
Research Article
Study of Energy-Efficient Optimization Techniques for High-
Level Homogeneous Resource Management

Suman Mann,1 Nitish Pathak,2 Neelam Sharma,3 Raju Kumar,4 Rabins Porwal ,5

Sheelesh Kr Sharma,6 and Saw Mon Yee Aung 7

1Department of Information Technology, Maharaja Surajmal Institute of Technology (MSIT), GGSIPU, New Delhi, India
2Department of Information Technology, Bhagwan Parshuram Institute of Technology (BPIT), GGSIPU, New Delhi 110078, India
3Department of Computer Science and Engineering, Maharaja Agrasen Institute of Technology (MAIT), GGSIPU, New Delhi, India
4Department of MCA, G. L. Bajaj Institute of Technology & Management, Greater Noida, India
5Lal Bahadur Shastri Institute of Management, Delhi, India
6Department of MCA, GNIOT Engineering College, Greater Noida, India
7Department of IT, Technological University (Toungoo), Toungoo, Bago Region, Myanmar

Correspondence should be addressed to Rabins Porwal; rabins.porwal@lbsim.ac.in
and Saw Mon Yee Aung; drsawmonyee.aung@gmail.com

Received 29 April 2022; Revised 4 July 2022; Accepted 12 July 2022; Published 27 July 2022

Academic Editor: Ajay Rakkesh R

Copyright © 2022 Suman Mann et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Resource management efficiency can be a beneficial step toward optimizing power consumption in software-hardware integrated
systems. Languages such as C, C++, and Fortran have been extremely popular for dealing with optimization, memory
management, and other resource management. We investigate novel algorithmic architectures capable of optimizing resource
requirements and increasing energy efficiency. The experimental results obtained with C++ can be extended to other
programming languages as well. We emphasize the inherent drawbacks of memory management operators. These operators
are intended to be extremely generic in their application, just as the concept of dynamic memory is. As a result, they are
unable to take advantage of the various optimization techniques and opportunities that specific use cases present. Each source
code file is modeled after its own distinct memory usage pattern, which can be used to speed up memory management
routines. Such concepts are frequently time-consuming and costly to implement; consequently, they are not the primary
concern of application developers, as they require manual development and integration. We intend to address this gap by
providing a suite of memory management algorithms that enable dramatic performance improvements at the source code level
while allowing for seamless integration across multiple use cases. The techniques have been evaluated on several performance
parameters, and results have been presented. In this paper, we have compared a variety of memory allocation techniques and
compared their space and energy efficiency requirements. Three variants of SSDAM, SSDAM-E, and DLLOM strategies have
been evaluated and compared against the base performance of new and delete operators. SSDAM-E, SSDAM with new delete
operators, and DDLOM improve the memory consumption by the factors of 8.01, 7.0, and 4.0, respectively. In the worst case,
SSDAM-E gave an average running time of 5.650 sec faster than the DLLOM average time of 7.496 sec. As far as energy
efficiency is considered, SSDAM-Original and SSDAM-E-Original attain 100%, in comparison with the base efficiency of
12.48% characterized by new/delete operators.

1. Introduction

For many software applications, dynamic memory manage-
ment (DMM) has become prohibitively expensive. Accord-
ing to studies, C-programs can consume up to 30% of the

system’s operating time in memory release and allocation.
Object-oriented programming (OOP) frequently results in
additional work and removal. According to the data, C++
programs share memory more than similar C programs.
The causes, however, are unknown. At this time, no data

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1953510, 12 pages
https://doi.org/10.1155/2022/1953510

https://orcid.org/0000-0003-4646-4962
https://orcid.org/0000-0001-8400-2959
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1953510


sharing patterns for C++ applications have been reported.
This emphasizes the importance of quantitative analysis in
allocation patterns in order to achieve the best possible sys-
tem structure. This paper introduces a novel approach to
investigating memory allocation at the source code level.
We begin by classifying all of the conditions that may neces-
sitate the use of dynamic memory management (DMM) in C
++. These memory allocation patterns, according to our the-
ories, are linked to the C++ system or language. DMM
requests from builders, copywriters, or overloaded operator
overload, for example, are not the same as OOPs in C++.
Members of a program requesting a new or deleting opera-
tor have functions that are directly related to the program.
A novice C++ programmer, on the other hand, can easily
write a C++ program without using the object-oriented
paradigm.

New allocation strategies focusing on parallel allocation
[1], the spread of multilayered architecture, and the use of
multithreaded applications have been proposed in recent
decades. Following the introduction of 64-bit programs
and the widespread acceptance of large-memory applica-
tions, the fragmentation problem, which had previously
received little attention in allocator design, has emerged as
a major issue that will degrade both space efficiency and
performance.

Current memory allocators, in particular, are focused on
using fast memory allocation and deallocation, and they all
use the same process to organize virtual memory in multiple
bins. The hoard memory allocator [2] portion, for example,
has 32, 64, 128, 256, and 512 byte bins. We will give it 64
bytes from a 64-bit bin if we want to allocate 47 bytes. This
method of memory allocation is clearly faster, but there are
64-47 = 17 bytes wasted.

