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Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral
variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric
autoencoder-based spatial-spectral clustering network (DCAAES*C-Net) which employs a convolutional autoencoder (CAE)
and an asymmetric autoencoder to investigate spatial-spectral information. First, we use a CAE to extract spatial-spectral
features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non-
material-related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the
proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k-means algorithm
by using the concept of over-clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it
to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology

outperforms other methods on the frequently used hyperspectral image dataset.

1. Introduction

Recent years have witnessed a spurt of progress in remote
sensing technology; it has promoted study of hyperspectral
remote sensing [1]. HSI is captured by hyperspectral sensors
such as hyperspectral imaging spectrometers, which can
image regions of interest with nanoscale spectral resolution,
gathering rich spectra to capture information about numer-
ous ground objects [2, 3]. It is a 3D cube structure image
with tens to hundreds of bands that includes various ground
object information and allows meticulous ground object
classification using deep networks [4], and it has been widely
employed in a variety of industries, such as mineral explora-
tion [5, 6], vegetation monitoring [7, 8], quantitative inver-
sion of physical and biological parameters [9, 10], and
military reconnaissance [11, 12]. Deep networks that employ
supervised learning, on the other hand, typically require a
substantial quantity of labeled data. Unfortunately, sample
collection is time consuming, labor intensive, costly, and
inefficient in practice, and training samples may be unavail-
able in some remote and no man’s areas, severely limiting

the application capabilities of hyperspectral remote sensing
[13]. Thus, to increase the application potential of hyper-
spectral remote sensing, unsupervised ground object recog-
nition theory and method is necessary to be developed to
overcome the limitations of labeled samples and prior
information.

Generally, the learning-based clustering methods of HSI
include two important elements: clustering algorithm and
feature extraction. Among them, the purpose of clustering
algorithm is, as a typical unsupervised information analysis
technology, it does not rely on any training samples, but
only by mining the essential characteristics of the data to
achieve the natural division of pixels, which effectively solves
the classification problem without prior information.
According to the difference of clustering algorithm principle
and working mechanism, hyperspectral clustering can be
summarized into 9 categories of methods by Zhai et al.
[13]: centroid-based methods [14, 15], density-based
methods [16, 17], probability-based methods [18], bionics-
based methods [19], intelligent computing-based methods
[20], graph-based methods [21, 22], subspace clustering
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methods [23, 24], deep learning-based methods [25], and
hybrid mechanism-based methods [26]. Centroid-based
methods and density-based methods are used widely. The
method based on clustering center is the first method to be
introduced into hyperspectral clustering analysis, and it is
also one of the most classic clustering methods.

The purpose of feature extraction is to search a mapping
from high-dimensional space to low-dimensional space, so
that it can reduce redundant information and preserve cru-
cial information. In the early years, researchers focused on
using linear transformations to extract HSI features, such
as linear discriminant analysis [27], independent component
analysis [28], minimum noise separation transformation
[29], and some PCA-based methods [30, 31]; then, some tra-
ditional clustering algorithms were applied to achieve clus-
tering results. However, due to the complicated properties
of HSI data, the performance is limited [32, 33]. Nowadays,
a more advanced HSI clustering method is learning-based
method. It is widely used in HSI clustering to tackle the
nonlinearity problem, which exceeds the performance of
many traditional methods. There are generally two types of
learning-based clustering algorithms: spectral-only methods
and spatial-spectral methods. The spectral-only methods
like automatic fuzzy clustering based on an adaptive
multi-objective differential evolution (AFCMDE) [34],
scalable graph-based clustering with nonnegative relaxation
(SGCNR) [35], and a robust manifold matrix factorization-
based method (RMMF) [36], which cluster the HSI pixels
by learning the spectral domain feature representations. A
specific land-cover class is intuitively represented by an area
with multiple pixels, so the center pixel and its neighboring
pixels are most likely from the same category. However, the
approaches that exclusively use spectral information discard
the spatial relationship between neighboring pixels. Thus,
some researchers introduced spatial-spectral HSI clustering
algorithms to combine spatial and spectral information and
get more discriminative features for HSI, based on the
spatial-spectral feature representations, clustering methods
are used to produce the final clustering result. Lei et al. [24]
proposed a deep spatial-spectral subspace clustering network
(DS’C-Net) which employed a multiscale autoencoder and
self-expressive layers to explore spatial-spectral information
and learn the subspace structures then used the spectral clus-
tering to generate the final result. Murphy and Maggioni [37]
integrated spectral-spatial diffusion geometry into the diffu-
sion learning algorithm, which has achieved competitive per-
formance and allows analyze the high-dimensional HSI data
in a manner that both respects intrinsic pixel geometry in the
data and the spatial regularity in the 2D image structure of
the pixels. Nalepa et al. [38] used a 3D convolutional autoen-
coder to extract HSI features and achieved a good result in
unsupervised segmentation.

