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Recent emphasis has been focused on the industrial Internet of Things (Ind-IoT) in the context of the Fourth Industrial
Revolution (Industry 4.0). IoT devices are used in the Ind-IoT to increase manufacturing productivity. The problem, however,
is that these instruments will create enormous volumes of data records that must be handled efficiently. Cloud computing (CC)
is frequently cited as a viable option for providing effective support for Ind-IoT applications. However, the high-latency and
unstable connectivity problem between the cloud and Ind-IoT endpoints continues to plague Ind-IoT operations. Fog
computing (FC), which extends computation and storage to the edge of the network, is a possible answer to these problems.
Cloud-fog integrated Internet of Things (CFI-Ind-IoT) is discussed in this study as an approach to integrating FC with cloud-
based industrial Internet of Things (Ind-IoT). A constrained multiparent crossover genetic algorithm (CMPC-GA) for
optimization of the load adjusting challenge in the distributed cloud-fog network is proposed in order to attain ultralow
response latency in the CFI-Ind-IoT system. Furthermore, we develop a duty reallocation and retransmission method in order
to lower the average delivery latency of the CFI-Ind-IoT architecture due to the unreliable scenario. Effectiveness
measurements show that the CMPC-GA technique can deliver ultralow latency functionality in a typical Ind-IoT.

1. Introduction

The Ind-IoT devices create enormous amounts of data
that need to be analyzed. Even in the industry 4.0 revolu-
tion, there is an increasing need for real-time data process-
ing for industrial IoT systems, such as smart factories. It
is, therefore, critical to have a strong data center in the
Ind-IoT [1].

Indeed, CC is often regarded as a critical enabler for sat-
isfying the objectives of Industrial IoT systems. Cloud-based
IoT networks, on the other hand, continue to encounter a
number of unresolved issues. Transmission delay is tremen-
dous since cloud data centers are constantly placed remotely.
Intelligent services create a great amount of data, which puts
a strain on cloud servers (CSs), and any malfunction in the
network might cause a widespread communication issue [2].

In the cloud-based Ind-IoT, FC appears to be a potential
way to overcome the aforesaid difficulties. To minimize
latency, FC processes workloads locally on fog nodes (FNs)
located near the terminals, which enables a new breed of

IoT apps and services that demand low latency, mobility,
and geo-distribution. Therefore, in the context of Industry
4.0 [3], we propose the cloud-fog-based Ind-IoT (CFI-IoT)
network architecture, which utilizes the present edge devices
to establish an FC layer in the CFI-IoT architecture to fulfill
the needs of latency-sensitive Ind-IoT operations [4].

FC and enhanced CC have received a lot of attention
recently. A comparison of the FC’s low latency and power-
saving characteristics with that of regular CC is shown in.
A revolutionary C-RAN design with mobile CC was pro-
posed in [5] by writers who concentrated on the problem
of service allocation inside the Combined Fog-Cloud archi-
tecture. To learn more about how much power Ind-IoT con-
sumes and how it may be put to use in the real world, check
out the works of [6]. For indoor wireless coverage, [7] inves-
tigates unexpected spectrum access methods. Reference [8]
proposes a management strategy for multimodal sensor net-
works that is both efficient and successful. In order to reduce
service latency even further, these studies did not examine
how to link many fog terminals and the cloud platform

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1917172, 11 pages
https://doi.org/10.1155/2022/1917172

https://orcid.org/0000-0002-7324-0326
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1917172


[7]. To further reduce latency, we suggest in this work that
numerous FNs and the CS be linked together to conduct
computationally expensive real-time operations in a distrib-
uted way [9–11]. Load balancing is a significant tool for
reducing latency in distributed computing [12]. As a result,
we are looking at how several FNs and a CS balance load.
A load balancing technique that uses genetic algorithms
[13] for constrained optimization (CMPC-GA) is also being
proposed for consideration.