With apps that allocate less memory, this design has
worked well in the past. However, if we have a resource-
intensive application that allocates in the same way, the
waste is enormous. This massive waste not only
improves space efficiency, but it also causes virtual mem-
ory explosion, resulting in more TLB misses [3], which
will severely impede performance. In response to this
new problem, this paper proposes a new heap or mem-
ory allocator design that focuses on fragmentation reduc-
tion. We concentrate on large memory allocation and
provide them with the exact size they want to split in
order to reduce TLB loss [3, 4] and improve perfor-
mance. Experiments show that, when compared to
Hoard, our new memory allocation design can earn up
to 1.3x performance (average over 28.8%) with less
memory usage (18%) on large memory-footprint bench-
marks that share multiple items, indicating great poten-
tial for widespread acceptance. Our memory allocation
is a common memory allocation that can be used in a
variety of applications, including logic control programs
and scientific computing.

2. Literature Survey

DMM has proven to be a cost-effective component in the
majority of programming languages. Memory allocation

and deallocation define the overall efficiency of many soft-
ware systems, as described by Michael Neely [5]. He and
Zorn [6] demonstrated that memory-intensive programs
consume up to 40 percent of the runtime to allocate and
free memory. Memory allocator has a significant impact
on program efficiency in terms of performance and mem-
ory space [7]. According to related research, managing
dynamic objects is just as simple as allocating and dealing
with them.

Maas demonstrated a novel approach to memory
fragmentation and object lifetime management during
program execution. On several production servers, he
reduced memory fragmentation by up to 78 percent by
only using huge pages. Allamanis [8] demonstrated that
as the number of objects grows, so does execution time
and memory fragmentation. He graphed the results and
found a logarithmic curve that showed a direct relation-
ship between objects and execution time. Existing C/C++
memory allocators use a number of strategies to reduce
average fragmentation in C/C++ programs [9]. Several
methods for solving this problem are evaluated, and only
some of them are found to be useful [10]. These
methods turned out to be inherently limited and inappli-
cable in all situations. Robson demonstrated that alloca-
tors can suffer from large memory fragmentation
during various experiments, which can have negative
consequences for the program’s overall efficiency and
even result in program crash or failure [11]. Cohen
and Petrank use partial compaction to prove upper and
lower bounds on defragmentation [12, 13].

To reduce fragmentation, TCMalloc, a well-tuned alloca-
tor [14], was used to organize and compare execution time
versus object size.

Its current heap profiling mechanism does a good job
of identifying long-lived objects by generating a list of
sampled objects at the end of the application’s execution,
the majority of which are long-lived, including their allo-
cation sites. Installing an HTTP handler accessible by
paper of [15], an open-source profiling and analysis tool
was used to compare the results. This made it possible
to compare how many of these allocations were allocated
and deallocated on the same CPU or thread. The result
is saved into a protocol buffer at the end of a sampling
period. Bayesian [16] simulated various scenarios and
came up with a result that predicted object lifetime during
program execution using various strategies and optimiza-
tion techniques. Languages like LISP and Java have had
garbage collection for a long time [17–19]. Compaction
is implemented as part of the trash collection algorithms
in modern runtimes such as the Hotspot JVM, the.NET
VM, and the SpiderMonkey JavaScript VM [20]. The fact
that no single GC provides the simplest results for all pro-
grams motivates these efforts. In terms of approach, this
line of work gives the developer no control and prevents
the mixing of different GC designs within the same pro-
gram. Shoaib et al. [21] described a concept called the
Write Rationing GC in Big Data Processing, which moves
objects with a large/small number of writes into DRAM/
NVM to extend the lifetime of the NVM. NVM for

2 Wireless Communications and Mobile Computing



managed programs is supported by approaches like
Espresso [22]. Nowadays, C++ programs, as opposed to
C programs, make extensive use of dynamic memory for
short-term allocations, which often results in faster access
to objects and thus increases program efficiency [23]. In
comparison to C programs, studies have shown that C++
programs invoke dynamically created objects much faster
and with fewer errors [24].

The challenges that modern memory management sys-
tems face are exemplified by Memcached. In modern web
architectures, Memcached is widely used for caching tempo-
rary data [25]. Facebook and Twitter, for example, make
extensive use of the technology to reduce database server
load and rely on a 99 percent hit rate to scale to their massive
user bases [26].

Automatic cached memory cleanup in mobile apps, as
described by Umar Farooq [27], can reduce program com-
plexity to a much greater extent and aid in the smooth
running of apps. As a result, using multiple CPUs to
increase a system’s computation power is usually ineffec-
tive and becomes a bottleneck [28]. C and C++ programs
rely heavily on dynamic memory allocation, and the
related key functions (malloc() and free() for C, new()
and delete() for C++ programs) have long been required
parts of standard libraries. The researchers are now work-
ing on creating a standard dynamic memory allocation
technique/algorithm that is more efficient in terms of
speed, performance, and memory than previous ones.
There exist many applications of efficient resource man-
agement including testing of object-oriented software
[29], multimedia optimizations [30, 31], and mathematical
optimizations [32]. Memory and energy efficiency become
a prominent criterion in many scenarios, such as system
on chip (SoC) [33], edge computing, federated machine
learning, cluster computing, and Internet of everything
I(OE). Sundari et al. [33] discuss energy-efficient SoC
memory management techniques. Some recent energy-
efficient static and dynamic memory management tech-
niques can be found in the works given in [34–36].

3. Design Goals

Performance: the first objective is to create a memory
manager that outperforms the memory managers included
with the default language. Concurrent memory allocations
and deallocations must not cause any performance
degradation.

Novelty: the memory manager should be upgraded to
manage repeated assignment patterns in the code and to
optimize their performance accordingly.

Platform independent: the memory manager design
should be independent of any particular system and should
be portable across platforms without relying on platform-
specific dependencies.