A specific land-cover class in HSI data is generally repre-
sented by an area with multiple pixels which have similar
spectral characteristics, and thus, how to make better use
of spatial information and extract discriminative spatial-
spectral features is critical for the HSI clustering task. Most
of spatial-spectral methods are based on convolutional net-
works; thus, the feature will include a large amount of spatial
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information such as shadow, texture, and geometric infor-
mation due to the characteristics of convolutional network.
Shen et al. [39] have proved that the actual reflectivity of a
substance is only related to its material, and the shadows
and textures that generated by the interaction of light and
the shape of the substance’s surface will interfere with its
actual qualities; the information mentioned above is called
non-material-related spatial information. Kang et al. [40]
have certificated that non-material-related spatial informa-
tion are meaningless in clustering task and hyperspectral
pictures are mainly classified based on the similarity of
spectral properties of substances. In addition, their method
demonstrates that remove useless spatial information such
as shading and texture which not directly related to the
material of different objects effectively will obtain an outper-
formed result. Clustering is unsupervised, unlike the classifi-
cation; it is very vulnerable to the characteristics of the data
itself. Due to this reason, how to effectively remove the infor-
mation contained in the feature vector is crucial.

In this letter, we concentrate on investigating spatial-
spectral information from pixel patches and using the con-
cept of over-clustering to improve k-means algorithm. Our
key contributions include the following:

(1) We propose a novel deep convolutional asymmetric
autoencoder-based spatial-spectral clustering net-
work (DCAAES?*C-Net) to extract the discriminative
spatial-spectral features

(2) An asymmetric autoencoder is introduced to sup-
press non-material-related spatial information in
feature representations which generated by CAE

(3) We improve the k-means algorithm by using the
concept of over-clustering to handle fuzzy represen-
tation which is difficult to distinguish the cluster

The remainder of this paper is organized as follows.
Section 2 presents the proposed DCAAES*C-Net for unsu-
pervised spatial-spectral feature learning. Section 3 reports
and discusses experimental results over three benchmark
hyperspectral datasets. Finally, conclusions are drawn in
Section 4.

2. Method

2.1. DCAAES’C-Net. Simple autoencoder is a three-layer
feed-forward fully connected network. Units in the previous
layers are connected to all units in the next layer. The size of
the input layer and output layer is equal to the input size.
According to universal approximation theorem, deepening
the depth of the network can provide more advantages.
Thus, the deep autoencoder typically used to learn feature
representations. We show this network in Figure 1.

The fundamental structure of the convolutional autoen-
coder (CAE) is extended by altering the fully linked layers to
convolution layers. The input layer and output layer sizes are
the same as in the standard autoencoder, while the decoder
network changes to convolution layers and the decoder
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FIGURE 3: Architecture of proposed network.
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ArcoriTHM 1: Flow chart of over-clustering K-means algorithm.
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FIGURE 4: (a) is the false-color image of Salinas hyperspectral image, (b) is the original real ground object of Salinas hyperspectral image, and
(c) is the real ground object map of Salinas hyperspectral image after the combination of ground object types.

TaBLE 1: Network parameter settings of CAE.

TaBLE 2: Network parameter settings of asymmetric-AE.

Layers Kernel Output Channel Layers Kernel Output Channel
Input layer / 5%5 204 Input layer / 128 /
Conv layer (3, 3) * 256 3%3 256 Dense layer / 64 /
Conv layer (3,3) = 512 1x1 512 Dense layer / 32 /
Dense layer / 512 / Dense layer / 10 /
Dense layer / 256 / Dense layer / 32 /
Dense layer / 128 / Dense layer / 64 /
Dense layer / 256 / Dense layer / 128 /
Dense layer / 512 / Dropout layer / 128 /
Reshape layer / 1x1 512 Output layer / 204 /
Transpose layer (3,3)Tx 512 3%3 512

Transpose layer (3,3)"x 256 5%5 256 network changes to transposed convolutional layers. We
Output layer (3, 3) * 204 5%5 204 show this network in Figure 2.

