
Research Article
Image Classification and Recognition Based on Deep Learning
and Random Forest Algorithm

Erhui Xi

School of Engineering, Guangzhou College of Technology and Business, Foshan, 528137 Guangdong, China

Correspondence should be addressed to Erhui Xi; 11109822143@stu.wzu.edu.cn

Received 12 April 2022; Revised 30 April 2022; Accepted 5 May 2022; Published 3 June 2022

Academic Editor: Kalidoss Rajakani

Copyright © 2022 Erhui Xi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Convolutional neural network (CNN) is an important way to solve the problems of image classification and recognition. It can
realize effective feature representation and make continuous breakthroughs in the field of image recognition, but it needs a lot
of time in the training process. At the same time, random forest (RF) has the advantages of fast training speed and high
classification accuracy. Aiming at the problem of image classification and recognition, this paper proposes a hybrid model
based on CNN, which inputs the features extracted by CNN into RF for classification. Since the random weight network can
also obtain valid results, the gradient algorithm is not used to adjust the network parameters to avoid consuming a lot of time.
Finally, experiments are conducted on MNIST dataset and rotated MNIST dataset, and the results show that the classification
accuracy of the hybrid model has improved more than RF, and also, the generalization ability has been improved.

1. Introduction

Handwritten digit recognition is a kind of pattern recogni-
tion, which is included in the character recognition technol-
ogy, and the key technology for processing some data
information is handwritten digit recognition, such as finan-
cial statements, postal codes, and various bills [1]. In 1998,
Lecun et al. proposed the handwritten digit recognition
model LeNet I5, which was widely used to recognize hand-
written digits of U.S. bank checks; in literature [2], the K-
nearest neighbor classification (KNN) algorithm was used
to achieve a classification error rate of 2.83% on a MNIST
dataset. The K-nearest neighbor (KNN) algorithm in [3]
achieved a classification error rate of 2.83% on the MNIST
dataset; support vector machine (SVM) and its improved
algorithms were widely used in classification tasks. In 2012,
Niu et al. proposed a hybrid model CNN-SVM applied to
digital recognition [4], using CNN for feature extraction
and SVM as a classifier, combining the respective advantages
of both sides and achieving good experimental results in
image classification tasks; Luo et al. [5] in 2014 proposed a
hybrid method ELM-SRC (sparse representation-based clas-
sification), which combined the advantages of SRC in pro-

cessing noisy images and the fast training speed of ELM,
and conducted experiments on USPS handwritten dataset,
which both improved the classification accuracy and
ensured the time efficiency.

CNN is a deep learning algorithm, which is widely used
in many fields, such as target recognition, scene classifica-
tion, and face recognition [6]. CNN learns by layer by layer,
and each layer automatically extracts different features from
the input image, which works very well and is considered as
one of the representatives of general-purpose image recogni-
tion systems [7]. Usually, the neurons in the convolutional
layer are connected to the upper layer by local perceptual
fields, and the features of that local area are obtained by con-
volution, and the secondary features are extracted by pooling
in the pooling layer [8]. The structure of alternating convo-
lutional and pooling layers makes it possible to tolerate input
samples with certain distortions [9, 10]. However, the CNN
requires a BP algorithm to adjust the parameters. Random
forest (RF) is proposed in 2001, which has high accuracy
in classification and regression and fast training speed and
is not prone to overfitting problems, and also performs well
in noise immunity [11, 12]. The existing RF-based classifiers
rely on hand-selected features; however, manual feature
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selection is very time-consuming and requires expertise
background, and whether good results can be achieved
depends on a certain amount of experience and luck. In lit-
erature [13, 14], it is proposed that the network structure can
achieve good results even with randomly unpretrained
weights.

The paper [15, 16] generated realistic original images
using a random initialized network reduction without any
training; the paper [17, 18] proposed a deep neural network
and RF model to detect retinal vessels in fundus images in
2015 and achieved an accuracy of 93.27% on the DRIVE
dataset. Based on the above issues, a hybrid model hybrid
model is proposed in the paper. In the hybrid model, the fea-
tures are extracted with a CNN with random weights and
then handed over to the RF to complete the classification,
which makes the model take much less time in extracting
features, overcoming the problem of long training time of
CNN and solving the drawback of manual feature selection
by RF [19, 20].

2. Convolutional Neural Networks

The combination of convolutional, downsampling, and fully
connected layers constitutes the most classical network
structure of CNN. The convolutional layer uses a linear filter
kernel to perform linear convolution, and then, a nonlinear
activation function is added to compute the extracted
features.