Ease of use: when users incorporate a memory manager
into their code, they should only need to change a small
amount of code.

Robustness: the memory manager must not leave any
traces after its use has ended and must restore the requested

traces before the system terminates. This prevents the mem-
ory from being leaked. The memory manager should handle
all error cases.

4. Strategies Used in Design

Request memory in large chunks: during program startup
and then intermittently during code creation, one of the
most popular memory management techniques is to request
large memory combinations. Memory allocation requests for
specific data structures are documented in these frameworks.
As a result, fewer system calls are made and operating time is
increased.

Allocation pattern optimization: in any system, certain
request sizes for specific applications are more prevalent
than others. Your memory manager will perform admirably
if it is optimized to better handle these requests.

Memory deallocation to optimize operating system
calls: during execution, memory should be integrated into
containers. Additional memory requests should be serviced
by these containers. If the call is unsuccessful, memory
access should be transferred to one of the large chunks
allocated during the startup process. While memory man-
agement is intended to improve system performance and
prevent memory leaks, this approach may result in a
smaller program’s memory footprint due to the reuse of
deleted memory.

5. Implementations and Performance Analysis

The default new and delete operators in C++ for allocating
and deallocating memory have some limitations, which we
can overcome by writing an optimized and efficient mem-
ory management algorithm/code that makes use of the
concepts of computing, caching, memory, and data struc-
tures that we have learned thus far. Operator new executes
in a nondeterministic manner. When we call new, the
operating system may or may not allocate a new physical
page to the process, which can be quite slow if we do so
frequently. When new is called, system looks for a mem-
ory block large enough to hold our request. Additionally,
we discuss memory fragmentation.

For example, if we allocate 10KB from the middle of a
20MB chunk, we cannot allocate the remaining 20MB in
one go. If we access a memory region but do not free it, we
have a memory leak. If there are infinite memory allocation
operations, the system’s memory will be rapidly depleted,
and the system will crash. New and delete operators con-
sume a significant amount of time for allocation and deallo-
cation purposes, which can have a greater impact on the
speed of a C++ application at a higher level.

For instance, suppose we are given the task of creating
1000 objects and are required to create and destroy them
500000 times in a given context. This equates to 500000 ×
1000 × 2 (allocations + deallocations). If we use the default
new and delete operators for this purpose, the benchmarking
of the preceding example results in a processing time of
30.469 seconds on a particular computer.

3Wireless Communications and Mobile Computing



We discovered that for this particular problem of allocat-
ing and disposing of approximately 1000 objects in a cycle,
we can effectively reuse more than 70 percent of the objects.

This can be accomplished by reusing memory and
employing compact, contagious data structures. Our
approach would be to create a memory manager object using
templates to determine the type of class for which we will
create objects and also to pass it the number of objects to
create in a single cycle (in our example 1000). In our exam-
ple, we will use a simple user-defined class that the memory
manager will allocate and deallocate.

Nowwewill discuss Algorithm 1, which is the benchmark-
ing routine that the following memory managers will follow.

(1) Memory Manager::nxtAddress(), returns the address
of memory. The memory size is equal to the class
size (sizeof operator), here MyPracticalClass

(2) MemoryManager::freeAddress(), is supposed to
destruct the memory pointed by the pointer and
later reuse that memory for another object allocation

(3) For getting the running time of all the implementa-
tions we will be using chrono time library of C++

(4) All allocators request memory from operating sys-
tem using either malloc or new operator. In our
implementations we are using malloc

5.1. SSDAM: Single Size-Determined Array Memory

5.1.1. Idea. The main idea behind implementing this tech-
nique was to request a large chunk of contagious memory

and use some portion of this memory to serve an object
whenever required

Also, we will reuse the memory whenever the previously
allocated object does not require it anymore.

5.1.2. How It Works. We will first initialize a large chunk of
memory. The size of this pool is equal to the size of class
(here MyPracticalClass) multiplied the number of objects
(here 1000) we will be allocating and deallocating in one
cycle (here no. of cycle is 500000). Whenever we call
MemoryManager::nxtAddress() function, it returns a
pointer to a memory address of sizeof(MyPracticalClass)
anywhere from the pool. We can think of the pool as an
array of empty objects and size of this array we have
already calculated above (here 1000). The empty objects
serve as the memory for actual object we want to create
and use. Whenever we want to create an object, we call
the function MemoryManager::nxtAddress().

1 class MyPracticalClass
2 {
3 public:
4 int a, b;
5 void initialize(int a, int b)
6 {
7 MyPracticalClass::a = a
8 MyPracticalClass::b = b
9 }
10 }
11 int main()
12 {
13 —- start clock time
14 MemoryManager<MyPracticalClass, 1000>memMan
15 MyPracticalClass ∗arra[1000]
16 for (int i = 0; i < 500000; i + +)
17 for (int j = 0; j < 1000; j + +)
18 {
19 arra[j] =memMan.nxtAddress()
20 arra[j]-> initialize(i, j)
21 }
22 for (int j = 0; j < 1000; j + +)
23 memMan.freeAddress(arra[j]);
24 —- end clock time}}

Algorithm 1: General pattern for all allocators that are discussed.

Figure 1: Two objects allocated in the memory pool.

Figure 2: Memory pool full of objects.

Figure 3: Memory pool becomes free of objects after each cycle.

4 Wireless Communications and Mobile Computing



This returns the memory for the object. We then initial-
ize the object using initialize member function on the class.
The memory manager now sees that the memory has been
served to some object.

