject to include tractive or braking
forces and additional operational resistances. *e basic
equation of train movement can be described by the
following:

m
d2si

dt
2 � ui − r vi(  − mg sin θ xi( ( , (1)

dsi

dt
� vi. (2)

dvi

dt
� ai, (3)

where m is the train mass. si and vi are the train position and
speed at the current instant i, respectively. ui is the external
tractive or braking force at the current instant i. r(vi) is the
basic operational resistance, generally described by the Davis
equation r(vi) � a + bvi + cv2i [27]. a, b, and c are the em-
pirical coefficients accounting for the mass resistance, me-
chanical resistance, and air resistance, respectively. mg sin(θi)

is one kind of operational resistance caused by gravity, where
g is the gravitational acceleration and θ(xi) is the angle
between the rail slope and the horizontal reference line.

Under the actuation of external forces on a train, speed
series vi depicts train movements. *e running distance can
be described by the following:

D �  viΔt, (4)

where Δt is the time step between instants i + 1 and i.
For a virtual coupling train control system, the state of

the train can be defined as x � (s, v, a)T, where s, v, a rep-
resent the position, speed, and acceleration, respectively.*e
control input of the train can be expressed as u. *erefore,
equations (1)–(3) can be written compactly as follows:

xi+1 � f xi, ui( , (5)

where i denotes the time step.
*en, to investigate the virtual coupling train control

system control problem, we consider a virtual coupling train
control system composed of two trains moving along a
railway line. *e preceding train sends state information (e
g., position, velocity. and acceleration) to the following train.
*e preceding train circulates at a velocity vl

t, and the fol-
lowing train circulates at v

f
t . *e superscript denotes the

train (l for the leader and f for the follower). *e subscript
denotes the time. *e distance between trains is calculated
by means of the following:

d � s
l
t − s

f
t + L, (6)
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where L is the safety margin.
In the designed virtual coupling train control system, our

control objective is to maintain the speed of the preceding
train and the following train consistently while maintaining
a safe distance (safe margin). If the following train has a
location tracking error of es, we can express the control
objective of the following train as follows:

v
f
t � v

l
t,

d � L + es.
(7)

3. Model Predictive Control Construction

We consider a decentralized virtual coupling control with
two trains, one for the front or preceding train and the other
for the following train. We propose a model predictive
control approach for the following train. *e controller is
nonlinear, and the constraints are explicitly handled.

Model predictive control is a control algorithm that
relies on the iterative solution of an optimal control prob-
lem. *e control input is calculated at each sampling time

based on the predicted state [28, 29]. One of the advantages
of MPC is that the resulting operating strategy respects all
the system and problem constraints. In this paper, an MPC
feedback control system is designed for the following train in
Figure 3.

3.1. Design of the MPC. For the formulation of the MPC, a
prediction horizon [t, t + Np] is considered at time t.
According to the receding horizon principle, at each time,
the MPC solver computes the optimal control

u � ut, ut+1, . . . , ut+Np
 . *e first input is applied to the

control system before the next time step. At the next time
step t + 1, a new optimization problem is raised based on a
new state measurement [30].

We express the control optimization problem as follows:

minuJN � 

Np−1

k�0
l xk( , (8)

where l is the cost function and Np is the prediction horizon.
We discuss the setting of the cost function l in the next
section. *en, the controller needs to find the best control
input at the cost of minimizing J, subject to the following:

xt+1 � f xt, ut( , (9)

0< vt < vlim,

amin < at < amax,

umin < ut < umax,

d>dmin,

(10)

where vlim is the line speed limit, which is set according to
actual line data. amin and amax are themaximum deceleration
and acceleration of the train, umin and umax are the maxi-
mum andminimum values of the control input.*ese are set
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Figure 1: Illustration of the virtual coupling communication topology.
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according to the actual performance parameters of the train.
d is the distance between trains, and dmin is the safe margin.
We refer to the illustration of the safety margin in the
Shift2Rail technical report [31], and the safety margin used is
set according to the train speed and line conditions in the
simulation.

*e notation xt+k|t represents the state vector at time
t + k, predicted at time t. In the designed control system, the
optimal state and control input obtained are as follows:

xt � xt|t, xt+1|t, . . . , xt+Np|t ,

ut � ut|t, ut+1|t, . . . , ut+Np|t .

(11)

For closed-loop control, we apply the first input to
system (9) in the time interval [t, t + 1).

ut � ut|t. (12)

In the next step, a new optimal problem based on a new
state measurement is solved over a shifted horizon, yielding
a moving receding horizon control strategy with control law.

