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The spatial smoothing-based and matrix reconstruction-based decorrelation algorithms are widely used to realize the accurate
direction-of-arrival (DOA) estimation with the coexistence of both uncorrelated and coherent sources. However, these methods
apply only to the traditional uniform linear array (ULA), of which the manifold matrix is a Vandermonde structure. In this
paper, to achieve the DOA estimation of mixed signals on coprime array, the coprime array is decomposed into two
independent sub-ULAs, and the received data is processed, respectively. An improved spatial differencing technique is
exploited to estimate the uncorrelated and coherent sources separately, and the lost degree of freedom (DOF) caused by array
decomposition is recovered. The final high-precision DOA estimation is obtained by conducting an ambiguity resolution
method to the estimation results of the decomposed subarrays. Furthermore, double-phase partial spectral search scheme is
introduced to diminish the computational complexity. The feasibility and superiority of the proposed algorithm are validated
through detailed experimental simulations.

1. Introduction

DOA estimation technology obtains the high-resolution azi-
muth information of targets through array signal processing,
which is widely used in self-driving, medical imaging, seis-
mic survey, and precision attack on battlefield targets [1,
2]. However, coherent sources are frequently found in space
due to multipath propagation and malicious smart jammers.
In this way, the signal subspace and noise subspace infiltrate
each other, and the traditional subspace-based methods
might fail since the data covariance matrix is rank-
deficient. Therefore, the preprocessing of decorrelation is
necessary in these situations.

In accordance with or without the loss of DOF, the
mainstream decorrelation algorithms are categorized into
dimensionality reduction methods and others. The latter
mainly includes Maximum Likelihood (ML) algorithm [3],
weighted subspace fitting (WSF) [4], and sparse reconstruc-
tion algorithms based on compressed sensing [5]. These
methods have broad application scenarios as they demand
no correlation of signals and possess high utilization ratio
of array antenna. Unfortunately, the multidimensional

search and the construction of an overcomplete basis involve
huge computational complexity, which seriously prevents
them from practical application.

In contrast, the subspace decorrelation methods for
dimensionality reduction class have simple models and
moderate operands, and are better suited to handle coher-
ent signals. Specifically, spatial smoothing-based algorithm
[6] divides the array into a series of overlapping subarrays
and restores the rank of matrix by the superposition of
subarray covariance. In this way, however, nearly half of
the DOF is lost, and only the autocorrelation information
of main diagonal accessory entries in the full covariance
matrix is exploited, leading to low estimation accuracy.
In response, Pillai and Kwon [7] and Grenier and Bosse
[8] propose Forward and Backward Spatial Smoothing
(FBSS) and Weighted Spatial Smoothing (WSS) algo-
rithms, respectively. An ESPRIT-like decorrelation algo-
rithm termed Single-column Toeplitz (STOEP) method
[9] reconstructs a Toeplitz matrix by randomly selecting
a column of the covariance matrix. Since the reconstructed
matrix of STOEP is insensitive to the coherency between
signals, it can also effectively detect coherent signals. And
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the Multi-column Toeplitz (MTOEP) method [10]
enhances the robustness of STOEP by extracting the com-
plete covariance matrix. To meet the requirement of DOA
preinstallation, Zhang et al. [11] further propose

Partial Toeplitz Matrices Reconstruction (PTMR) based
on the square of covariance matrix.

To detect more sources and improve the array utili-
zation, Rajagopal and Rao [12] propose the difference
algorithm, which exploits the Toeplitz property of the
covariance matrix of uncorrelated signals to separate
them from the correlated signals and stepwise estimated
the DOAs. Furthermore, the papers [13–15] combine
oblique projection and matrix transformation for a thor-
ough purge of uncorrelated signals in the difference
process.