Figure 1 shows an example of a classical CNN neural
network structure.

2.1. Convolutional Layers. The convolutional layer is the
most critical component of CNN, also called filter or kernel,
which is used for low-dimensional feature extraction on
high-dimensional data. The parameters are a set of trainable
convolutional kernels, each of which has a relatively small
size (length × width) in order to extract the right size feature
map without losing useful information. In each convolu-
tional layer, there are a certain number of convolutional ker-
nels, which is a hyperparameter in the CNN and needs to be
empirically specified artificially, and each kernel computes.
A feature map means that we have extracted some features
of the input image; i.e., the original three-dimensional image
becomes a two-dimensional feature map. The combination
of all the feature maps is our output data, which can be used
for further feature extraction or as the final feature extrac-
tion result. Multiple convolutional kernels are used to
extract different aspects of features, such as color, contour,
and background.

The depth of a normal deep neural network is mainly
reflected in the deep layers of the network, which leads to
a dramatic increase in parameters, while the most important
feature of convolutional layers compared to the most com-
mon fully connected neural networks is that the parameters
can be reduced substantially, even by orders of magnitude. If
an n × n convolution kernel does the convolution operation
on an m ×m image with the same depth of the image, we get
a new image of size ððm + nÞ/lÞ + 1, which is the feature map.
The l divided by l is the step size we set for the convolution.

The step size can be set to other values according to our
needs, but if the division is not exhaustive, we need to fill
the image so that it can take an integer number of steps, so
the most important thing is to be able to divide the whole
thing.

2.2. Pooling Layers. CNNs generally alternate between a con-
volutional layer followed by a pooling layer. Its most intui-
tive function is to reduce the dimensionality, so that the
number of parameters in this layer is also reduced, making
the computation simpler and faster, extracting important
features and conforming to invariance. The most common
way to do this is to downsample the input using a filter of
size 2 × 2, where the four pixel values are combined into
one pixel value. Each max-pooling operation takes the larg-
est of the four numbers (some 2 × 2 region of the input
image). The depth of the image does not change, and the
image size is reduced while preserving as much of the origi-
nal information as possible.

As shown in Figures 2 and 3, max-pooling has the
advantage of not increasing the number of parameters to
be adjusted and is generally more accurate than other
methods, highlighting features, while mean-pooling tends
to be more smooth.

2.3. Training Process. The CNN performs supervised guided
training, and the process is roughly as follows.

2.3.1. FC Layer

(1) Calculate the output for the fully connected layer l as
a function of

xl = f ul
� �

, where ul =Wlxl−1 + bl, ð1Þ

where f ð•Þ represents the activation function, and here we
use the sigmoid function

The error loss of the training sample is

En = 1
2〠

c

k=1
tnk − ynkð Þ2 = 1

2 tn − ynk k22, ð2Þ

where c indicates that there are a total of c classes in the mul-
ticategory problem.

(2) Weight update

For the convenience of presentation, we define the deriv-
ative of the error with respect to the basis as the sensitivity,
whose expression is

∂E
∂b

= ∂E
∂u

∂u
∂b

= δ: ð3Þ

The sensitivity of layer i in back propagation can be
expressed as

δi = Wi+1� �T
δi+1 ∘ f ′ ui

� �
: ð4Þ
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For the base value b in the output layer (at each layer,
b is a vector), the partial derivative to the base value b for
layer l is

∂E
∂bl

= ∂E
∂u′

∂ul

∂bl
= ∂E
∂f ul
� � ∂f u′

� �
∂u

= −〠 t − f u′
� �� �

f ′ u′
� �

:

ð5Þ

For the weights W (at each level, W is a matrix), find
the partial derivatives.

∂E
∂Wl

= ∂E
∂ul

∂ul

∂W = ∂E
∂ul

xl−1 = xl−1 δl
� �T

: ð6Þ

Here, xl−1 is the input of the l layer which is also the
output of the upper layer, so the final amount of change
in the weights is

ΔWl = −η
∂E
∂Wl

= −ηxl−1 δl
� �T

: ð7Þ

2.3.2. Convolution Layer. In the convolution layer, the out-
put is obtained after the filter kernel is calculated.

Dk, θk = x1x2,⋯, xmð Þ, T: ð8Þ

From equation (4), we know that if we want to get the
change value of the weight of each neuron in layer l, we
must first get its corresponding sensitivity δ. In order to
find this sensitivity, we need to first sum the sensitivity
of the nodes in the next layer (to get δl+1) and use equa-
tion (4) to calculate the sensitivity δl corresponding to
each neuron node in the current layer l. Next, the weights
are updated.

