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A traditional Viterbi decoder is primarily optimized for additive white Gaussian noise (AWGN). With the AWGN channel, it
offers good decoding performance. However, the underwater acoustic communication (UAC) channel is extremely
complicated. In addition to white noise, there are a variety of artificial and natural impulse noise that occur suddenly. The
traditional Viterbi decoder cannot obtain the optimum performance under this case. In order to solve this problem, this paper
introduces a novel Viterbi decoder with the impulsive noise, which is considered to be subjected to Middleton Class A
distribution in shallow ocean. Since Middleton Class A noise is very complicated, a simplified model is first introduced. Then,
the error analysis of simplified model under various parameters is discussed in detail. The analysis shows that the simplified
one just leads to slight error. Hereafter, a novel Veterbi decoder using the simplified model is discussed. Compared to a
traditional decoder, a preprocessing is just required. The performance of soft decision-based decoder in the Middleton Class A
noise channel (MAIN) and AWGN are further compared. Based on our simulations, the new decoder can significantly
improve the performance in comparison with conventional one, which further validates our presented method.

1. Introduction

The noise distribution [1, 2] plays an important role in
developing underwater signal processors. Traditional signal
processors such as underwater localization [3–13], underwa-
ter tracking [9, 14, 15], sonar imaging [16–27], direction of
arrival (DOA) estimation [28–32], and underwater acoustic
communication (UAC) are mostly based on Gaussian noise,
which can be supported by a central limit theorem. Besides,
the Gaussian model is just determined by the first-order and
second-order statistics [33]. Under this case, the linear pro-
cessors can be obtained with Gaussian noise. Using the lin-
ear processors, the signal processing can be significantly

simplified. In practice, the shallow ocean often suffers from
ambient noise from shipping vessels, marine life, activity
on the surrounding land, and so on. This noise is impulsive
[34, 35], and it is called non-Gaussian noise [36–41], which
exhibits heavier tails than the Gaussian noise. Consequently,
this noise cannot be directly described by using the probabil-
ity density function (PDF) of Gaussian distribution. Com-
pared to traditional Gaussian noise, the PDF of non-
Gaussian noise is extremely complicated [42–46].

Nowadays, the non-Gaussian noise [36–41, 47–49] in
shallow ocean has attracted much attention in the underwa-
ter field. The related work of non-Gaussian noise, especially
impulse noise, has been widely researched. The receiver
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performance under different impulse noise models is also
inconsistent. The duration of impulse noise is very short
while its amplitude is quite high. The energy of impulse
noise is almost dozens of times higher than Gaussian noise
in dB. Impulse noise models can be divided into memory
noise channels, such as Gilbert-Elliott channel [50] and
Markov-Gaussian channel models [51–53]. GE memory
impulse channel belongs to the first order two state Markov
process. It assumes that the channel has one good state and
one bad state. The two different states are distinguished by
setting the threshold. Until now, there has been a lot of liter-
ature on the and research of Markov memory channel. For
instance, the literature [51] designed a quasicyclic low-
density parity-check (QC-LDPC) code to resist Markov
memory impulse noise and improve the robustness. In
[53], Tseng et al. added the Polar Code over Markov Gauss-
ian memory impulse noise channels and compared the per-
formance of SC and BP algorithms. A previous work was
only Polar Code over memoryless impulse noise channels.
In [54], the α-sub-Gaussian noise model with memory order
m (αSGN(m)) was applied in the description of snapping
shrimp noise in shallow water. The scheme tackled the opti-
mal detection of transmitted symbols in catching shrimp
noise. In this paper, we consider the impulse noise is inde-
pendent of each other in the underwater acoustic channel.
Therefore, we consider using the memoryless noise model.

Impulse noise also includes memoryless models such as
the Gaussian Mixture Model (GMM), symmetric α-stable
(SαS) distribution, and additive Middleton class A and B
models. The Gaussian Mixture Model (GMM) is a paramet-
ric probability density function defined as a weighted sum of
Gaussian component densities. In [55], the GMM is used to
model the ocean noise, and the expectation-maximization
(EM) iteration method is exploited to estimate the GMM
parameters. In [56], the performance of underwater commu-
nication system in noise with GMM statistics is discussed in
detail. However, the heavier tail of non-Gaussian noise can-
not be comprehensively described by this statistic. To solve
this problem, symmetric α-stable (SαS) distribution [57] is
proposed to model the shallow ocean noise. However, this
model does not have the closed-form distribution except
for the Cauchy, Levy, and Gaussian distributions. This is
not convenient for the performance analysis of signal pro-
cessors. In addition, Middleton class A noise has a strict
probability density function(PDF) which simplifies the algo-
rithmic complexity. The major advantage is that Middleton
class A noise is a generalized GMM model. We can adjust
the parameters of Middleton Class A impulse noise models
to fit the underwater acoustic environment.