Nevertheless, all subspace decorrelation algorithms suf-
fer from a strong dependence on the Vandermonde struc-
ture of the array manifold, indicating the uniform
distribution of physical sensors is required. In practice, the
sensors are usually set sparsely to receive more information
in a broader space. Since sparse arrays cannot be directly
divided into identical overlapping subarrays as uniform
arrays do, the spatial transformation processing is inevitable
before the decorrelation operation. For instance, Li eta al.
[16] and Belloni et al. [17] transformed the sparse planar
array into virtual uniform array via array interpolation and
manifold separation, respectively, while the signal type and
array structure are specially required.

Recently, one representative kind of the sparse array,
the coprime array with enhanced DOF and restrained
mutual coupling becomes one of the research highlights
in array signal processing [18, 19]. The excellent
direction-finding performance of coprime array benefits
from the construction of an augmented uniform virtual
array based on the difference coarray. Distinguished from
traditional ULA, however, the reconstructed virtual array
is actually equivalent to the single snapshot of second-
order statistics, which contains no waveform information
of the original signals. Thus, it cannot be applied to the
subspace decorrelation algorithm.

To achieve the DOA estimation of coherent signals
based on coprime array, the characteristic of prime num-
ber is exploited. The coprime array is decomposed into
two sparse ULAs with spacing beyond half wavelength.
Note the uniform distribution of the decomposed subar-
rays, the subspace decorrelation algorithms can be
extended to it. An optimized spatial differencing method
is employed solely for each subarray; the uncorrelated
and coherent sources are separated and estimated stepwise.
The multiple signal classification (MUSIC) is combined to
get the high-accuracy but ambiguous estimation results.
Finally, an improved ambiguity resolution algorithm is
presented back to the two groups of estimation results,
and the unique DOAs are obtained. Although the pro-
posed approach includes two spectrum peak searches, we
have opted to discard the global search scheme on MUSIC
spectrum in favor of a partial search scheme [20], which
reduces the computational cost and guarantees real-time
performance in practical applications.

2. System Model

Assume D narrowband quasistationary targets imping on
the coprime array with N sensors from the direction of θi ð
i = 1, 2,⋯D, θi ∈ ½−π/2, π/2�Þ. As depicted in Figure 1, the
coprime array is the superposition of a pair of sparse ULAs.
Subarray 1 possesses N1 elements with the spacing of N2
units, and subarray 2 possesses N2 elements with the spacing
of N1 units (N1 and N2 are coprime numbers, N1 <N2 and
N1 +N2 − 1 =N). Let dn represents the location of nth sen-
sors and S denotes the distribution set. The first marginal
element is chosen to be the reference with appropriate gen-
erality (d1 = 0).

dn ∈ S ⋅ d = nN2d, 0 ≤ n ≤N1 − 1f g ∪ n′N1d, 0 ≤ n′ ≤N2 − 1
n o

:

ð1Þ

where d is the unit spacing and d = λ/2, λ denotes the wave-
length of the transmitting source.

Suppose there are Du uncorrelated signals corresponding
to the propagation of the independent sources sdðtÞðd = 1,
2,⋯,DuÞ with power σðdÞðd = 1, 2,⋯,DuÞ; while the rest Dc
coherent signals correspond to the propagation of the L
groups of coherent sources sdðtÞ
ðd =Du + 1,Du + 2,⋯,Du + LÞ with power σðdÞ
ðd =Du + 1,Du + 2,⋯,Du + LÞ. Besides, each coherent group
contains pd multipath signals.