3.2. Cost Function Design in the MPC Framework. *e
tracking capability is usually specified in terms of speed error
and distance error. *e consistency of speed and the
maintenance of the distance between trains are issues we
care about in designing control algorithms. For speed, the
control objective is divided into the following three parts:

(i) (A1)*e speed of the train cannot exceed the current
line speed limit

(ii) (A2) When the preceding train is at a steady-state,
the speed difference between the preceding train and
the following train should be minimized

(A3) When the preceding train accelerates or de-
celerates, the acceleration error should converge to
small values

For the distance between trains, the control objective is
to (B1) minimize the speed difference between the preceding
and the following train while maintaining a steady, safe
distance between the two trains.

In those subobjectives, we attempt to quantify them
under the MPC framework. *e subobjective (A1) is for-
mulated as linear constraints. *e subobjectives (A2) and
(A3) are quantified to be cost functions. In particular,
subobjective B1 is reflected in both the cost function and
constraints. Together, they yield a tractable model predictive
optimization problem.

A 1-norm function of tracking errors is adopted as theMPC
cost function in [32], and a 2-norm function is used in [33].*e
former gives equal consideration to tracking errors of different
degrees, while the latter tends to penalize larger errors and
neglect smaller errors. Actually, the following train should only
respond to sufficiently large tracking errors and should not be
sensitive to tiny tracking errors. *erefore, it is more reasonable
to employ the 2-norm of tracking errors to quantify (A3):

lae � a − a
ref

 
2
, (13)

where aref is the target acceleration.
Similarly, when the speed of the preceding train is not

much different from that of the following train. *e ac-
celeration of the preceding train does not change much. *e
subobjective (A2) is also defined as a 2-norm function of
desired speed

lve � v − v
ref

 
2
, (14)

where vref is the target speed.
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u : control input

Figure 3: Flowchart of typical MPC.
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For two moving trains, the positions of the preceding
train and the following train can never coincide, and the
difference is large. Nevertheless, the position of the pre-
ceding train is always one of the targets of the following
train’s tracking. *erefore, the subobjective (B1) can be
defined as a 1-norm function

lse � s − s
ref

 , (15)

where sref is the preceding train’s position.
*e three cost functions (13)–(15) are not combined but

are set in different operating scenarios to obtain a tractable
predictive optimization problem.

4. LSTM-Based Model Predictive Control

In virtual coupling, it is necessary to predict the preceding
train state for the following train. *e predicted state is used
as the control objective of the following train, and it is also
used for the optimal control of MPC. As an effective tool for
mining large amounts of data, neural networks are widely
used in data-driven trajectory prediction research. A long
short-termmemory (LSTM) neural network, a type of RNN,
is more efficient than an RNN [34, 35]. LSTM network can
capture the characteristics of time series in a longer time
span and achieve better results than RNN in traffic pre-
diction. In this section, LSTM is used to model the dynamics
of the preceding train and predict the state of the preceding
train for MPC due to its superiority compared to other
conventional modeling methods [36].

4.1.TrainDynamicsModel. Due to the complex environment
and disturbances, train dynamics are challenging to describe
with formulas accurately.*erefore, a deep learningmodeling
method is adopted to solve this problem. *e LSTM network
is used as one of the neural network components to obtain a
more accurate preceding train dynamics model.

*e upper part of Figure 4 is the calculation unit of LSTM.
*e middle part of Figure 4 demonstrates the framework of
the LSTM neural network we build to approximate the train
dynamics model. *e lower part of Figure 4 represents the
closed-loop control process of the physical movement of a
train. We use the data from train operation records for neural
network training. Our developed LSTM model is a feed-
forward artificial neural network structured with an input
layer at the bottom, stacked hidden layers, and an output
layer. *e LSTM network is always connected to the fully
connected (FC) network in the hidden layers. *e input of
one neuron in the lth hidden layer is defined as x(t)

l , and the
output as h

(t)
l . *e forward calculation method of the overall

network at time t can be described as the following ex-
pression. *e first is the calculation inside LSTM:

f
(t)

� σ Wf · h
(t−1)
l , x

(t)
l  + bf 

C
(t)

� f
(t)

C
(t− 1)

+ i
(t) C

(t)

o
(t)

� σ Wo · h
(t−1)
l , x

(t)
l  + bo 

h
(t)
l � o

(t)tanh C
(t)

 .

(16)

*en, the calculation that is output to the fully connected
layer is as follows:

h
(t)
l � x

(t)
l+1,

h
(t)
l+1 � tanh x

(t)
l+1wl+1 + bl+1 ,

(17)

where wl+1 and bl+1, respectively, denote the neural weight
matrix and bias of the l + 1-th hidden layer.