Because the downsampling operation is often done after
the convolutional layer, the feature map obtained in the
pooling layer does not match the size of the input. The pool-
ing layer is needed. The sensitivity of node j in the lth layer is
given by taking a β for all the weights of the pooling map.

δlj = βl+1
j f ′ ulj

� �°
up δl+1j

� �� �
, ð9Þ

where upðxÞmeans upsampling x, depending on the pooling
method described earlier. Now, for a given map, we can
compute the gradient of the base value b as follows:

∂E
∂bj

=〠
u,v

δlj

� �
uv
: ð10Þ
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Figure 2: Max-pooling operation.

0.4

0.2

0.6

0.5

0.3

Input X 

Kernel W Output Y

0.25

0.25

0.25

0.25

Figure 3: Mean-pooling operation.

Input x 

C1:Feature Map

S2:Feature Map

C3:Feature Map S4:Feature Map
C5:Layer

output

Full connectionDownsamplingDownsamplingConvolution Convolution

Figure 1: Schematic diagram of LeNet-5 model.
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Finally, the gradient of the weightsW of the convolution
kernel is calculated using Matlab’s convolution function.

∂E
∂Kl

ij

= rot180 conv2 xl−1i , rot180 δlj

� �
,′

��
valid′

��
: ð11Þ

2.3.3. Pooling Layer. For the pooling layer, the number of
input feature maps is not changed, but only the input feature
maps are made smaller: the

xlj = f βl
jdown xl−1j

� �
+ blj

� �
, ð12Þ

where downð•Þ denotes a pooling function. Each output
feature map corresponds to a weight β and a bias b of
its own.

Here, again we have to obtain the sensitivity before we
can update the weights β and the basis b. If this layer is fully
connected to the next layer, the gradient of the layer can be
calculated directly by BP. However, when the sensitivity of
the convolution kernel is not fully connected as equation
(9) shows, the sensitivity of the convolution kernel is calcu-
lated here again with the help of the convolution function.

δlj = f ′ ulj
� �°

conv2 δl+1j , rot180 Kl+1
j

� �
,′ full

� �
: ð13Þ

The gradient of the base value b is then calculated as in
the convolution layer, as in equation (10). The sensitivity
to the weights β is calculated as follows.

∂E
∂bj

=〠
u,v

δlj
°
dlj

� �
uv
, ð14Þ

where dlj = downðxl−1j Þ.

3. Random Forest

RF consists of k classification trees, and its basic idea is to set
multiple weak classifiers into one strong classifier. The clas-
sification tree consists of different nodes, where the root
node represents the training set, each internal node repre-
sents a weak classifier that divides the samples according to
a certain attribute, and each leaf node is a labeled training
or test set that classifies the input data into several subsets.
The final decision result of RF is the optimal result chosen
by voting on all classification trees.

The Gini index is used to decide the optimal binary cut
point for that feature. The Gini index GginiðDÞ represents
the uncertainty of the set D. In the classification problem,
suppose there are N classes, and for a given set of samples
D, the Gini index is defined as

Ggini Dð Þ = 1 − 〠
N

n=1

Cnj j
D

� �2
, ð15Þ

where Cn is the subset of samples in D that belong to the
nth class. If the sample set D is divided into two parts D1
and D2 according to whether the value of feature A takes
a or not, i.e.,

D1 = x, yð Þ ∈DjA xð Þ = af g,D2 =D −D1: ð16Þ

Conditional on characteristic A, the Gini index of the
set D is defined as

Ggini D, Að Þ = D1j j
Dj j Ggini D1ð Þ + D2j j

Dj j Ggini D2ð Þ: ð17Þ

GginiðD,AÞ represents the uncertainty of the set D after
the partitioning by A = a. When constructing a classifica-
tion tree, the feature with the smallest Gini index and its
corresponding optimal binary cut point are selected. The
RF is constructed using the Gini index minimization crite-
rion with the following steps.

(1) Using the bootstrap resampling method, the kth
sample set is drawn back from the original sample
set D. The kth sample set is denoted as Dk and a ran-
dom vector θk, θk is generated for the kth classifica-
tion tree that is independently and identically
distributed with the previous random vectors. In this
paper, we use hðDk, θkÞ to represent the kth classifi-
cation tree model

(2) Build classification trees for each of the k samples.
The generation of the classification tree is the process
of recursively building a binary classification tree,
using the feature with the smallest Gini index to split
the binary tree

(3) The final classification result is voted based on the
results of each classification tree

The flow of constructing the random forest is shown in
Figure 4.