D =Du +Dc =Du + 〠
Du+L

d=Du+1
pd: ð2Þ

The kth ðk = 1, 2, KÞ snapshot xðkÞ ∈ℂN×1 of the
received signal is

x kð Þ = x1 kð Þ, x2 kð Þ,⋯, xN kð Þ½ �T

= 〠
Du

d=1
a θdð Þsd kð Þ + 〠

Du+L

d=Du

〠
pd

l=1
a θdlð Þρdlsd kð Þ

= Ausu kð Þ + Acsc kð Þ + n kð Þ = As kð Þ + n kð Þ,
A = Au Ac½ � = a θ1ð Þ, a θ2ð Þ,⋯, a θDu

À Á
, a θDu+1
À Á

, a θDu+2
À Á

,⋯,a θDu+L
À ÁÂ Ã

,

Ac = a θDu+1
À Á

, a θDu+2
À Á

,⋯, a θDu+L
À ÁÂ Ã

= ADu+1ρDu+1, ADu+2ρDu+2,⋯, ADu+LρDu+L
Â Ã

=

a θDu+1,1
À Á

a θDu+1,2
À Á
⋮

a θDu+1,p1

� �

266666664

377777775

T
ρDu+1,1

ρDu+1,2

⋮

ρDu+1,p1

266666664

377777775
,⋯,

a θDu+L,1
À Á

a θDu+L,2
À Á

⋮

a θDu+L,pL

� �

266666664

377777775

T
ρDu+L,1

ρDu+L,2

⋮

ρDu+L,pL

266666664

377777775

2666666664

3777777775
,

s kð Þ =
sTu kð Þ
sTc kð Þ

24 35 =
s1 kð Þ, s2 kð Þ,⋯,sDu

kð ÞÂ ÃT
sDu+1 kð Þ, sDu+2 kð Þ,⋯,sDu+L kð ÞÂ ÃT

24 35,
a θið Þ = 1, ej2πd2 sin θið Þ/λ,⋯ej2πdN sin θið Þ/λ

h iT
,

n kð Þ = n1 kð Þ, n2 kð Þ,⋯nN kð Þ½ �T ,
ð3Þ
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where the A ∈ℂN×ðDu+LÞ is the global manifold matrix, Au
∈ℂN×Du is the manifold matrix of uncorrelated signals,
and Ac ∈ℂN×L is the manifold matrix of coherent signals. s
∈ℂðDu+LÞ×1 denotes the entire signal waveform vector, su ∈
ℂDu×1 denotes the waveform vector of uncorrelated signals,
and sc ∈ℂL×1 denotes the waveform vector of coherent sig-
nals. a ∈ℂN×1 represents the steering vector and n ∈ℂN×1

is the additive Gaussian white noise vector. θdl and ρdl,
respectively, denotes the DOA and complex attenuation
coefficient of the lth ðl = 1, 2,⋯,pdÞ multipath signals for
the dth ðd = 1, 2,⋯,LÞ coherent sources.

The sample covariance matrix can be expressed as

Rxx = E x kð Þx kð ÞH
h i

= ARssA
H + σ2nIN

=AuRuAu
H +AcRcAc

H + σ2
nIN ,

ð4Þ

where Ru = diag ð½σ2
1, σ22, σ2Du

�Þ is the covariance matrix of

uncorrelated signals and Rc = diag ð½σ2Du+1, σ
2
Du+2, σ

2
Du+L�Þ

denotes the covariance matrix of coherent signals. The
global signal covariance matrix Rss is a block diagonal matrix
and Rss = blkdiagðRu, RcÞ, IN is the N-dimensional identity
matrix.

Limited to the finiteness of snapshot, mathematical aver-
age is substituted with statistical average as follows:

�Rxx =
1
K
〠
K

k=1
x kð Þx kð ÞH : ð5Þ

3. Proposed Method

In this section, the coprime array is decomposed as shown in
Figure 2 and a detailed introduction of the proposed method
is exhibited. Moreover, the available DOF and computa-
tional complexity are analyzed.