If the neural network is well trained with the train
operation data, we can use the neural network model to
reflect the actual train’s operating status. *at is, the actual
operation of the train can be reflected through the input and
output to the neural network.

We designed a planning-based prediction, that is, the
following train predicts the future state of the preceding
train under the premise that the preceding train’s control
input is known. *e advantage of this is that the following
train can more accurately know the behavior of the pre-
ceding train, avoiding the unpredictable situation of the
train in front, such as emergency braking due to particular
circumstances. A mapping function is established from the
current train state and input control commands to the next
state through the LSTM network.

st+1, vt+1  � φ st, vt, ut . (18)

4.2. Control Structure Based on LSTM. *e composite
control structure based on LSTM and MPC is proposed in
Figure 5 for the following train. *e control structure
consists of three main parts: the state predictionmodel based
on LSTM, the MPC framework, and the train dynamics
model.

For the following train, at each time horizon, the control
input u is optimally determined by comparing the following
train state and the reference state. *e LSTM prediction
model obtains the reference state.*e preceding train state is
the input of the LSTM prediction model. Based on that, the
following train state is obtained by the dynamics model.
Meanwhile, the next time horizon starts and the train state
and reference state are updated. *e whole process is online
iterative until the following train state reaches the reference.

5. Simulations and Analysis

5.1. Test Environment. We record the detailed train opera-
tion data of the Chengdu Metro Line 8. *e field data are
collected from the onboard computers. *ese data are used
for training and testing the accuracy of the trained networks.
In addition, we established the dynamic model of the fol-
lowing train as the controlled object of the control algorithm
through deep learning in advance. Another state prediction
model of the preceding train is also generated through deep
learning as a comparison. *e difference is that the pre-
diction of the preceding train state does not require the
control input of the preceding train. We trained the dy-
namics model of the preceding train under two operating
scenarios. In scenario 1, the train operation is subject to the
speed limit of the curve and then accelerates to a normal
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operating speed with small fluctuations. In scenario 2, the
train adjusts its speed before entering the curve.

5.2. Training the Neural Network Model. *is study adopts
the backpropagation algorithm with Adam. Set the loss
function of the neural network to MSE. We adjust the
number of layers and nodes of the neural network to reduce
the loss function value after training.

To evaluate the accuracy and performance of the model
obtained by deep learning, we use field data to test the model
accuracy. Figure 6(a) demonstrates the field data and the
train velocities and positions predicted by the LSTM

network, corresponding to operating scenario 1 in the model
training experiments. *e LSTM network achieves great
predictive performance. *e position and velocity curves
predicted by the deep neural network are very close to the
field data. *e results by operating scenario 2 in Figure 6(b)
also obtained the same conclusion. At the same time, we
separately recorded the acceleration calculation error of the
dynamics model, the predicted position, and the velocity
error in Figure 7. *e average error of acceleration pre-
diction does not exceed 0.02, and the average error of ve-
locity prediction does not exceed 0.5. *e position error
increases with time, and the cumulative error increases,
approaching 4. Verifying these data demonstrates its
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capability to model the train dynamics in practice and the
prediction accuracy.

5.3. MPC Control Algorithm Simulations

5.3.1. Real Line Simulation. After verifying the predictive
performance of the neural network, a real metro line sim-
ulation has been analyzed. *e railway line corresponds to
Line 8 of Metro of Chengdu in China. Our simulations are
based on the following assumptions. *e train convoy is
formed by two trains. *e initial conditions include that the
initial gap between tracking trains is 20 m and the tracking
trains have the same initial speed. *e communication delay
is not considered. In the simulations, we add the established
train dynamic model to the control algorithm and use model
predictive control to simulate the operation control of the
following train in the virtual coupling during the cruise
phase. In addition, in order to verify the robustness of the
control algorithm, Gaussian white noise is added as input
interference in the experiment.

*e performance of the proposed LSTM-Based MPC
algorithm is illustrated in two aspects in the simulation,
including the speed of the trains and the distance between
trains. Figure 8 shows the simulation results under the two
scenarios. Figure 8(a) corresponds to the speed profile of
virtually coupled trains in scene 1, Figure 8(b) corresponds
to scene 2, and Figure 8(c) shows the distance changes
between trains in two scenarios. From the figure, the fol-
lowing train can track the speed of the preceding train with a
small margin of error. *e maximum speed difference be-
tween the two trains appears in scene 2, reaching 0.24m/s.
Benefiting from accurate speed tracking and maintenance,
the distance between the two trains varies within a tiny range
and always remains within the set safety margin (10m).