Next time whenever we want to allocate memory for
another object the memory manager returns the next mem-
ory address that is free. Figure 1 shows the allocation of two
objects in the memory pool.

In our example, we have 1000 allocations in one cycle so
after all the memory address are returned, our pool will look
like as shown in Figure 2.

Now, the next we do is 1000 deallocations. This is
done by calling MemoryManager::freeAddress() with
memory address of object as parameter, i.e., pointer to
the object. After 1000 deallocations, the SSDAM pool will
look like this.

Now, 1 cycle out of 500000 cycles of 1000 allocations and
deallocations is done. In the next cycle, this memory man-
ager’s pool can be reused to do 1000 allocations and deallo-
cations. As one can see, SSDAM follows the principle of
reusing memory and using compact and contagious data
structure. Memory pool becomes free of objects after each
cycle as shown in Figure 3.

5.1.3. Benchmark.We benchmarked the standard new/delete
approach using the same machine and environment condi-
tions as discussed previously. The conventional new/delete
method resulted in an average running time of 30.469 sec-

1 MemoryManager(class T , count) {
2 typeSize = sizeof(T)
3 /∗ malloc returns address of memory ∗/
4 ref =malloc(count ∗ typeSize)
5 /∗ type cast address of memory (pointer) to type T∗/
6 startRef =<T∗> ref
7 /∗ initialize nxtRef as address of object of type T just before the address of startRef. It is analogous to -1index in arrays ∗/
8 nxtRef = startRef–1
9 /∗ endRef is analogous to index equal to array length + 1 in arrays ∗/
10 endRef = startRef + count}
11 nxtAddress()
12 {
13 ++nxtRef
14 /∗ if the pool is used up, reset nxtRef to point to first object memory in the pool ∗/
15 if (nxtRef == endRef)
16 nxtRef = startRef
17 return nxtRef
18 }
19 freeAddress(objPtr) {
20 objPtr-> destructor()
21 }
22 MemoryManager() {
23 free(ref)}

Algorithm 2: SSDAM.

Figure 4: Single complex memory node.
Figure 5: Multiple complex memory nodes in doubly linked list
chain.

Figure 6: Moving free node to the end of chain.

Figure 7: Multiple free nodes.

Figure 8: Doubly linked list after using the first free node.

Figure 9: Doubly linked list with no free nodes.

Figure 10: Adding new complex node at the end of the chain.

Figure 11: All nodes in the chain are free.

5Wireless Communications and Mobile Computing



1 MemoryManager(class T , poolObjCount, count)
2 {
3 typeSize = sizeof(T)
4 /∗prev points to complex node before to current complex node∗/
5 /∗ next points to complex node next to current complex node∗/
7 TYPE Link { prev, next}
8 linkSize = sizeofPoolLink
9 /∗ size of complex node ∗/
10 typePlusLinkSize = typeSize + linkSize
11 sRef =<link ∗>malloc(typePlusLinkSize)
12 sRef-> prev = sRef-> next = null
13 freeLink = eRef = sRef
14 }
15 nxtAddress() {
16 objMemoryPointer = null
17 if (freeLink) {
18 objMemoryPointer =<T∗> freeLink + 1
19 freeLink = freeLink-> next}
20 /∗ create new complex node ∗/
21 else
22 {
23 tmpLink =<Link ∗>malloc(typePlusLinkSize)
24 tmpLink-> prev = eRef
25 tmpLink-> next = null
26 eRef-> next = tmpLink
27 eRef = tmpLink
28 objMemoryPointer =<T∗> tmpLink + 1
29 }
30 return objMemoryPointer
31 }
32 freeAddress(objPtr) {
33 objPtr-> destructor()
34 tmpLink2 = (<Link ∗> objPtr)-1
35 tmpLink = tmpLink2-> prev
36 tmpLink3 = tmpLink2-> next
37 /∗ next complex nodes exist ∗/
38 if (tmpLink3) {
39 /∗ previous complex nodes also exist ∗/
40 if (tmpLink) {
41 tmpLink-> next = tmpLink3
42 tmpLink3-> prev = tmpLink
43 }
44 /∗ previous complex nodes does not exist so currently tmpLink2 must be the first complex node inchain∗/
45 else {
46 sRef = tmpLink3
47 tmpLink3-> prev = null
48 }
49 /∗ move tmpLink2 to end of chain as free complex node ∗/
50 eRef-> next = tmpLink2
51 tmpLink2-> prev = eRef
52 eRef = tmpLink2
53 }
54 tmpLink2-> next = null
55 if (freeLink == null)
56 freeLink = tmpLink2
57 }
58 MemoryManager() {
59 tmpLink = sRef
60 while (tmpLink){
61 sRef = sRef-> next

Algorithm 3: Continued.

6 Wireless Communications and Mobile Computing



onds. The SSDAM technique resulted in an average running
time of 3.800 seconds. As a result, after a few tweaks to the
general way C++ code is written, the program appears to
be eight times faster. This can have a noticeable effect on
performance. Response times will be shortened, resulting
in improved service.

5.1.4. Pseudocode

5.2. DLLOM: Doubly Linked List Optimized Memory

5.2.1. Idea. The idea behind this implementation was to use
linked lists instead of arrays and see the changes during
benchmarking. This means that, from our principle of reus-
ing memory and using compact and contagious data struc-
tures, we will not be using compact and contagious data
structures here. Instead, we will be using linked list memory.
We will have a number of nodes equal to the number of
objects that the user wants to create, and these are linked
using a doubly linked list. Each node has two pointers for
referring to the back and front nodes. Along with these
two pointers, there is a data field. This data field is what
we will be using to store the information for a memory
address where we can initialize our object.