3.1. Improved Ambiguity Resolution Algorithm. As is
accepted, the phase ambiguity occurs when the interelement
spacing of ULA is N ′ times of the unit spacing, and the real
DOAs lost the unique corresponding peaks of the MUSIC
spectrum. Considering θd as the real DOA and θad as the cor-
responding ambiguous angle, the following relationship is
satisfied.

sin θdð Þ − sin θadð Þ = 2P
N ′ , ð6Þ

where the nonzero integer P represents all possible ambigu-
ous angles. If the sensors are spaced no more than half-

wavelength apart ðN ′ ≤ 1Þ, there is no such P fulfills (6)
since jsin ðθdÞ − sin ðθadÞj < 2, and phase ambiguity is absent.
If N ′ > 1, in contrast, things can be different. Taking the sub-
array 1 with N ′ ≤N2 for example, to satisfy (6), we have jP
j <N2, and all the possible values of P are −ðN − 1Þ,
−ðN − 2Þ,⋯, − 1, 1,⋯,N − 2,N − 1. Since θd and θad are
interchangeable, P have ðN2 − 1Þ possible values, indicating
there are N2 peaks for θd including the real peaks. Similarly,
there are N1 peaks in the MUSIC spectrum of the subarray 2
with N2 sensors, among which only one peak points to the
actual DOA.

Since the peak corresponding to real DOA appears at the
same position in the spatial spectra of the two coprime sub-
arrays, while the pseudo peaks corresponding to the ambig-
uous angles do not appear at the same position, the exact
unambiguous DOA can be determined by contrasting the
estimation results of the subarrays.

φn and φn′ are chosen to denote the angles set corre-
sponding to the spectral peaks of subarray 1 and subarray
2, respectively. Then, the estimation results of the two subar-
rays, bφn and bφn′, are resolved by

bφn, bφn′ð Þ = min
φn ,φn′

φn − φn′j j n = 1, 2,⋯,N2, n′ = 1, 2,⋯,N1
� �

:

ð7Þ

To acquire the signal information in a wider range and
improve the estimation accuracy, the estimation results of
the subarray with larger aperture are selected as the final
DOA estimation result

bθ i = bφn N1 − 1ð ÞN2 ≥ N2 − 1ð ÞN1,bφn′ N1 − 1ð ÞN2 < N2 − 1ð ÞN1:

(
ð8Þ

3.2. The Estimation of Uncorrelated Sources. The MUSIC
algorithm is exploited to estimate the uncorrelated signals
first. The Eigendecomposition (EVD) of the whole covari-
ance matrix R is expressed as

R =UΣUH =UsΣsUs
H +UnΣnUn

H , ð9Þ

where Σ = diag ð½λ1, λ2, λN1
�Þ is the diagonal matrix of

eigenvalues and λ1 ≥ λ2 ≥⋯≥λDu+L ≥ λDu+L+1 =⋯ = λN1
. Σs

= diag ð½λ1, λ2, λDu+L�Þ consists of signal eigenvalues, and
Σn = diag ð½λDu+L+1, λDu+L+2, λN1

�Þ comprises the noise
eigenvalues. U = ½U s,Un�, U s, and Un are the matrixes
whose columns are the corresponding eigenvectors of Σs
and Σn.

Given that the signal subspace U s and the noise subspace
Un are orthogonal, and the steering vectors span the same
vector space as U s do, therefore,

a θdð ÞHUn

�� ��2 = 0 d = 1, 2,Du, ð10Þ

Adρdð ÞHUn

�� ��2 = 0 d =Du + 1,Du + 2,Du + L: ð11Þ

N2d N2d

N1d N1d N1d

0 21 3 4 5 N1 + N2 – 2

Figure 1: The configuration of the coprime array.
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Since Adρd is the linear combination of the column vec-
tor of a Vandermonde matrix, the steering vectors of the sin-
gle multiple signals in each coherent group cannot satisfy
Equation (10) like that of uncorrelated signals. Conse-
quently, the DOAs of the uncorrelated sources can be
obtained by searching the peaks of

f θð Þ = 1
a θð ÞHUnUn

Ha θð Þ
: ð12Þ

After obtaining the estimation results on the two subar-
rays, the unique DOAs of unrelated signals are obtained by
applying the ambiguity resolution algorithm shown in Sec-
tion 3.1.