The FN, which lacks resources, is particularly vulnerable
to attack. In addition, faulty network connections might be
caused by shaky wireless transmission lines [14]. It is impos-
sible for a single FN to handle the current burden [15]. This
is why we suggest a system for reallocating uncompleted
subtasks on failure nodes and retransmitting the new
sequence of operations to normal nodes in order to ensure
that the task may be completed on time [16]. When an FN
fails, the simulation results suggest that the redistribution
and retransmission technique can minimize average service
latency [17].

The rest of this paper’s reminder will go like this: the
CFI-Ind-IoT architecture is shown in Section 2. Using the
CFI-Ind-IoT latency mathematical model, we suggest utiliz-
ing the CMPC-GA technique in Section 3 to address the
issue. Section 4 displays the results of the evaluations of
employee performance. Finally, in Section 5, we summarize
this study.

2. CFI-IND-IoT Structure

Low latency is essential for our CFI-Ind-IoT architecture
(shown in Figure 1); hence, we have included FC in the cloud.

The cloud platform layer, the FC layer, and the infra-
structure layer make up the architecture. As the foundation
of an architect’s design lies in its sensor network, industrial
machinery, conveyor networks, and intelligent industrial
robots and manipulators, the infrastructure layer is com-
prised of these elements and many more. The infrastruc-
ture’s job is to carry out certain production processes, such
as data collection, production, and transportation.

There are several edge network devices (such as gateways
and routers) with relatively low computation and storage
capacity in the FC layer, which play an essential role in the
design of the CFI-Ind-IoT. The gates are designated as the
FNs in this design. FNs connect with each other wirelessly
in order to speed up the implementation and development
of the fog network.

According to the infrastructure layer needs, FNs inter-
face with the cloud to get relevant information and service,
store the product information supplied via them, and upload
the useful product information and updates to accomplish
global data sharing. Furthermore, the FC layer may analyze
a wide range of information (such as product data, user
requirements, and measurement data) to decrease latency.

Moreover, we suggest distributing computing in a cluster
of numerous FNs and CSs to achieve ultralow latency by
balancing the load of each FN and cloud. Distributed com-
puting paradigms that use job redistribution and retransmis-
sion mechanisms in the cloud-fog network are an excellent

way to increase the architecture’s real-time performance in
the FN and cloud.

Servers in the high-performance cloud layer are suitable
for protecting Ind-IoT data as well as exchanging global
information and performing simple data mining activities.
The cloud is also viewed as a processing core in our design
in order to boost the architecture’s computing capability.

3. Interactive Load Balancing Strategy in CFI-
Ind-IoT

To address the issue of latency in the CFI-Ind-IoT, we rec-
ommend using the CMPC-GA method, which we describe
in this section.

3.1. CFI-Ind-IoT Latency Mathematical Model. The path
planning procedure for an industrial robot using laser nav-
igation, for example, involves a slew of data processing
[18]. We examine the CFI-Ind-IoT architecture’s data pro-
cessing. First, the robot continuously records the course it
takes. In order to execute rapidly distributed computing,
the acquired real-time route data is sent to the localized
fog devices and cloud.

Finally, the robot will get the path planning findings and
use them to carry out its actions. A weighted node WUG
= ðFN, ESÞ can be used to represent the network architec-
ture seen in Figure 2.

FN = fn1, fn2,⋯, fnk, CSf g, ð1Þ

ES = esfn1,fn2 ,⋯, esfnk‐1,fnk
� �

: ð2Þ

Vectors fnk and CS indicate the FNs and CSs, respec-
tively, in the set of vertices FN showed in Figure 2. A CS
has been added to the CFI-Ind-IoT design in order to
increase its computational power. Each FN’s computational
power is indicated by CS. esfni ,fn j

is a wireless transmission

connection between the nodes fni and fnj represented by
the edge set; each edge’s weight (i.e., esfni ,fn j