Actually, traditional processors are often discussed based
on the empirical non-Gaussian models. To some degree, the
statistics of ocean ambient noise are just fitted by using
empirical non-Gaussian models, and the parameters of
non-Gaussian noise model do not have physical meaning.
Based on the physical mechanism of noise source and noise
propagation characteristic, Middleton noise [58] possessing
physical meaning is proposed. In [39], a parameter estima-
tion method based on characteristic function for the Middle-
ton Class A model is presented. In [38], the parameter

estimation of Middleton Class B noise is discussed based
on the least-square estimation method. In [59], the mixture
noise including SÎ ± S distribution and Gaussian distribution
is discussed. In practice, their model is a simplification of
Middleton Class B model. In general, Middleton Class A is
a general GMM model. Compare to the Class A model, the
Class B model is very complicated. In this paper, we mainly
concentrate on the Viterbi decoder and its performance with
the Middleton Class A model.

The remainder of this work is arranged in the following.
Section 2 introduces the PDF of Middleton Class A model
and simplified one. In Section 3, the convolutional code and
Viterbi decoder are presented. Then, the performance of the
Viterbi decoder with Class A model is discussed in detail.
Lastly, some conclusions are reported in the last section.

2. Middleton Class A Impulsive Model

In this section, an impulsive noise model named Middleton
Class A is introduced.

2.1. The PDF of the Middleton Class A Noise. The one-
dimensional PDF of normalized Middleton’s Class A noise
model can be expressed as

f A,Γ nð Þ = 〠
∞

m=0
Cm · 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2m
p exp −

n2

2σ2
m

� �
, ð1Þ

Cm = e−AAm

m!
, ð2Þ

where the impulse index A is the product of the average
number of pulses received per unit time and the pulse
duration. It determines that the noise can be arbitrarily
close to Gaussian noise and the Poisson process. The
Gaussian coefficient Γ is the ratio of the average power
of the Gaussian noise to the average power of the impulse
noise. It is defined as

Γ = σ2G
σ2I

, ð3Þ

where the receiver variance 0, 0, 1σ2m can be described by

σ2m = σ2G + σ2
I
m
A

= σ2
m/A + Γ

1 + Γ
: ð4Þ

The total noise variance of the receiver σ2 can be cal-
culated as

σ2 = σ2G + σ2
I : ð5Þ

The PDF of Class A noise is the sum of numerous
zero-mean Gaussian PDFs with different weights. As
shown by Equation (1), the noise source distribution obeys
the Poisson distribution. In general, the impulse of noise is
influenced by A and Γ. The Middleton Class A noise
model is very close to Gaussian noise when the values of
A and Γ are relatively large. The impulse of noise will
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become stronger as A and Γ decrease. Thus, the total
noise interference can be influenced through A and Γ.

2.2. The Error Analysis of Truncated Model of Class A Noise.
Since the PDF of Class A noise consists of infinite series, it is
undesirable in reality. We explore the truncation model for
Class A noise. Experiments indicate that the finite terms of
noise can be adopted when A is small enough [60].

A truncation to the first three terms of the PDF is as
follows:

f̂ A,Γ nð Þ = 〠
2

m=0
Cm · 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2m
p exp −

n2

2σ2
m

� �
: ð6Þ

The impact of parameters A, Γ, and No on the PDF
between the simplified model and true one (Approximate
replacement of the first 300,000 terms) is then discussed.

2.2.1. Error Analysis with Different Parameter A. Before dis-
cussion, we need to normalize the probability density func-
tion and then take the logarithm.

When Γ = 0:01, No = 20W, and A = ½0:001 0:01 0:1 1�,
respectively, the error between the simplified model and
the true one of the Class A noise PDF is discussed in
Figure 1.

As depicted in Figure 1, the order m of the Middleton
Class A noise approximate model is related to A. When A
is small enough, the error of the approximation model in
Equation (6) is close to 0. When A is in the range from 0.1
to 1, the simplified model can not be a good substitution.
The reason is owed to the impulsive weakening of non-
Gaussian noise, bringing it closer to Gaussian noise.

2.2.2. Error Analysis with Different Parameter Γ. When Γ
= ½0:001 0:01 0:1 1�, the error between the simplified model
and the true one of Class A noise PDF is shown in
Figures 2–4. In the simulations, No is set to 20W, and A is
[0.001 0.01 0.1 1].

By comparing Figures 2–4, it can be observed that the
value of Γ has no effect on the error of the PDF approximate
model in Middleton Class A noise.

2.2.3. Error Analysis with Different Parameter No. In this
subsection, the differences between the simplified model
and the true model of the Class A noise PDF will be
discussed. The results are exhibited in Figure 5, where Γ =
0:01, No = ½20 2 0:2�, and A = 0:01.