5.2.2. How It Works. As in the case of SSDAM, we have ini-
tialized a memory pool at the beginning before executing the
main code. But in DLLOM, we are not initializing or creat-
ing a node. Instead, whenever we want to create an object,
we call the MemoryManager:: nxtAddress() function, which
creates a node, saves its address in a doubly linked list chain,
and returns the value of the created node’s data field. The
data field is the pointer to the memory size of the object
we want to create.

The doubly linked list is now represented as follows.
This node has a blue part also, not only green because

the green portion fully describes the doubly linked list.
Hence, DLLOM is not purely a doubly linked list, but rather
a complex doubly linked list node. So, the complex node
memory returned can be divided into two parts. Use the first
part to store doubly linked list data, and the second part is
reserved for our object space. Now, the memory manager
will be maintaining the chain of these complex nodes. Use
the doubly linked list to link the complex nodes and the
other parts of the complex node as a memory pool for our
single-class object. Further objects are allocated in a similar
fashion, and the complex chain can now be represented as
shown in Figures 4 and 5.

In the case of deallocation of objects, whenever an object
is freed at any part of the chain, it is pushed to the end of the
chain. This complex node can now be reused in the sense
that its object memory pool (orange part) can be used to

serve memory requests for another object allocation. When
there is another object deallocated, the list becomes as shown
in Figure 6.

Multiple free nodes can be seen from Figure 7. Now,
whenever we request the memory manager to return mem-
ory, it will look for the first free link at the end of the chain
and return the object memory. Then, the list will look like
the one shown in Figure 8.

After next allocation, no free complex nodes are left
(Figure 9).

Since no free complex nodes are left, this means that if
there is one more memory request to memory manager then
it will have to create a new complex node and then return
the memory from that complex node. A new complex node
is added at the end of the chain (Figure 10).

62 free(tmpLink)
63 tmpLink = sRef
64 }
65 }

Algorithm 3: DLLOM.

Figure 12: Single complex node in the singly linked list chain.

Figure 14: Using up the first complex node in the chain for
allocations.

Figure 15: Singly linked list with no free complex nodes.

Figure 16: Singly linked list with all free complex nodes.

Figure 13: Multiple complex nodes in the singly linked list chain.

7Wireless Communications and Mobile Computing



This feature of DLLOM where it can allocate as many
nodes as it requires makes the DLLOM chain of some spe-
cific length and hence does not restrict the number of
objects that can be allocated in a given cycle. So DLLOM
is more flexible than SSDAM in serving any number of
memory requests. For deallocation of 1000 objects, the
process of freeing and pushing the freed complex node
to the end of the chain is repeated 1000 times. After that,
as shown in Figure 11, we have all the free nodes in the
chain.

Now, 1 cycle out of 500000 cycles of 1000 allocations and
deallocations is done. In the next cycle, this memory man-
ager’s pool can be reused to do 1000 allocations and deallo-
cations in the way we have discussed above.

5.2.3. Benchmark. The DLLOM approach gave the average
running time of 7.496 sec. So, it is slower than SSDAM but
it is still faster than general new/delete approach by a factor
of around 4.

5.2.4. Pseudocode

5.3. SSDAM (Single Size-Determined Array Memory–
Extended)

5.3.1. Idea. The main idea behind this implementation was
that the SSDAM memory manager was only initializing one
pool of memory, say of a size equal to the number of objects
in one cycle multiplied by the size of a single object (in our

1 MemoryManager(class T , poolObjCount, count) {
2 typeSize = sizeof(T) 3/∗4 ref points to actual pool of objects memory (of size poolObjCount ∗ typeSize) in complex node.5 next
points to complex node next to current node.6 ∗/
7 TYPE PoolLink ref, next
8 poolLinkSize = sizeof(PoolLink) 9/∗
10 sRef, eRef and cRef refer to start, end and current complex nodes, respectively
11 Size of one complex node is poolObjCount ∗ typeSize + poolLinkSize.12 ∗/
13 sRef = eRef = cRef =<PoolLink ∗>malloc(poolObjCount ∗ typeSize + poolLinkSize)
14 sRef-> ref = sRef + 1
15 sRef-> next = null
16 noOfPools = count/poolObjCount
17 /∗ we have already created one pool above. So create total pools -1 ∗/
18 poolsToCreate = noOfPools -1
19 PoolLink ∗p
20 while (poolsToCreate) {
21 p =<PoolLink ∗>malloc(poolObjCount ∗ typeSize + poolLinkSize)
22 p-> ref = p + 1
23 p-> next = null
24 eRef-> next = p
25 eRef = p 26}27/∗ point to first object memory in the memory pool of current complex node ∗/
29 startRef =<T∗> cRef-> ref
30 nxtRef = startRef -1
31 endRef = startRef + poolObjCount 32}
33 nxtAddress() {
34 ++nxtRef 35/∗ if current pool is full jump to next pool ∗/
36 if (nxtRef == endRef) {
37 cRef = cRef-> next 38/∗ all pools are full. Jump to first pool ∗/
39 if (cRef == null)
40 cRef = sRef
41 startRef =<T∗> cRef-> ref
42 nxtRef = startRef
43 endRef = startRef + poolObjCount 44}
45 return nxtRef 46}
47 freeAddress(objPtr) {
48 objPtr-> destructor() 49}
50 MemoryManager() {
51 PoolLink ∗tmpLink = sRef
52 while (tmpLink) {
53 sRef = sRef-> next
54 free(tmpLink)
55 tmpLink = sRef
56 }
57 }

Algorithm 4: SSDAM-E.