) represents the

delay in transmission among fni and fnj regarded to be a
“master node” in the CFI-Industrial-IoT network since it
receives requests from industrial endpoints for ultralow
latency services first. Sub is then passed forward to the mas-
ter node by these endpoints. It is possible to break down the
computer effort into smaller subtasks, such as subi. For these
duties, all the FNs are involved, including master fni and all
of the slaves such as fnj. As the last step, the results of com-
putation were communicated back to industrial endpoints
through the master node. As a result, CF-Ind-service IoT’s
latency t may be represented as [1]:

t =max
Subi
CSfni

+Wgfni ,fn j
hfni ,fn j

,
Subcs
CScsi

+Wgfni ,cshfni ,cs

( )
i, j = 1, 2,⋯, k,

ð3Þ

whereWgfni ,fn j
is the transmission latency among fni and

fnj and Subi is the computation delay of the specific task
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Subi on the fni. When it comes to the subtask assignment
connection between fni and fnj, it is denoted by the value
of hfni ,fn j

: 1 indicates that the relationship exists, while zero

indicates that it does not. This is a measure of how long it
takes the CScsi to process data from the subtask Subcs, and
it indicates the time it takes for the master fnj to communi-
cate with the cloud CS. The wireless communication delay
between the CFI-Ind-IoT nodes,Wgfni ,fn j

andWgfni ,cs, under
the ARQ protocol, may be defined as follows [1]:

Wgfni ,fn j
=

Subi
DTRi

×
1 + PEi

1 − PEi
, ð4Þ

Wgfni ,cs =
Subc
DTRc

×
1 + PEc
1 − PEc

: ð5Þ

There are two subtasks that are sent to the node fni and
CS through Subi and Subc. To achieve ultralow latency, we
should identify an optimum task allocation technique,

namely, find a set of ideal subtasks fSub1, Sub2,⋯, Subcg.
Finally, the CFI-Ind-load IoT’s balancing problem may be
expressed as an optimization problem:

min max
Subi
CSfni

+
Subi
DTRi

×
1 + PEi
1 − PEi

� �
hfni ,fn j

,
Subcs
CScsi

(

+
Subc
DTRc

×
1 + PEc

1 − PEc

� �
hfni ,cs

�
i, j = 1, 2,⋯, k,

ð6Þ

hfni ,fn j
=

0, Subi = 0,

1, Subi ≠ 0,

(

hfni ,cs =
0, Subc = 0,

1, Subc ≠ 0:

( ð7Þ

3.2. Mathematical Model for the Average Service Delay in the
Event of System Failure of FNs in Ind-IoT. Uncertainty is evi-
dent in the Ind-IoT, such as FNs being damaged or wireless
connectivity failing. The FN damages likelihood and the
wireless connection outage probability are jointly referred
to as the prediction error of a single FN in this research.
For each FN, we assume that it has a failure chance of pi.
In the event that several FNs fail, the job will be impossible
to finish unless a mechanism is implemented. To reduce
latency when certain FNs fail, we suggest reallocating and
retransmitting the appropriate subtasks to the regular FNs
and cloud server for distributed computing. The reassign-
ment and retransmission method could ensure timely and
accurate completion of the jobs. CF-average Ind-IoT’s ser-
vice latency might be mathematically described as Equation
(8) if the FNs in the system fail according to the method
presented [1].

User and intelligent
terminals

Manufacturing
equipment

Wireless sensor
nodes

Gateway

Internet

Cloud

Fog Gateway

Gateway

Gateway

Figure 1: The CFI-Ind-IoT architecture.
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Figure 2: A graph with weighted undirected.
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tave =〠
Y