In Figure 5, note that the error of the PDF simplified
model has nothing to do with the parameter No. When No
takes different values, the error is always around 0.
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Figure 1: PDF of Middleton Class A with the different parameter A ðΓ = 0:01,No = 20WÞ.
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3. Convolutional Code and Viterbi Decoding

Convolutional coding is a very promising coding technique
proposed by Elias et al. in 1955. It has been widely used in
communication systems, especially in satellite communica-
tion systems. Among them, the Odenwalder convolutional
coding with code rates of 1/2 and 1/3 and constraint length
K = 7 has become the standard coding method in commer-
cial satellite communication systems. In 1967, Viterbi pro-
posed a probabilistic decoding algorithm for convolutional
encoding—the Viterbi algorithm. When the constraint
degree of the code is small, it is more efficient and faster than
other probabilistic decoding algorithms. Besides, the decoder
is simpler. Since the Viterbi algorithm was proposed, it has
been developed quickly in both theory and practice. The
Viterbi algorithm has been widely used in various digital
communication systems.

3.1. Generation of Convolutional Code. Convolutional code
is a channel code with error correction capability, which
can effectively reduce transmission error [61]. The decoding
method is Viterbi decoding. Convolutional code can be
described by ðn, k, LÞ. In this way, n represents the code
length corresponding to the output of the encoder. k is the
length of the effective information group, which is the input

of the encoder. L denotes the constraint length. The code
rate of the convolutional code is k/n. The n bits of the encod-
ing output not only depend on the k bits but also depend on
the k − 1 bit input before this. So the convolutional encoder
has the property of “memory.”

Take ð2, 1, 3Þ convolutional code as an example.
By using the delay factor, the information sequence M0

M1M2 ⋯Ml−1 and convolutional code series C0C1C2 ⋯
Cl−1 can be described by

ai =Mi ⊕Mi−1 ⊕Mi−2, 0 ≤ i ≤ l − 1, ð7Þ

bi =Mi ⊕Mi−2, 0 ≤ i ≤ l − 1: ð8Þ
Ci = aibi, ð9Þ

where Mi is current input information bit and Mi−1 and
Mi−2 are the first and the first two information bits. When
i ≤ 0,Mi = 0, set the initial state of the delay register to 0.

The generator polynomial of the Convolutional code is
expressed as

G Zð Þ = 1 + Z−1 + Z−2 1 + Z−2� �
, ð10Þ

where Z represents delay register.
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Figure 2: PDF of Middleton Class A with the different parameter Γ ðA = 0:01,No = 20WÞ.
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3.2. Trellis Diagram. Trellis graphs are used in the Viterbi
decoding. It cannot be a representation of a single state.
The trellis graphs are joined in a chronological sequence to
define the relationship between time and state transition,
generating a network of convolutional codes. The encoding
process of the convolutional encoder is dynamic.

The following are the important concepts in the trellis
diagram:

(i) Calculate the branch metric (BM)

Calculate the Hamming distance (hard decision) or
Euclidean distance (soft decision) between the input symbol
and the output symbol corresponding to two paths, which is
the branch metric of two paths.

(ii) Calculate the path metric (PM)

To obtain the two metrics at time t, the BM of the two
pathways is added to the state metrics recorded in the appro-
priate state at time t − 1.

(iii) Select the surviving path

Compare the path metrics and maintain the smallest one
as the state metric at time t, as well as the formation path.

(iv) Traceback depth

Generally, the Viterbi decoder’s backtracking depth is 6
times the constraint length. Set the traceback depth to 18
in this document.

In Figure 6, the uncoded sequence is M =M0M1M2 ⋯
Ml−1. The output sequence of convolutional code is C = C0
C1C2 ⋯ Cl−1. Assume that the sequence after binary modu-
lation is V =V0V1V2 ⋯ Vl−1 and the channel output
sequence is R = R0R1R2 ⋯ Rl−1. The decoder must generate
an estimate of the code sequence V̂ based on the accepted
sequence R. The maximum likelihood decoding is to choose
maximize the log likelihood function log PðrjcÞ as V̂.

P r vjð Þ =
YN−1

l=0
P rl vljð Þ: ð11Þ

Hence,

log P r vjð Þ = 〠
N−1

l=0
log P rl vljð Þ, ð12Þ

where PðrljvlÞ is the channel transition probability. Log-
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Figure 3: PDF of Middleton Class A with the different parameter Γ ðA = 0:1,No = 20WÞ.
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likelihood function log PðrjvÞ is the metric of C, where log
PðrljvlÞ is called the branch metric.

4. Performance of Viterbi Decoder under Class
A Noise

The system block diagram and bit error rate formula under
BPSK modulation are presented in this section. In addition,
we pay specific attention to the effect on the best receivers
after the Class A noise channel.