8 Wireless Communications and Mobile Computing



case, 1000 ∗ sizeof (MyPracticalClass)). If we wanted to say
more than 1000 objects in one cycle, say 1000000, the operat-
ing system will either return memory or not. In the event that
it does not return memory, a runtime error will be thrown, or
if it returns memory, the memory space that we think is con-
tagious might not be physically contagious, which can degrade
our program performance in terms of more CPU request
cycles, more indirections, and probable cache misses. Now to
deal with that SSDAM, instead of requesting a single large
contagious pool of memory, request multiple small contagious
pools of memory and connect those using a singly linked list.

5.3.2. How It Works. Small contagious pools of memory con-
nected using singly linked list will be managed by memory
manager and use it to serve memory request for our object
allocations. Similar to the concept of complex node in
DLLOM approach, we also have complex nodes in
SSDAM-E. Shown in Figure 12 is a single complex node of
SSDAM-E single linked list.

So, the complex node memory returned can be divided
into two parts. Use the first part to store singly linked list
data and second part is memory pool to serve some objects.
The first part is represented as green and second part can be
thought of SSDAMmemory pool. Pool is divided into empty
objects, and when they are empty, they are orange and when
they are occupied/referred by some object they are blue sim-
ilar to concept of SSDAM. In SSDAM-E, instead of allocat-
ing 1000 objects in a single memory pool during one cycle,
we will allocate 100 objects in each individual pool out of
total number of objects (here 1000) we need to allocate in
one cycle. So, we will have 1000/100 = 10 pools and size of
each pool should be 100 ∗ sizeof(MyPracticalClass). These
pools are connected using a singly linked list chain internally
by memory manager using the complex singly node. Now,
there are 10 complex nodes. For sake of simplicity, we are
showing two complex nodes depicted in Figure 13.

After first 100 object allocations done by the SSDAM-E
memory manager, the first complex node is exhausted and
will look like as shown in Figure 14.

The free orange memory areas are now occupied by 100
objects, and thus, the memory manager turns blue. The next
complex node in the chain will now be used linearly from
left to right for the next 100 object allocations, filling all
100 memory locations that its pool can provide. Figure 15
shows a singly linked list with no free complex nodes.

The next 800 objects consume the next 8 complex nodes.
So, after 1000 allocations (done in one cycle out of 500000)

the SSDAM-E is full. The next phase is deallocation of
1000 objects in the same cycle. This is done by calling Mem-
oryManager::freeAddress() with memory address of object
as parameter, i.e., pointer to the object. After 1000 dealloca-
tions, all 10 complex nodes will have their memory pool
object memories freed as shown in Figure 16.

Now, 1 cycle (out of 500000 cycles) of 1000 allocations and
deallocations is done. In the next cycle, the memory manager’s
10 complex nodes’ pool memory can be reused to do the next
1000 allocations and deallocations similar to the process
described above. In SSDAM-E, we can have two cases: the best
case and the worst case. In the best case, we have amemory pool
of 1000/1000 = 1, i.e., we will have only one pool of memory of
size 1000. In the worst case, the number of memory pools will
be 1000/1 = 1000, i.e., we have 1000 memory pools of size 1.

5.3.3. Benchmarks. The best case of SSDAM-E gave the aver-
age running time of less than 3.800 seconds which is 2.7-5%
faster than SSDAM. The worst-case SSDAM-E gave the
average running time of 5.650 sec which is faster than
DLLOM average time of 7.496 sec.

5.3.4. Pseudocode

6. Results and Discussion

The following situations were considered and compiled to
get the results.

0

O
rig

in
al

O
rig

in
al

O
rig

in
al

O
rig

in
al

N
D

O
O

Pl
ac

em
en

t n
ew

1
2
3
4
5
6
7
8
9

7 7.4
8.01 8.01

4

1

Default
(new/
delete)

DLLOM SSDAM SSDAM SSDAM SSDAM-E

Best case time

7 7.4

4

1

Figure 17: Comparison of execution time of different methods.

Table 1: Performance of the implementations in contrast to traditional allocators.

Implementation Variation Best case time Worst case time

Default (new/delete) Original 1x —

SSDAM Original 8.01x —

SSDAM Placement new 7.4x —

SSDAM New/delete operator overloading 7.0x 5.3x

SSDAM-E Original 8.01x —

DLLOM Original 4.0x —

9Wireless Communications and Mobile Computing



(1) Allocate a large amount of memory of a single size,
then free it all

(2) Allocate a small amount of memory, free it, and
repeat this loop several times

(3) Allocate lots of memory of the same size, free half of
it (e.g., the even allocations), and then allocate and
free memory in a loop

(4) Allocate memory in parallel using multiple threads

Table 1 depicts the performance of various methods rel-
ative to default (new/delete) operator-based mechanism.
We ran the code in a similar environment and hardware
conditions as other memory allocators (refer to the Gen-
eral Code for all allocators section above). The best case
of SSDAM-E gave an average running time of less than
3.800 seconds. SSDAM-E’s best case performed 2.7–5%
faster than SSDAM. Insights on this can be gathered from
what Emery Berger said in the CppCon 2020 Keynote
“Performance (Really) Matters”: There is a lovely paper

100100

92.38
87.39

49.94

12.48

Default
(new/delete)

DLLOM SSDAM SSDAM SSDAM SSDAM-E

Energy efficiency

Original Original Original OriginalNDOO Placement
new

0

10

20

30

40

50

60

70

80

90

100 92.38
87.39

49.94

12.48

Figure 18: Comparison of energy efficiency of different methods.