fnn∈FN‐FN′
PFn

Y
fni∈FN′

1 − PFið Þ

× min max
Subi
CSfni

+
Subi
DTRi

×
1 + PEi

1 − PEi

� �
hfni ,fn j

,
Subcs
CScsi

( 

+
Subc
DTRc

×
1 + PEc

1 − PEc

� �
hfni ,cs

�
+min max

Subi′
CSfni

(

+
Subi′
DTRi

×
1 + PEi

1 − PEi

 !
hfni ,fn j

,
Subcs′
CScsi

+
Subc′
DTRc

×
1 + PEc

1 − PEc

 !
hfni ,cs′

)!
,

ð8Þ

where

hfni ,fn j
=

0, Subi = 0,

1, Subi ≠ 0,

(
ð9Þ

hfni ,cs =
0, Subc = 0,

1, Subc ≠ 0,

(
ð10Þ

fnn ∈ FN‐FN′, ð11Þ

0 ≤ Subi, Subc, Subi ′, Subc ′ ≤ Sub, ð12Þ

〠Subi + Subc+〠Subi ′ + Subc ′ = Sub, ð13Þ

hfni ,fn j
′ =

0, Subi′= 0,

1, Subi′≠ 0,

(
ð14Þ

hfni ,cs′ =
0, Subc′= 0,

1, Subc′≠ 0:

(
ð15Þ

3.3. GA-Based Load Balancing Algorithm. As a solution to
Equation (6)’s load balancing and Equation (8)’s latency
minimization, we use a limited CMPC-GA. An optimization
issue can be represented by the Xi variables as an array of
alternative solutions, each of which would be given a ran-
dom real number as an initialization parameter in the
CMPC-GA. This process is repeated over and over again
until an ideal individual is discovered. The CMPC-GA may
be used to solve optimization problems with restrictions,
such as inequality and equality, such that the constrained
optimization issues can be transformed into unconstrained
optimization problems. The CMPC-GA is described in the
following paragraphs. The CMPC-fitness GA’s function dif-
fers from the typical real-coded GA in the following ways:

fit xð Þ =
t xð Þ x ∈ FR,

t xð Þ + PF〠
k+2

j=1
t j xð Þ + ψ x, genð Þ x ∈ IFR:

8>><
>>:

ð16Þ

In the search space S, the feasible zone is FR, whereas
the infeasible region is IFR. It is important to notice that
for each successive constraint, PF represents the penalized
factor, t j ðxÞ represents the infeasible people’s constraint
violation value for the jth limitation, and ψðx, genÞ repre-
sents an extra heuristic value for each successive genera-
tion’s infeasible individuals. In which, t jðxÞ and ψðx, genÞ
may be written as

t j xð Þ =
max −x jð Þ, 0ð Þ 1 ≤ j ≤ k + 1,

〠
k+1

i=1
Sub − x ið Þ

�����
����� j = k + 2,

8>><
>>: ð17Þ

ψ x, genð Þ =Worst genð Þ − min
x∈IFR

t xð Þ + PF〠
k+2

j=1
t j xð Þ

( )
,

ð18Þ
where

Worst genð Þ =max max
x∈FR

t xð Þf g, Worst gen − 1ð Þ
n o

: ð19Þ

The performance index of the gth iteration viable indi-
viduals is represented by tðxÞ in Equation (17). Using g
generations of evolution, WorstðgÞ identifies the possible
person with the best fitness. It is necessary to initially ran-
domly initialize the search space S with real numbers in
order to construct the one-dimensional real array of k + 1
genes that makes up each chromosome, or individual xi in
the population, for the CMPC-GA algorithm. To assess
the population, the fitness value of each member would be
computed using Equation (16). As a further step, the
genetic algorithms are used to bring the original population
up to date again. And here are the specific genetic opera-
tors: selection: high-fitness people are selected from the
existing population to be preserved for future generations.
Using a two-tournament selection approach is employed
in this study.

In a GA, the crossover is a key technique for passing on
the original excellent genes to the next generation of chil-
dren. When using the CMPC-GA, two new offspring are
formed by the linear integration of the two-parent individ-
uals. The arithmetic crossover is employed in this case.
The following may be said about the relationship between
a child and their parents. The CMPC-local GA’s search
capacity is determined by the mutation operation, which
increases the population’s variety. We use a nonuniform
mutation operator in our article. Based on the load-
balancing problem in Equation (6), the CMPC-GA algo-
rithm is illustrated in the following subsection.