3.3. The Estimation of Coherent Sources. In this section, an
improved spatial differencing method [14] is used to elimi-
nate the uncorrelated components in the covariance matrix,
and the estimation of coherent signals is possessed by the
differencing matrix.

As demonstrated in Figure 3, subarray 1 is further
divided into p overlapping identical secondary subarrays,

each of which has ðN1 − p + 1Þ elements and the spacing of
N2d.

The covariance matrix of the mthðm = 1, 2,⋯,pÞ second-
ary subarray Rm ∈ℂðN1−p+1Þ meets the following expression:

Rm =KmRKm
H , ð13Þ

where the selection matrix Km ∈ℂðN1−p+1Þ×N1 is given by

Km = 0 N1−p+1ð Þ× m−1ð Þ, I N1−p+1ð Þ, 0 N1−p+1ð Þ× p−mð Þ
h i

: ð14Þ

To dissociate the coherent sources from uncorrelated
signals and resolve the rank deficiency, the equivalent spatial
smoothing is performed by averaging the difference between
R1 and Rmðm = 1, 2,⋯,pÞ.

Dp =
1
p
〠
p

m=1
R1 − JN1−p+1Rm

∗JN1−p+1
À Á

, ð15Þ

where JN1−p+1 is the ðN1 − p + 1Þ dimensional antidiagonal
matrix and the pth order spatial differencing matrix Dp owns
the following essential properties: (1) only the information
of coherent components is remained in Dp. (2) The rank
of Dp equals to the total number of coherent sources Dc

ðrank ðDpÞ =DcÞ when ðp ≥max
d

pdðd =Du + 1,Du + 2,Du +
LÞÞ and ðN1 − p + 1 >Dc =D −DuÞ. Detailed proof can be
found in [14].

Dp is Eigen decomposed as

Dp =UpsΣpsUps
H +UpnΣpnUpn

H , ð16Þ

where Σps = diag ð½λ1, λ2, λDc
�Þ is the diagonal matrix of sig-

nal eigenvalues, Σpn = diag ð½λDc+1, λDc+2, λN1−p+1�Þ is the
diagonal matrix of noise eigenvalues. Ups and Upn are the
subspaces composed of the corresponding eigenvectors of
signal eigenvalues and noise eigenvalues, respectively.
According to the orthogonality of the steering vectors and
the noise subspace, the coherent signals can be detected by
searching the spectrum peaks of:

f θdlð Þ ≜ aH θdlð ÞUpn
�� ��2 = 0

∀d ∈ Du + 1,Du + 2,⋯,Du + L½ �,∀l ∈ 1, 2,⋯, pd½ �
: ð17Þ

Next, the ambiguity resolution algorithm is used again to
get the unique DOAs of coherent signals.

1 20

1 2 30

Subarray 1:

Subarray 2:
N1d N1d N1d

N2d N2d

N1 – 1

N2 – 1

Figure 2: The diagrammatic sketch of the decomposed coprime subarray.

Secondary subarray 2 
Secondary subarray 1

Secondary subarray p 

1 2 3 4 5 N1 – 1N1 – 2N1 – 3N1 – 4N1 – 5

Figure 3: The partition of secondary subarrays.
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Figure 4: Biorder partial spectral search scheme.
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3.4. Biorder Partial Spectral Search Scheme. Since the pro-
posed algorithm involves two spectral peak searches, the
selection of search step ϒ is crucial: the computational com-
plexity is expensive when ϒ is small, while the estimation
accuracy will decrease when ϒ goes higher. The biorder par-
tial spectral search scheme [21] is introduced to improve the
precision without costing much computational complexity.
As shown in Figure 4, the first search is performed with ini-

tial step size ϒ 1 to obtain a roughly estimated angle bθðcÞ, and
then the second search is performed during the range of ½bθðcÞ − δe/2, bθðcÞ + δe/2� with step size ϒ 2 ðϒ 2 =ϒ 1/10Þ to

obtain the refined estimated angle bθ .
The detailed steps of the proposed algorithm are listed as

follows:

(1) The received data of subarray 1 is collected and the
covariance matrix R1 is calculated via Equation (5)

(2) R1 is eigendecomposed to plot the spatial spectrum
of uncorrelated signals via Equation (12). The bior-
der partial spectral search scheme is applied to find
the ambiguous DOAs of the uncorrelated signals

(3) The pth order spatial differencing matrix Dp is gen-
erated via Equation (15).