5.3.2. Influence of the Length of the Prediction Horizon.
Several simulations were also run to study the influence of
different prediction horizons on control performance.
Simulation is carried out in both operating scenarios, and we
changed the prediction horizon Np from 5 to 15. As ex-
pected, the computation time increases when the prediction
horizon increases. Another effect is that the distance be-
tween trains increases when the prediction horizon in-
creases. We recorded and analyzed the changes in distance
between trains. *ese results are shown in Table 1.

5.4. Comparison and Discussion. In order to further verify
the performance of the proposed control algorithm, first, we
compare the proposed control algorithm with the traditional
train control architecture. *e following train operates
according to the preplanned speed curve and protection
curve. *e design of the controller is that the following train
tracks the target’s speed curve and maintains a safe distance
from the preceding train. *e controller does not predict the
behavior of the preceding train. Denote this control method
as no prediction (NP). *e proposed control method in this
paper is denoted as PBP (Planning-Based Prediction). *e

two methods were compared under the same conditions,
and the experimental results were shown in Figure 9 under
the two scenarios mentioned above.

In scenario 1, where the operation scene is relatively
single, both methods can achieve speed tracking and dis-
tance stability of the following train to the preceding train.
Since the following train does not consider the synchronous
operation with the preceding train, but as far as possible to
achieve the target speed, so the distance between the two
trains is less than the proposed PBP method. Nevertheless,
this is not what we expect, and there will still be sharp
changes in the distance. However, in scenario 2, due to
frequent acceleration and deceleration and the change of the
speed limit in the interval, it is difficult for the following train
to accurately track the speed of the preceding train only by
tracking the target speed curve, resulting in a sharp change
in the distance between the two trains. In this case, the
algorithm proposed in this paper has a good performance. In
the two methods, the average speed difference between the
following train and the preceding train is 0.075m/s (NP) and
0.370m/s (PBP), respectively. *erefore, in the virtual
coupling, it is unacceptable for the following train not to
predict the state of the preceding train.

*en, we compared and analyzed the influence of dif-
ferent prediction methods on controlling the following train
in the virtual coupling. We divide the prediction methods
into planned-based and unplanned methods. Among them,
the planning-based method is divided into the calculation of
the dynamics model obtained by deep learning and the
calculation of the traditional dynamics formulas. Calculation
by dynamics formula is a classical conventional method
adopted in articles [4, 5]. We refer to the calculation method
mentioned in these articles and make some changes. *e
unplanned method is to build a state prediction model of the
preceding train through deep learning. Trajectory prediction
based on LSTM neural network is also used in [37].
Compared with the Kalman filter model, this method has
been verified to have higher accuracy. However, the pre-
dicted input does not include the control input of the
preceding train. *e deep learning prediction model (DLP),
planning-based prediction model (PBP), and train dynamics
formula (TDF) are the three considered prediction strate-
gies. We set the prediction horizon to 5, comparing different
prediction methods’ control performances in two operating
scenarios. Figure 10 presents these results.

In Figure 10, we can see how the distance between the
trains is maintained within the set safety margin (10meters)
for the two test conditions. Compared with the TDF
strategies, the neural network prediction method enables the
following train to achieve more accurate speed tracking.
Moreover, the velocity plot shows that the PBP method can
achieve better speed tracking. *e following train’s speed is
close to the preceding train’s speed and has no significant
speeding.

*rough specific numerical analysis, the differences of
different prediction methods are more directly reflected. In
scenario 2, these differences are more prominent, which is
embodied in the average speed errors of the preceding train
and the following train under the three algorithms are 0.075
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Figure 8: Simulation results of velocity and distance. (a)*e speed profile of train convey in scenario 1. (b)*e speed profile of train convey
in scenario 2. (c) *e distance between trains in different scenarios.
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Table 1: *e influence of different prediction horizons on tracking distances.

Scenario Np Average value Standard deviation

1
5 21.68 1.22
10 21.84 1.36
15 21.94 1.44

2
5 22.95 1.68
10 23.13 1.61
15 22.96 1.88
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Figure 9: Continued.
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(PBP), 0.11 (DLP), and 0.12 (TDF), respectively. We cal-
culate the variance of distance variation under different
prediction methods are 1.56 (PBP), 1.58 (DLP), and 2.14
(TDF), respectively. *e results show that, compared with
the conventional TDF method, the PBP method achieves 35
% and 25 % improvement of velocity and distance,
respectively.