3.4. The CMPC-GA Algorithm. Charles Darwin’s theory of
natural evolution inspired Holland to create the GA in
1975 [19]. As with evolution, this algorithm selects only
the most powered to propagate. Indefinitely, the popula-
tion of solutions can be altered using this way. Individuals
in the current population are chosen at random to be the
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parents of the next generation’s children by GA. It takes
several generations for the population to “evolve” towards
an optimal answer. Figure 3 depicts the four phases of a
typical GA.

Typical GA flaws include an inability to exploit and a
propensity to become locked in local minimums. Although
it may take longer for GA to converge, it does so more
quickly when chromosomes move quickly and abruptly in
the correct direction. Figure 4 depicts a conventional GA’s
single-point crossover. As can be seen, the resulting chromo-
somes are not much different from their parents when only
two chromosomes are combined in a single-point crossover.

Traditional crossover has the drawback of only seeing in
the direction of one or both of its parents. It is feasible to
improve the number of viable solutions in GA by using a
more optimal solution search. In order to improve algo-
rithm exploitation and exploration, this paper presents a
new MC operator. The updated MPCGA’s MC is seen in
Figures 5 and 6. It is clear that the RMSE is similar to the
goal function, and the lower it is, the more precise the
response will be.

Because of this, the offspring produced by using several
best parents in MC-GA shows less resemblance to any one
of their parents, indicating that they are more diverse
(improves exploration). As a result, the algorithm may be

more effectively used since the offspring inherit all of their
genes from a variety of parents.

4. Experimental Results and Discussion

The CFI-Ind-IoT-based CMPC-GA retransmission and
redistribution method is the subject of this section’s perfor-
mance assessments. According to [20], the CFI-Ind-IoT
has four FNs configured for low latency. For the mobile
communication parameters, we selected 802.11 ac protocol
parameters. To create a realistic network simulation, a het-
erogeneous fog network with varying computer capacities
is needed. Table 1 includes some relevant parameters. Also,
Table 2 represents the CMPC-parameter GA’s settings.

Our simulation has comprehensive service demand
assignment information from intelligent manufacturing
machinery. Task loads range from 0MB to 400MB, depend-
ing on the simulation configuration. The CMPC-GA tech-
nique allows us to obtain the job allocation ratio in advance,
which reduces service delay. The workflow scheduling ratio
allows for easy retrieval of the work allocation results when
they become available. As a result, CMPC-running GA’s time
may be ignored. MATLAB is used to generate all of the simu-
lation results, and each value is the average of a large number
of tests.

This procedure begins with a
population of chromosomes. Each

chromosome is an answer to a
problem. A chromosome is defined by
a collection of characteristics referred

to as genes.

This is the most critical operation in a GA.
A crossover point is randomly chosen within the

DNA for each couple of parents to be mated.
Offspring are generated when parents’ genes are
exchanged. The crossover is used to optimize the
algorithm’s performance. This operator scans the

region surrounding a chromosome.

Two chromosomal pairs (parents) are
chosen on the basis of their fitness

ratings. Chromosomes that are more fit
are more likely to be picked for

reproduction.

Selection

Selection

Mutation

Mutation

Crossover

Crossover

Population initialization
Population

initialization

Parts of freshly produced children may
have some genes mutated to facilitate

the investigation.

Figure 3: Four phases of a typical GA.

1 2 3 4 5 6 1 2 3

Offspring2 (RMSE = 0.89)Parent2 (RMSE = 0.65)

Offspring1 (RMSE = 0.69)Parent1 (RMSE = 0.75)

4 5 67 8 9

121110

7 8 9 121110

Standard

Figure 4: An example of a single-point crossover operator of standard GA.
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4.1. Ind-IoT Performance Comparison of Three Architectures.
CFI-Ind-IoT, based on the CMPC-GA load-balancing algo-
rithm, is tested against the cloud-based and fog-based archi-
tectures in Ind-IoT to verify the low latency efficiency of
CFI-Ind-IoT. Latency comparison findings are depicted in

Figure 7. It is becoming increasingly difficult for the cloud-
based structure to keep up with the rising demands of the
activity, resulting in a large increase in latency.