(4) Dp is eigendecomposed to plot the spatial spectrum
of uncorrelated signals via Equation (17). And the
biorder partial spectral search scheme is applied
again to find the ambiguous DOAs of the coherent
signals

(5) Steps 1-4 are repeated on subarray 2 to obtain the
ambiguous estimation results of the uncorrelated
sources and coherent sources

(6) The results of the two subarrays are deblurred via
Equations (7) and (8) to attain the unique DOAs

3.5. DOF. Since N1 <N2, the maximum number of detect-
able sources, namely the DOF, is depending on subarray 1.
To correctly identify the uncorrelated sources using MUSIC
algorithm, the signal subspace cannot fulfill the eigenspace
and the demanded condition is presented as

Du + L <N1: ð18Þ

For the same reason,

Dc = 〠
L

d=1
pd <N1 − p + 1, ð19Þ

when p =max
d

pd = 2, Dc = 2L <N1 − 1, and the maxi-

mum value of L ðLmaxÞ equals to bðN1 − 2Þ/2c = bN1/2c − 1.
Then,

Dcð Þmax = 2Lmax = N1b c − 2: ð20Þ

Lmax is substituted into Equation (18) as follows:

Duð Þmax =N1 − L − 1 =N1 − N1/2b c + 1 − 1 = N1/2d e: ð21Þ

Combining Equation (20) with Equation (21), the DOF
of the proposed method is derived as

DOF = Duð Þmax + Dcð Þmax = 3N1/2b c − 2: ð22Þ

3.6. Computational Complexity. The computational com-
plexity of the proposed algorithm is investigated in this sec-
tion, which mainly focuses on the eigenvalue decomposition
and spectral peak search.
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Figure 5: Normalized spectrum of uncorrelated signals.
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Subarray 1 is considered first. For the estimation of
uncorrelated signals, the computational complexity of EVD
of covariance matrix R ∈ℂN1×N1 is ΟððN1Þ3Þ, and the com-
putational complexity of the peak-finding searching is Oð
ðN1Þ2GuÞ. Here the Gu =Gu1 +Gu2 is the total number of
search points, which is inversely proportional to search step
ϒ . Gu1 = 180 ° /ϒ 1 and Gu2 =DuN2δe/ϒ 2 are the search
points of the rough search and refined search, respectively.
For the estimation of coherent signals, the computational
complexity of EVD of spatial differencing matrix Dp ∈
ℂðN1−p+1Þ×ðN1−p+1Þ is ΟððN1 − p + 1Þ3Þ, and the computa-
tional complexity of the peak-finding searching is Oð
ðN1 − p + 1Þ2GcÞ and Gc = 180 ° /ϒ 1 +DcN2δe/ϒ 2. Hence,
the computational complexity of subarray 1 is concluded
as ΟððN1Þ3 + ðN1 − p + 1Þ3 + ðN1Þ2Gu+ðN1 − p + 1Þ2GcÞ.
Similarly, the computational complexity of subarray 2 is Ο
ððN2Þ3 + ðN2 − p + 1Þ3 + ðN2Þ2Gu ′ + ðN2 − p + 1Þ2Gc ′Þ, Gu ′
= 180 ° /ϒ 1 +DuN1δe/ϒ 2, and Gc ′ = 180 ° /ϒ 1 +DcN1δe/
ϒ 2. The total computational complexity is calculated as fol-
lows:

Ο N1ð Þ3 + N2ð Þ3 + N1 − p + 1ð Þ3 + N2 − p + 1ð Þ3 + N1ð Þ2Gu

�
+ N2ð Þ2Gu ′ + N1 − p + 1ð Þ2Gc + N2 − p + 1ð Þ2Gc ′

�
:

ð23Þ

4. Simulation Results

In this section, the effectiveness of the ambiguity resolution
algorithm is verified, and the comparisons of the computa-
tional complexity and DOA performance are presented.
Suppose the coprime array has a total of 10 sensors, which
is decomposed to the five-element subarray 1 with the spac-

ing of 6d, and the six-element subarray 2 with the spacing of
5dðN = 10,N1 = 5,N2 = 6Þ.

4.1. Experiment 1: Ambiguity Resolution Algorithm. Assume
that two coherent signals come from θ1,1 = −25:8 ° and θ1,2
= 25:8 ° with the complex attenuation coefficient of ð1 +
0:3iÞ and ð1 + 0:5iÞ, respectively. Furthermore, there are
two uncorrelated signals at θ2 = −35:8 ° and θ3 = 25:8 ° .
The Signal to Noise Ratio (SNR) is set to be SNR = 10dB,
and the snapshot K = 500.

The MUSIC spectrums in Equation (12) for both uncor-
related signals and coherent signals are shown in Figures 5
and 6. Note that there are 12 ðDuN2 = 2 × 6 = 12Þ peaks pre-
sented in the spectrum corresponding to subarray 1, and 10
ðDuN1 = 2 × 5 = 10Þ peaks corresponding to subarray 2,
which is identical to the theory in Section 3.1.

The reason why peaks outnumber sources is the exis-
tence of ambiguity. Due to the characteristic of prime num-
bers, only the spectral peaks corresponding to the real DOA
θd present in the same position of both MUSIC spectrums,
while the spectral peaks corresponding to θαd do not. Hence,
the unique DOAs can be derived by finding the overlapping
peaks. The proposed algorithm can accurately detect all four
signals as exhibited in Table 1, where the red marks repre-
sent the overlapping angles of the two subarrays, namely
the estimated results.

Furthermore, by estimating uncorrelated signals and
coherent signals separately, it can break through the resolu-
tion limit of conventional spatial spectrum estimation algo-
rithms and detect two distinct signals from the same angle.

4.2. Experiment 2: Computational Complexity. To reflect the
advantages of the biorder partial spectral search strategy, the
computational complexity of regular spectral searching
method (RSS) is compared with the proposed search strategy
ðϒ 1 = 0:1,ϒ 2 = 0:01, δe =ϒ 1Þ versus different numbers of
sensors.
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Figure 6: Normalized spectrum of coherent signals.
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As can be seen from the comparison in Figure 7, the
computational complexity of the optimized searching strat-
egy, the red line lines, is much lower than that of rough
RSS ðϒ = 0:1Þ and close to that of fine RSS ðϒ = 0:01Þ, no
matter for coherent signals or uncorrelated signals. Since

the accuracy of the subspace MUSIC algorithm depends on
the length of searching step, the simulation results reveal
that the biorder search strategy can maintain precise DOA
estimation results while taking into account the computa-
tional complexity.

4.3. Experiment 3: The Performance of DOA Estimation. The
forward spatial smoothing (FOSS [6]), forward-backward
spatial smoothing (FBSS [7]), Single Toeplitz method
(STOEP [9]), Multiple Toeplitz method (MTOEP [10]),
and Partial Toeplitz square Matrix Reconstruction (PTMR
[11]) are compared with the proposed algorithm. Root mean
square error (RMSE) and the estimation accuracy (Acc) are
chosen to reflect the magnitude of angle estimation bias,
which is defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