4. Hybrid Model Based on Deep Learning and
Random Forest

4.1. Model Structure. The hybrid model structure is shown in
Figure 5, and the main improvement is to use the features of
the output layer of CNN to do classification by RF. First, the
feature extraction of the image is done with the convolu-
tional and pooling layers with random weights, and the
extracted features are fed into the RF classifier to get the clas-
sification results. The number of filters in the convolutional
layer greatly affects the generalization ability of the model;
based on experience, the values of N1 and N2 of the model
are 10 and 20, respectively.

In CNN, part of the image area (local perceptual field) is
used as the input of the bottom layer of the network and
then transmitted to each layer of the network in turn, and
each layer is filtered by multiple filters to the most significant
features which are computed in each layer through multiple
filters. Because the local receptive fields of the image allow
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Figure 5: Hybrid model structure.

Input: sample set D = ðx1x2,⋯, xmÞ; number of split attributes.
Step1: Select n samples from the sample set D using Bootstrap sampling.
Step2: Randomly select k attributes and choose the best split attributes to build CART decision tree.
Step3: Repeat Step1 and Step2 for m times to build m CART decision trees.
Step4: Form a random forest withm CART trees, for the test set T decide which class the data belongs to by voting on the results, and
the percentage that is different from the correct classification label is the classification error rate of RF.
Output: Random forest of m trees.
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Figure 4: Random forest classifier flow.
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the neurons to detect the most basic features of the image,
such as edges or corners, the local receptive fields of the
image are used as the input. The local perceptual field of
the image allows the neurons to detect the most basic fea-
tures of the image, such as edges or corners, and the neurons
in each layer share the weights. A secondary pooling layer
for extracting features is after each convolutional layer. This
unique approach is able to obtain salient features for data
that are invariant to translation, scaling, skew, and rotation.

Whether the features are designed manually or obtained
by deep learning, everyone aims to obtain good features that
reflect the nature of the original data, which is very much in
line with the research intuition that using good features
always leads to good results in various ways. ELM (extreme
learning machine) does a random projection of the original
data, projecting the original information into a certain space
randomly, giving up the pursuit of good features for the
improvement of the solution speed, and has obtained very
good results in some tasks, so the classification of random
features is worth exploring.

RF is a combinatorial classifier that solves the defect of
decision tree overfitting and is more resistant to noise and
anomalies; and it runs relatively fast and remains efficient
for large amounts of data.

Our hybrid model exploits the advantages of CNN in
feature extraction and RF in terms of speed and less overfit-
ting and uses CNN with random weights to automatically
extract the features and use it as the input of the RF classifier,
which avoids the CNN consuming a lot of time in the train-
ing process, while obtaining better classification accuracy.

4.2. Training Process

4.2.1. Extraction of Features

Step 1. Network initialization and random initialization of
weights and biases.

Step 2. Convolutional layer extracts features. For example,
the convolution kernel is operated to obtain the output.

xlj = f 〠
i∈M

xl−1i ∗ klij + blj

 !
: ð18Þ

Here, Mj represents the set of input feature maps.

Table 1: Error rates (%) for RF and hybrid models on the MINST
dataset.

Ntree RF Hybrid-RF

100 3.02 2.16

200 3.03 2.12

300 2.95 2.06

400 2.94 2.00

500 2.90 1.98

600 2.89 2.02

700 2.85 2.08

800 2.88 2.12
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Figure 6: Comparison of the experimental results of RF and hybrid
model on MNIST.
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Figure 7: Results of ELM on MNIST dataset.

Table 2: Comparison of experimental results on MNIST dataset.

Datasets Algorithms Error rates (%)

MNIST

ELM 2.49

DAEs 2.14

CKELM 3.18

CNN-0 18.41

CNN-1 2.01

RF 2.89

Hybrid-RF 1.97
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Step 3. The pooling layer extracts features. For the pooling
layer, the number of feature maps remains the same, but
the input feature maps are made smaller.

xlj = f βl
jdown xl−1i

� �
+ blj

� �
, ð19Þ

where downð•Þ denotes a pooling function.

4.2.2. Replacement Classifier. The output of the C5 layer is
used as the extracted features as the training set D and the
test set T to build a random forest as follows.

5. Experiments and Results

To evaluate the classification performance of our hybrid
model, we conducted experiments on the well-known
MNIST and rotated MNIST datasets.