As a result of the cloud’s distance from intelligent
manufacturing endpoints and its restricted bandwidth, the
fog-based structure offers lower latency than cloud infra-
structure. CFI-Ind-service IoT’s latency is shown in
Figure 7 to be lower than that of fog-based architectures
when the load is high. That is because the CFI-Ind-
processing IoT’s capability is enhanced by the CS’s compu-
tational capacity. Compared to cloud-based and fog-based
architectures, the latency effectiveness of CFI-Ind-IoT has
improved by 93.98 percent and 36.67 percent when the
job load is 400Mb. Consequently, a low latency service
may be provided by the CFI-Ind-IoT, which is ideal for
Ind-IoT.

Parent1 (RMSE = 0.90)

19 20 21 22 23 24 25 26

Parent2 (RMSE = 0.73)

27 28 29 30 31 32 33 34

Parent3 (RMSE = 0.62)

35 36 37 38 39 40 41 42

Parent4 (RMSE = 0.88)

43 44 45 46 47 48 49 50

Offspring1 (RMSE = 0.49) 

19 20 29 30 39 40 49 50

Offspring2 (RMSE = 0.58) 

27 28 21 22 47 48 41 42

43 44 37 38 23 33 34

Offspring4 (RMSE = 0.56) 

Offspring3 (RMSE = 0.42) 

35 36 45 46 31 32 25 26

Multi-parent

24

Figure 6: A typical MC (5 parents).

Table 1: Relevant parameters.

Parameter type FN1 FN2 FN3 FN4 C

CFNi/CCS (Gbps) 0.28 0.23 0.18 0.13 8

Transfer rate (Mbps) 190 190 180 195 18

Packet error rate 0.0201 0.0185 0.0198 0.0201 0.0082

Table 2: The CMPC-parameter GA’s settings.

Parameters Values

Population size 50

Crossover probability 0.8

Mutation probability 0.4

Worst (0) 96

Maximum number of generations 100

Parent1 (RMSE = 0.86)

1 2 3 4 5 6

Parent2 (RMSE = 0.76)

7 8 9 10 11 12

Parent1 (RMSE = 0.69) Offspring1 (RMSE = 0.57) 

Offspring2 (RMSE = 0.61) 

Offspring1 (RMSE = 0.46) 

13 14 15 16 17 18

1 2 9 10 17 18

7 8 15 16 5 6

13 14 3 4 11 12

Multi-parent

Figure 5: A typical MC (3 parents).
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4.2. The Performance of Various Load Balancing Techniques
in terms of Latency. Comparisons between CMPC-GA, WRR
[21], Niching-ChOA [22], and Greedy scheduling algo-
rithms [23] are made in the next section to demonstrate
the great efficiency of CMPC-GA in minimizing the latency
of CFI-Industry-IoT. In Figure 8, the simulation results are
depicted.

There was a noticeable difference in latency between
CMPC-GA and the other algorithms. To ensure global
searching, CMPC-GA uses the crossover operation, whereas
mutation is used for local searching. CMPC-global GA’s
load-balancing method reduces service latency because of
this. When balancing the load, the WRR and GreedyLB
algorithms do not take transmission latency into account;
hence, the Niching-ChOA method may end up in the local

optimum, resulting in increased latency. When the task size
is 400MB, the CMPC-GA method outperforms WRR, Gree-
dyLB, and Niching-ChOA in terms of latency by 71.3%,
72.8%, and 42.8%. Consequently, it is shown that reducing
latency in the CFI-Ind-IoT structure is made easier by using
the CMPC-GA load balancing method [24, 25].