In this paper, we first employ a CAE to learn the spatial-
spectral information, and the input data of network is chan-
ged from spectral vector to patch. In general, it is considered
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FiGure 5: The original image and reconstructed image.

that the center pixel and its neighborhood contain correla-
tion information, and the main purpose of introducing spa-
tial information is to use the correlation of the center pixel
and its neighborhood to enhance the features of the center
pixel [41]. However, because the convolutional network is
very sensitive to picture geometric characteristics, some
non-material-related spatial information is also incorpo-
rated in the feature vector, such as the shape of edges, tex-
tures, and shadows. For example, when we use CAE to
learn the information of the point which is near the edge
of land, the feature vectors will contain the information of
the edge’s shape which will be the principal component of
the feature vectors. It will lead the feature vectors of the edge
points cannot contain the information which can describe its
material correctly. In the following, we call this kind of non-
material-related spatial information spatial noise. To address
this problem, we designed an asymmetric autoencoder stack
on the pretrained CAE to suppress the spatial noise in the
output of CAE, as shown in Figure 3. In this process, since
the hidden layer compresses the output of CAE and decom-
presses it to the corresponding spectrum, the spatial noise
components will be dropout.

f1(x) represents the coding map of CAE, g,(x) repre-
sents the decoding map of CAE, x,, is the input data of the
convolution network, and u is the original spectral informa-
tion of the central pixel of x,. For CAE, suppose there is a
mapping for any ¢, equation (2) holds. For v can completely
reconstruct x,,, it is believed that the feature vector v can rep-
resent the information contained in x,,.

v=fi(x)s (1)

P(lg,(v) - x,| <e) =1. (2)

The overall correlation between u and x, can be mea-
sured using the reciprocal of the Euclidean distance between
the spectral vector u at the target point and the feature vec-
tor u' at the network output, as shown in equation (4). The
information in v that indicates weak correlation with u is
discarded by an asymmetric self-encoder, and a dropout
layer is set in the decoder part to guarantee that the spatial
information is not discarded in its entirety. The encoding
mapping of the asymmetric depth self-encoder is denoted
by f,(x), and the decoding mapping is denoted by g, (x).
Maximizing the correlation between u and x,, is then equiv-

alent to maximizing the correlation between u and u', as
shown in equation (6), when d(u', u) — 0.

uex,ueR,u eR, (3)

correlation (u, u') ~ W, (4)

t=f(v), (5)
P(lg,(t) ~u[<e) =1, (6)

In Asymmetric-AE, the input data is v, and the recon-
struction object is the original spectral information of the
target pixel. Its main function is to enhance the spectral
information of the target pixel contained in v and suppress
the spatial information that is irrelevant to the target pixel,
that is, spatial noise.

2.2. Over-Clustering K-Means. K-means clustering algo-
rithm is a clustering method based on clustering center. This
method is sensitive to outlier noise points, and this kind of
outlier noise point will destroy the stability of clustering
and exert great impact on clustering accuracy. The method
which is based on feature density is not sensitive to such
noise points such as DBSCAN clustering algorithm [42].
According to a priori, the distribution of noise vector in fea-
ture space is sparse. Therefore, when DBSCAN is used to
cluster hyperspectral data, the noise vector will not be
divided into the final clustering results. Based on this idea,
we improve the K-means clustering algorithm, so that the
K-means clustering algorithm also has the characteristics
as DBSCAN to separate the noise vector in sparse region.
The improved method is shown in Algorithm 1. The cost
function of the improved k-means algorithm is shown in
equation (7), where k is the number of goal clusters, # is a
hyper-parameter and it always bigger than k.

n k n
E=Y Y lx—wl3=> D lx-wmls+ Y D llx—wml

i=1 xeC; i=1 xeC; i=k+1 x€C;
(7)

The noise points are divided into background clusters,
and the cost function E can be equivalent to E', where y,
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represents the mean vector of the background cluster. TaBLE 3: Comparison of other typical autoencoder models.
According to a priori, the values of all elements in the back-
ground cluster are 0, that is, g, = 0. The distance within the Model PSNR/dB SSIM
noise cluster is generally larger than that within the non- AE 22786322 0.9605432
noise cluster. Therefore, the following formula can be CAE 40.830353 0.9831473
derived. Proposed model 41.673317 0.9751903
n n
2 Xlx-wln= ) 2 l0-mlb=0.  (8) !
i=k+1 xeC, i=k+1 xeC, 0< Z Z = ]2, (10)
i=k+1 x€C;
k
E=Y Y lx-uliro, () ,
i=1 xeC, E'<E. (11)
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FIGURe 9: DBSCAN cluster noisy label map of CAE (a) and proposed model (b).
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F1GURE 10: The result contradistinction of proposed clustering method and other typical methods; (a) PCA+K-Means, (b) AE+K-Means, (c)
CAE+K-Means, (d) CAE+over-clustering K-Means (e) DCAAES?*+K-means, (f) DCAAES?C-Net, and (g) ground truth.