5.1. MNIST Dataset. Assuming that Ntree is the number of
trees in RF, when Ntree is taken too small, the classification
accuracy will not reach the desired result. Since RF is not
prone to overfitting problem, we can make the value of Ntree
as large as possible to ensure the classification accuracy, but
it will take much time to build RF, so the value of Ntree has
an important significance to the performance and complex-
ity of RF. In order to avoid the problem of long training time
of CNN, we use the method of random weights, after the
CNN extracts the features, the extracted features are input
to RF for classification; in order to compare, we do the
experiments under different Ntree numbers. Table 1 shows
the test error rate under different Ntree values.

From Table 1, it is seen that the classification accuracy of
the hybrid-RF model is better than that of the RF at each
Ntree.

Figure 6 shows the results of RF and hybrid-RF model,
from which we can see that the test error rate of the hybrid
model is better than RF at different Ntree.

Figure 7 shows the relationship between the classifica-
tion error value and the number of hidden layer neurons
of ELM (extreme learning machine) classifier on the MNIST
dataset; the final training error is 0.66%; the test error is
2.47%.

Many methods have been experimented on the MNIST
dataset, and Table 2 lists the performance of several differ-
ent methods on the MNIST dataset, among which CKELM
(convolutional extreme learning machine with kernel) is a
convolutional neural network with random weights to
extract the number of features, and the classifier is replaced
with kernel extreme. The error rate on the MNIST dataset
is 3.20%; the network structure of DAEs is 200 × 200 ×
200; CNN-0 is a convolutional neural network with ran-
dom weight filtering kernels, because the weights are not
adjusted, and the error rate that can be seen from the table
in CNN-1 is the convolutional neural network after 50
training iterations.

Under the given hardware conditions, the CNN takes
about 190 s for one iteration, and 50 iterations have con-
sumed close to 3 hours. The RF itself runs very fast, taking
only 20 minutes to train on the MNIST dataset (when
Ntree = 400), and the hybrid model takes less time to train
than the original RF because the dimensionality of the data
is less than the original. Our model greatly reduces the time
for feature extraction and the accuracy is guaranteed.

Due to the effectiveness of random weights, we use a
CNN with random weights, which does not require gradient
descent algorithm to adjust the parameters, also overcomes
the problem of sensitive learning rate selection, and

Table 3: Experimental results of the rotated MNIST dataset on RF
and hybrid models.

Ntree RF Hybrid-RF

100 11.16 10.55

200 10.55 9.88

300 10.31 9.67

400 10.25 9.50

500 10.25 9.22

600 10.11 9.22

700 10.07 9.21

800 10.09 9.21
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Hybrid-RF
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Figure 8: Comparison of the experimental results of RF and hybrid
models on rotated MNIST.

Table 4: Comparison of experimental results on rotated MNIST
dataset.

Algorithms Error rates (%)

CNN-0 35.42

CNN-1 9.67

RF 10.02

Hybrid-RF 9.18
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combines the advantages of fast and efficient RF, while the
experimental results also prove the effectiveness of the
hybrid model.

5.2. Rotated MNIST Dataset. To further illustrate the effec-
tiveness of our model, we selected a rotated MNIST dataset
from the variant MNIST dataset for the comparison test,
which rotates the digital images in the MNIST dataset uni-
formly between 0 and 2π. Here, we randomly select 50,000
data from the rotated MNIST dataset as training data and
10,000 as test data and do the same experiments as the
MNIST dataset for the RF and hybrid models with different
Ntree numbers. Table 3 shows the error rates of the RF and
hybrid models for the rotated MNIST dataset.

Figure 8 shows the experimental results of RF and our
hybrid model in the rotated MNIST dataset, from which
we can see that our hybrid model outperforms RF for differ-
ent Ntree values, which again validates the effectiveness of
our model and also has better generalization ability than RF.

Table 4 shows the comparison of the experimental
results on the rotated MNIST dataset. CNN-0 is the CNN
with random weights and CNN-1 is the CNN after 50 itera-
tions of training.

6. Conclusion

For the image classification and recognition problem, we
propose a hybrid model in this paper. In the hybrid-RF
model, CNN extracts features with random weight and then
completes the classification combined with RF. Therefore,
the model greatly reduces the time spent in the process of
feature extraction, effectively overcomes the problem of long
CNN training time, and avoids the problem of manual fea-
ture selection of RF. Sufficient experimental results show
that our proposed hybrid-RF model has superior perfor-
mance and can effectively solve the problems of image clas-
sification and recognition. In the hybrid model, the features
are extracted using CNN with random weights and then
handed over to RF to complete the classification, which
makes the model take much less time to extract features,
overcomes the problem of long training time of CNN, and
solves the drawback of manual feature selection by RF.
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