4.3. Failure of FNs Results in an Average Service Latency.
Each FN is given a failure probability in the simulation. A
failure example in which the CFI-Ind-IoT adopts task reallo-
cation and retransmission, as well as another failure instance
in which the CFI-Ind-IoT simply adopts the retransmission
technique, is used to compare average service delay in order
to evaluate the effectiveness of the CFI-Ind-IoT. CFI-Ind-
IoT service latency is also compared in four different
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Figure 7: Comparison of the mentioned structures.
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Figure 8: The comparison of latency effectiveness for various algorithms.
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production situations where the failure probability of the fog
nodes is varied to study the impact of the FNs on the service
latency [26]. Table 3 shows the FNs’ failure probability in
four different contexts. Figures 9 and 10 illustrate the results
of the computer simulations.

There are some FNs that fail when CFI-Ind-IoT adopts
task reallocation and retransmission mechanisms (R_
Latency), and there are some FNs that fail when CFI-Ind-
IoT only employs the retransmission mechanism (F_Latency)
where the unimplemented subtasks on the failure FNs are

0
0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

Task (Mb)

N-Latency
R-Latency
F-Latency

D
el

ay
 (s
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Figure 9: The comparison of service latency.
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Task (Mb)

General environment
Poor environmentGood environment

Best environment

D
el
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 (s

)

Figure 10: The comparison of service latency for various environments.

Table 3: Fog nodes’ failure probabilities for various conditions.

Environment FN1 FN2 FN3 FN4 CS

Best 0 0 0 0 0

Good 0.002 0.14 0.021 0.009 0

General 0.29 0.28 0.39 0.29 0

Poor 0.5 0.59 0.71 0.74 0
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only resent to one normal node to analyze. In the event of a
failure, the failure probability of the FNs is based on
Table 3’s good environment. We can see from Figure 5 that
the work may be performed in a specific amount of time,
rather than being unable to be done when FNs fail [27].
The latency in the failure scenario (R_Latency and F_
Latency) is longer than the duration in the normal situation
as the number of tasks increases (N_Latency).

To avoid increasing delay, it is necessary to reprocess
activities that were left unfinished on the failed nodes on
the regular nodes instead. The F_Latency is lower than the
R_Latency, and the gap between the latency of the two rises
as the job size increases. When the job is huge, it may be pos-
sible to lower the processing delay by distributing the unfin-
ished work from the failed FNs to all of the normal nodes
[28]. The R_Latency decreases by 9.02 percent when the

processing load is 400Mb, compared to the F_Latency. With
this job reallocation and transmission mechanism, low
latency service may be provided in case of FN malfunction
in Ind-IoT using CFI-Ind.

In CFI-Ind-IoT, the average service delay is influenced
by the failure probability of the FNs. The average service
delay is compared among four types of production settings
with varying failure rates. Table 3 displays the FNs’ failure
probability in four different contexts. In all four types of
contexts, it is evident that the operation latency grows as
the number of tasks increases. When the process demand
is fixed, we can see that the average service delay rises as
the risk of failure increases.

An average service delay in the CFI-Ind-IoT of 400Mb
was found to be lowered by 32.38 percent, 19.23 percent,
and 14.21 percent compared to the latency in negative,
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Figure 11: The comparison of convergence curves for population size = 20.
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Figure 12: The comparison of convergence curves for population size = 40.
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general, and excellent environments. The substantial failure
rate of the FNs is expected to result in a big average service
delay. It should be noted that the convergence curves for
various population size are presented in Figures 11–14.

5. Conclusion

CFI-Ind-IoT network architecture is built by integrating FC
with cloud-based Ind-IoT architecture and introducing
cloud applications to the network. The CFI-Ind-IoT latency
mathematical model is first established. In order to reduce
latency, we implemented the CMPC-GA algorithm. For the
CFI-Ind-IoT, we developed a demand redistribution and
retransmission technique to decrease the average service
delay in the event of FN failure. In the Ind-IoT, the simula-
tion results suggest that the CFI-Ind-IoT based on the

CMPC-GA architecture, as well as our proposed job reallo-
cation and retransmission mechanism, may achieve ultralow
latency performance. Research in the future will focus
mostly on the modeling and improvement of cloud-fog net-
work dependability. Using novel metaheuristic algorithms,
including ChOA and DLFChOA, can be considered as
another research direction.
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