The full simulation system is presented in Figure 7.
As a soft decision symbol, the log-likelihood ratio is

introduced to the Viterbi decoder input [62].

LLR = ln f A,Γ rl −
ffiffiffiffiffi
Eb

p� �
− ln f A,Γ rl +

ffiffiffiffiffi
Eb

p� �
: ð13Þ

We first introduce the branch metric and LLR formula of
Viterbi decoding under the Gaussian channel.

In BPSK modulation, we use the bit energy Eb to nor-
malize the Gaussian pdf, where the mapping rule 1⟶ +ffiffiffiffiffi
Eb

p
, 1⟶ −

ffiffiffiffiffi
Eb

p
. Denote Eb = v2l and NG = 2σ2 as bit

energy and total noise power, respectively. The code rate of
convolutional code is Rc = 1/2. We consider the value of ±1

sequence V =V0V1V2 ⋯ Vl−1 and accepted sequence R =
R0R1R2 ⋯ Rl−1.

The PDF of Gaussian noise can be expressed as

PG nð Þ = 1ffiffiffiffiffiffi
2π

p
σ
exp −

n2

2σ2
� �

: ð14Þ

The branch metric and LLR under the traditional Gauss-
ian decoder can be expressed as

r × v = 〠
N−1

l=0
rl · vl, ð15Þ

L ykð Þ = 2
σ2G

yk: ð16Þ

The bit error rate formula under the influence of Gauss-
ian noise can be written as

BERAWGN = 1
2 erf c

ffiffiffiffiffiffiffi
Eb

NG

s !
: ð17Þ

The PDF of Class A noise consists of infinite terms,
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Figure 4: PDF of Middleton Class A with the different parameter Γ ðA = 1,No = 20WÞ.
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leading to the enormous complexity of logarithmic. We use
the 3-order approximate model and Equation (13) to sim-
plify the soft symbol.

ln f̂ A,Γ nð Þ = lnmaxm=0,1,2

Cm · 1/
ffiffiffiffiffiffi
2π

p
σm

� �
e − ri−

ffiffiffiffi
Eb

pð Þ2
	 


/2σ2m
� �

Cm · 1/
ffiffiffiffiffiffi
2π

p
σm

� �
e − ri+

ffiffiffiffi
Eb

pð Þ2
	 


/2σ2m
� � :

ð18Þ

The Class A noise Viterbi decoder can be established by

Equation (13). The algorithm equation can be depicted as
soft decision based on Class A noise PDF simplified model,
as shown in Equation (18).

The bit error rate formula under the influence of Class A
noise can be obtained as

BERMAIN = 1
2 〠

+∞

m=0

e−AAm

m!
erf c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΓ + A
AΓ +m

Eb

N0

s !
: ð19Þ

When A is very small, we take the first 3 orders as an
approximation
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BERMAIN = 1
2 〠

2

m=0

e−AAm

m!
erf c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΓ + A
AΓ +m

Eb

N0

s !
: ð20Þ

Finally, based on our simplified model, we present the
soft decision of BER performance in the proposed decoder
after signal processing Middleton Class A noise under differ-
ent parameters.

According to Figure 8, the proposed decoder outper-
forms the signal processing of soft decision in the Class A
noise channel. It is worth noting that when the noise has a
higher impulse, the BER performance improves signifi-
cantly. When the BER approaches 10−5, the gain of A =
0:01 and Γ = 0:01 is around 25-30 dB. As shown in
Figure 9, the gain of A = 0:01 and Γ = 0:1 is only 20 dB,
which is owing to the noise trending to Gaussian noise at
this time. It can be seen that the coefficient of the Gaussian
Γ will also affect the performance of the decoder.

5. Conclusion

In this paper, a method of processing Middleton Class A
noise by the Viterbi decoder is introduced in the field of
shallow water acoustic communication. The effects of the
three parameters A, No, and Γ of Middleton class A noise
on the third-order approximate model are also investigated.
It can be concluded that parameters No and Γ just influence
the curve’s shape but have no effect on the third-order
approximate model, while parameter A influences the
approximate model. When A is less than 0.1, the third-
order model can be a good approximation to replace the real
model in the curve of probability density probability. At the
same time, the BER performance in the final section proves
its feasibility under various parameters.

Additionally, the Class A noise decoder’s system block
diagram is constructed in the paper. The noise processing
algorithm is derived from the optimum reception theory of
Class A noise. After signal processing, the decoder over-
comes the drawbacks of traditional decoders in Class A
noise channel reception and enhances soft decision
performance.

Data Availability

The data used to support the findings of this study were sup-
plied by Yifei Wang under license and so cannot be made
freely available. Requests for access to these data should be
made to Yifei Wang (23320201154028@stu.xmu.edu.cn).
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