*e simulation also verified a particular scenario in
which the preceding train is running abnormally and brakes
at a certain part of the line, the control problem of the
following train. At this point, there is a clear difference
between the three prediction methods. Since the control
input of the preceding train is known, the (PBP)method can
correctly predict the state of the preceding train due to the
change in the control input when the preceding train is
braking. However, due to the unknown control input of the
preceding train, the (DLP) method will have a significant
deviation in the predicted state in this scenario. In spit of the
control input of the preceding train is known in the TDF
method, the prediction accuracy is limited, and the stability
of the train convoy is still difficult to maintain. Due to the
constraint of the safety distance between trains, the fol-
lowing train will still brake and slow down under the other
two prediction strategies. However, due to untimely de-
celeration, the distance between trains will still suddenly
decrease. *e result is shown in Figure 11. As can be seen
from the figure, the distance between the two trains cor-
responding to the three control strategies decreases instantly
after braking. *e two planning-based prediction methods
(PBP) and (TDF) achieve more accurate speed tracking in
the case of emergency braking of the preceding train, thus
making the distance change between the two trains relatively
small. *e small degree of distance change is helpful to
maintain the stability of the whole train convoy. More ac-
curate speed tracking also helps keep the convoy running
after emergency braking.

5.5. Experimental Results and Discussion. In this paper,
model predictive control and deep learning methods are
used to design the following train controller in virtual
coupling to realize the stable operation of the virtual cou-
pling convoy. First, by comparing with the traditional train
control architecture, we think it is necessary to predict the
operation state of the preceding train for the following train.
*rough simulations in two scenarios and comparing the
control effects of different prediction methods, it can be
proven that the method used in this paper can achieve a
more stable convoy operation. In scenario 1, the maximum
speed tracking error of the PBP case is 0.11, while the
tracking errors of the other two methods are 0.17 and 0.20,
respectively. In scenario 2, the maximum speed tracking
error of the PBP method is 0.24, better than 0.31 and 0.32 in
the other methods. *e PBP method proposed in this paper
can maintain minor distance change under the premise of
achieving better speed tracking. Furthermore, the planning-
based prediction method achieves more accurate speed
tracking, whether a normal operation scenario or an un-
conventional situation of the preceding train’s emergency
braking. *e PBP method can respond more quickly to the
abnormal braking of the preceding train so that the distance
between the two trains will not change sharply. *e simu-
lation proves its application effect in special scenes.

*e experiment provides new insight into virtual cou-
pling. *e neural network predicts the control target of the
following train in the virtual coupling. Previous control
studies have mainly focused on the control effect of the
control algorithm under ideal conditions. However, in this
paper, we use field data to train the neural network and
compare the field data with the control results. *e ex-
perimental results also verify the effectiveness of this
method.*e planning-based prediction method proposed in
this paper is more effective. However, the method proposed
in this paper is limited to the condition in which the line
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Figure 9: Comparison of different control strategies. (a) *e speed of the following train under different control strategies in scenario 1.
(b) *e speed of the following train under different control strategies in scenario 2. (c) *e distance between trains in different scenarios.
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conditions do not change significantly. *us, the following
train can accurately predict the state of the preceding train.
To some extent, this is also the limitation of neural networks.
*e currently feasible solution is to update the neural
network model through field data in time.

6. Conclusion

*is paper relies on deep learning and model predictive
control (MPC) to propose a virtual coupling control solution
for the following train. *e solution first uses deep learning
to model the dynamics of the preceding train. Subsequently,
several prediction strategies were developed for model
predictive control, and simulation comparisons were carried

out based on one metro line. *e results show that different
prediction strategies have significant differences in control
effects. Compared with the conventional dynamics formula,
the model established by deep learning achieves better
predictive performance and a better control effect. Fur-
thermore, a planning-based prediction model more accu-
rately predicts the preceding train’s operation state. Such a
prediction strategy can also deal with unexpected scenes
during operation (e. g., abnormal braking). *erefore, the
simulation results demonstrate better performance and
benefits of this prediction strategy and control architecture.

However, the control scheme proposed in this paper
only considers the simplified scenario of two trains. *e
virtual coupling scenario of multiple trains, which is more
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Figure 11: An abnormal braking scenario. (a) *e speed of the following train under different prediction strategies in an abnormal braking
scenario. (b) *e distance between trains under different prediction strategies in an abnormal braking scenario.
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widely used in practical applications, is not considered.
More evolved studies are necessary considering essential
issues such as uncertainties in time delays or even com-
munication failure that may appear in the reception of
positional information. *ese aspects are the subject of
ongoing research.
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