1
0

20

40

Ru
nn

in
g 

tim
e (

se
c)

60

80

2 3
Number of objects allocated-deallocated/cycle (10^

×)

Running time vs number of objects allocated-deallocated/cycle

4

SSDAM, SSDAM-E
SSDAM-E (Worst)
DLLOM

Figure 19: Running time vs. number of objects allocated/deallocated per cycle.

10 Wireless Communications and Mobile Computing



that a few of my colleagues wrote back in 2009. So, we
believe that cache efficiency is what makes SSDAM-E the
best case. The worst case, SSDAM-E gave an average run-
ning time of 5.650 sec faster than the DLLOM average
time of 7.496 sec. Figures 17 and 18 show time and energy
consumption requirements of various methods.

Figures 19 and 20 depict the visual representation for
running time against number of objects allocated/deallo-
cated per cycle and number of cycles, respectively. We have
discussed the implementations and trade-offs between them.
We first performed a single benchmark test, keeping fixed
the number of cycles of allocation-deallocation and the
number of objects allocated in one cycle. In the case of
SSDAM, we also added variations (in one case, we used the
placement new operator rather than the class initialize func-
tion, and in the other case, we used new and delete operator
overloading within our class, i.e., MyPracticalClass). Below
graphs show the performance against each other when the
computation at hand varies.

7. Conclusion

This article discusses various concepts and implementations
of memory management techniques that can be used at the
source code level and are designed to be pragmatic in their
application. All of the approaches discussed far have a low
runtime overhead and are thus applicable to a wide variety
of use cases. In the future, we intend to investigate the inte-
gration aspects of the approaches discussed here and to
attempt to apply them to existing systems that are in pro-
duction and known to have memory performance issues.
The inherent drawbacks of memory management operators
are highlighted. The application of these operators is
intended to be extremely generic, much like the concept of
dynamic memory. As a result, they are unable to utilize the

various optimization techniques and opportunities that par-
ticular use cases present. Each source code file is modeled
after its own unique memory usage pattern, which speeds
up memory management procedures. The SSDAM,
SSDAM-E, and DLLOM strategies have been evaluated and
compared to the performance of the new and delete opera-
tors. SSDAM-E, SSDAM with new delete operators, and
DDLOM reduce memory usage by 8.01, 7.0, and 4.0 times,
respectively. In the worst-case scenario, SSDAM-E provided
an average execution time 5.650 seconds faster than
DLLOM. As far as energy efficiency is concerned, SSDAM-
Original and SSDAM-E-Original achieve 100 percent,
whereas new/delete operators have a baseline efficiency of
12.48 percent.

Data Availability

Data and code are available with authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
report regarding the present study.

References

[1] E. Berger, K. McKinley, R. Blumofe, and P. Wilson, “Hoard: a
scalable memory allocator for multithreaded applications,” in
Proc. of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-IX), Cambridge, MA, 2000.

[2] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S.
McKinley, and C. Raffel, “Learning-based memory allocation
for C++ server workloads,” in the ACM International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

1
0

5

10

Ru
nn

in
g 

tim
e (

se
c)

15

2 3
No of cycles (10^

×)

Running time vs number of cycles

64 5

SSDAM, SSDAM-E (Best)
SSDAM-E (Worst)
DLLOM

Figure 20: Running time vs. number of cycles.

11Wireless Communications and Mobile Computing



[3] M. Neely, An Analysis of the Effects of Memory Allocation Pol-
icy on Storage Fragmentation, MS Thesis Department of Com-
puter Science, Univ. of Colorado, Boulder, 1996.

[4] D. Lea, A Memory Allocatorhttp://g.oswego.edu/dl/html/
malloc.html.

[5] P. R. Wilson, M. S. Johnston, M. Neely, and D. Boles,
“Dynamic storage allocation a survey and critical review,”
Technical Report, Department of Computer Science, Univ. of
Texas, Austin, TX, 1995.

[6] B. Zorn and D. Grunwald, “Empirical measurements of six
allocation intensive C programs,” Technical Report CU-CS-
604-92, Department of Computer Science, Univ. of Colorado,
Boulder, CO, 1992.

[7] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Building high
performance custom and general-purpose memory alloca-
tors,” in Proceedings of the SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation, pp. 114–124,
2000.

[8] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning
to represent programs with graphs,” in 6th International Con-
ference on Learning Representations, Vancouver, BC, Canada,
2018.

[9] M. S. Johnstone and P. R. Wilson, “The memory fragmenta-
tion problem: solved,” in Proceedings of the 1st International
Symposium on Memory Management (ISMM ‘98), pp. 26–36,
ACM, New York, NY, USA, 1998.

[10] D. Häggander and L. Lundberg, “Attacking the dynamic mem-
ory problem for SMPs,” in Proc. of the 13th International Conf.
on Parallel and Distributed Computing Systems, Las Vegas,
Nevada, USA, 2000.