DW
〠
D

d=1
〠
W

w=1
θd,w − θdð Þ

vuut ,

Acc = Fr

DW
× 100%,

ð24Þ

where W is the number of Monte Carlo simulations, θd,w
denotes the estimation angle of θd in the wth Monte Carlo
simulation, and Fr counts all occurrences of jθd,w − θdj <
0:5 ° . For the coprime array, M = 7,N = 6. Assume three
sources imping on the antenna array from ½0 ° , 25:8 ° , 40 °
�, of which the first two sources are coherent sources with
complex attenuation coefficients of ½1 + 0:3i, 1 + 0:5i�, and
the last source is independent from other sources. 1000
Monte Carlo trials are repeated to eliminate the randomness
of the data.

4.3.1. DOA Performance versus SNR. The number of snap-
shots is set to be 200 and SNR is evenly evaluated at intervals
of 2.5 within the range of −10 ~ 20. The performance com-
parisons of RMSE and Acc versus different SNRs are exhib-
ited in Figures 8 and 9.

Consistent with expectations, with the increase of SNR,
the RMSE gradually decreases and the Acc gradually
increases. It is evident that the blue stars line always corre-
sponds to the lowest RMSE and the highest Acc, indicating
that the proposed algorithm outperforms the others.
Although the reconstruction of full-rank covariance is sim-
pler for matrix reconstruction-based decorrelation algo-
rithms, the reconstructed noise power becomes the square
of original noise power, thus the DOA performance of
MTOEP is inferior to FOSS and FBSS.

In contrast, although the proposed algorithm loses
nearly half of the array DOF due to the decomposition of
coprime array, spatial differencing technique is employed

Table 1: the Angle values corresponding to spectrum peaks.

Subarray 1 Subarray 2

Uncorrelated sources -56.64°, -25.80°, -2.02°, 2.02°, 25.80°, 56.64° -63.91°-25.80°, 3.042°, 25.80°, 63.91°

Coherent sources -80.05°, -35.80°, -10.66°, 2.02°, 25.80°, 56.64° -66.68°, -63.91°, -35.80°, 25.80°, 48.45°
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Figure 7: Comparison of computational complexity.
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to recoup this loss by estimating the uncorrelated sources
and coherent sources in two consecutive steps. Compared
with other algorithms with the same DOF, the proposed
algorithm can obtain signal information in a larger range
and effectively suppress the mutual coupling due to sparse
layouts of array sensors, hence achieving the optimum
DOA estimation performance.

4.3.2. DOA Performance versus Snapshot Number. The num-
ber of snapshots is another crucial factor to determine the
DOA performance except for SNR. As shown in Figures 10
and 11, Monte Carlo experiments study the comparison of
RMSE and Acc versus different snapshot numbers ðK = ½10

, 20, 30, 40, 80, 100, 150, 200, 300, 400, 600, 900, 1200�Þ. The
SNR is fixed at 0 dB, and other experimental parameters
remain unchanged.

As demonstrated above, the performance curve of the
RMSE is continuing to decline with the addition of snap-
shots. Apparently, the proposed algorithm can obtain the
lowest RMSE and the highest Acc for each snapshot number.
The proposed algorithm can reduce RMSE to the level of
nearly zero and achieve an accurate rate of approximately
100% with only 100 snapshots.

5. Conclusion

In this paper, the joint estimation of both uncorrelated and
coherent sources on sparse array is achieved based on the
decomposed coprime subarrays and spatial differencing
technique. Since uncorrelated and coherent sources are esti-
mated separately, the number of detectable sources exceeded
that of physical sensors; even two sources from the same azi-
muth can be distinguished for some specific situations. Fur-
thermore, the biorder search strategy is introduced to reduce
computational complexity. The available DOF is calculated
and computational complexity is analyzed. Exhaustive simu-
lations confirm the superior performance of the proposed
approach under harsh conditions with limited snapshots
and low SNR.

Data Availability

The data used to support the findings of this study are
included within the article.
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