[11] J. M. Robson, “Worst case fragmentation of first fit and best fit
storage allocation strategies,” The Computer Journal, vol. 20,
1977.

[12] N. Cohen and E. Petrank, “Limitations of partial compaction:
towards practical bounds,” in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI13), pp. 309–320, ACM, New York,
USA, 2013.

[13] N. Cohen and E. Petrank, “Limitations of partial compaction,”
ACM Transactions on Programming Languages and Systems,
vol. 39, no. 1, pp. 1–44, 2017.

[14] S. Ghemawat and P. Menage, Google, TCMalloc, 2020, https://
github.com/google/tcmalloc.

[15] Google, 2020, pprof. https://github.com/google/pprof.
[16] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and

D. Sculley, “Google Vizier: a service for black-box optimiza-
tion,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1487–1495, 2017.

[17] R. R. Fenichel and J. C. Yochelson, “A LISP garbage-collector
for virtual-memory computer systems,” Communications of
the ACM, vol. 12, no. 11, pp. 611-612, 1969.

[18] W. J. Hansen, “Compact list representation,” Communications
of the ACM, vol. 12, no. 9, pp. 499–507, 1969.

[19] A. Bily, Modern Garbage Collector for Hash Link and Its For-
mal Verification, Meng Individual Project, Imperial College
London, 2020.

[20] J. Coppeard, Compacting Garbage Collection in Spider Mon-
keyhttps://mzl.la/2rntQlY.

[21] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout,
“Write- rationing garbage collection for hybrid memories,”

in Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ‘18),
pp. 62–77, 2018.

[22] M. Wu, Z. Zhao, H. Li et al., “Espresso: brewing Java for more
non-volatility,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ‘18), pp. 70–83, 2018.

[23] B. Daloze, S. Marr, and D. Bonetta, “Efficient and thread-safe
objects for dynamically-typed languages,” in ACM Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications, 2016.

[24] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation costs
in large C and C++ programs,” Software – Practice and Expe-
rience, vol. 24, no. 6, pp. 527–542, 1994.

[25] B. Fitzpatrick, Memcached, 2014, http://memcached.org/.

[26] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Inter-
national Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS. ACM, 2012.

[27] U. Farooq and Z. Zhao, “Runtimedroid: restarting-free run-
time change handling for android apps,” in Proceedings of
the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 110–122, 2018.

[28] D. Häggander and L. Lundberg, “Optimizing dynamic mem-
ory management in a multithreaded application executing on
a multiprocessor,” in Proc. of the 27th International Conf. on
Parallel Processing, Minneapolis, USA, 1998.

[29] C. M. Sharma, R. Porwal, and D. Sharma, “Testing object ori-
ented software: issues, state-of-the-art and future,” Interna-
tional Journal of Computer Applications, vol. 975, p. 8887,
2013.

[30] C. M. Sharma, A. K. S. Kushwaha, S. Nigam, and A. Khare,
“On human activity recognition in video sequences,” in 2011
2nd international conference on computer and communication
technology (ICCCT-2011), pp. 152–158, 2011.

[31] M. K. Singh, S. Kumar, G. Bhatnagar et al., “A blend of analyt-
ical and numerical methods to compute orthogonal image
moments over a unit disk,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 1344584, 15 pages,
2022.

[32] C. M. Sharma and S. K. Dinkar, “A survey on evolutionary
clustering algorithms and applications,” in applications of
advanced optimization techniques in industrial engineering,
pp. 23–34, CRC Press, 2022.

[33] K. S. Sundari and R. Narmadha, “Optimal energy efficient,
load aware memory management system on SoC’s for indus-
trial automation,” Applied nanoscience, 2022.

[34] I. A. Astrakhantseva, R. G. Astrakhantsev, and A. V. Mitin,
“Randomized C/C++ dynamic memory allocator,” in journal
of physics: conference series, vol. 2001no. 1, IOP publishing,
p. 012006, 2021.

[35] H. R. Aradhya, J. Fadnavis, and S. G. Gojanur, “Memory
design and verification of SRAM-based energy efficient ternary
content addressable memory,” in 2021 5th international con-
ference on information systems and computer networks
(ISCON), pp. 1–7, IEEE, 2021.

[36] H. K. Liu, D. Chen, H. Jin et al., “A survey of non-volatile main
memory technologies: state-of-the-arts, practices, and future
directions,” Journal of Computer Science and Technology,
vol. 36, no. 1, pp. 4–32, 2021.

12 Wireless Communications and Mobile Computing

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc
https://github.com/google/tcmalloc
https://github.com/google/pprof
https://mzl.la/2rntQlY
http://memcached.org/

	Study of Energy-Efficient Optimization Techniques for High-Level Homogeneous Resource Management
	1. Introduction
	2. Literature Survey
	3. Design Goals
	4. Strategies Used in Design
	5. Implementations and Performance Analysis
	5.1. SSDAM: Single Size-Determined Array Memory
	5.1.1. Idea
	5.1.2. How It Works
	5.1.3. Benchmark
	5.1.4. Pseudocode

	5.2. DLLOM: Doubly Linked List Optimized Memory
	5.2.1. Idea
	5.2.2. How It Works
	5.2.3. Benchmark
	5.2.4. Pseudocode

	5.3. SSDAM (Single Size-Determined Array Memory–Extended)
	5.3.1. Idea
	5.3.2. How It Works
	5.3.3. Benchmarks
	5.3.4. Pseudocode


	6. Results and Discussion
	7. Conclusion
	Data Availability
	Conflicts of Interest