It can be seen that by dividing the noise points into back-
ground clusters, the cost function is further optimized while
removing the noise points, and the clustering performance is
better.

3. Experimental Results

3.1. Experiments Setting and Dataset. In this paper, all the
experiments are carried out using a PC equipped with
InterCorei7-10700K CPU and a single GPU of GeForce
RTX 3070.

Salinas scene is used as the experimental data in this
paper. The size of the image is 512x217, and it contains

16 classes. We select 10 categories for research. Set the data
labels of the 10th, 13th, and 16th categories to zero. The
3rd and 5th categories are collectively referred to as one cat-
egory. No changes will be made to categories 1, 2, 4,6, 7, 8,9,
11, and 12, as shown in Figure 4.

We first normalize the hyperspectral data by min-max
normalization. In order to prevent the mutual influence
between the various bands, in this paper, when the min-max
normalization is performed, each band is normalized sepa-
rately. To more accurately evaluate the effectiveness of the fea-
ture extraction network, we use the sampling method of
Bootstrap Sample to extract the training set, and the elements
that do not appear in the training set are used as the test set [43].



Wireless Communications and Mobile Computing

FIGURE 12: (a) The clustering label of PaviuaU. (b) Ground truth.

3.2. Training Model. The model built and trained according
to the structure is shown in Tables 1 and 2. Epoch of CAE is
set to 300 and batch size is set to 256. Epoch of Asymmetric-
AE is set to 1000 and batch size is set to 1000. The gradient
optimization function uses Adam, the loss function uses
MSE, and the activation function uses Relu.

3.3. Evaluation. This paper uses PSNR and SSIM as the eval-
uation criteria of the similarity between the input image and
the reconstructed image [44, 45]. For the CAE, 10 input
images are randomly selected from the test set for recon-
struction. The original image and its reconstructed image
are shown in Figure 5. Calculate the PSNR and SSIM of
these sub-images and their reconstructed images, as shown
in Figure 6. The ten sets of PSNR values we get are the lowest
31dB and the highest 46 dB; the lowest SSIM value is 0.967

TaBLE 4: The evaluation contradistinction of proposed clustering
method and other typical methods.

Method RI FMI AMI DB

(a) 0.9905 0.9888 0.9094 1.3924
(b) 0.9920 0.9907 0.9271 0.7089
() 0.9363 0.9236 0.7299 0.9643
(d) 0.8954 0.8871 0.7351 0.9045
(e) 0.8992 0.8759 0.7808 0.8140
() 0.9960 0.9954 0.9536 0.8359

Note: (a) PCA +K-Means, (b) AE+ K-Means, (c) CAE + K-Means, (d)
CAE + Over-clustering ~ K-Means  (e) DCAAES® + K-means,  (f)
DCAAES?*C-Net, (g) Ground truth.
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FiGure 13: The curve of average evaluation score.

and the highest is 0.994. It can be seen CAE can learn the
information in the sub-image and compress it into a feature
vector with a smaller dimension.

Asymmetric-AE is trained base the feature vectors gen-
erated by the CAE. Since the output of the Asymmetric-AE
is the spectral vector, the similarity between the original
image and its reconstructed image is analyzed directly. After
calculation, the PSNR and SSIM of the original image and
reconstructed image are about 41.67db and 0.983, respec-
tively. The reconstructed image and the original image of
the Asymmetric-AE are shown in Figure 7. The PSNR and
SSIM of each band are shown in Figure 8. It can see that
PSNR and SSIM still maintain a high value in general, and
the original image can be reconstructed well after feature
vector reduction again.

The comparison of feature extraction effectiveness
between the proposed model and other typical autoencoder
models is shown in Table 3.

Figure 9 is the label graph of noise points in DBSCAN
clustering of CAE and the model proposed in this paper
(domain parameter is (€, MinPts) = (3,200)).

The number of noise points in the clustering results of
CAE is 9997, and the number of noise points in the cluster-
ing results of the proposed model is 6996. It can be seen
from the comparison that the features extracted in this paper
have better performance in clustering performance, but there
are still some spatial noises. Therefore, the improved k
-means clustering algorithm is used to further reduce the
influence of noise points on clustering accuracy in this paper.

TaBLE 5: The inference runtime in different datasets.

PaviuaU
2.88

Salinas
6.96

Dataset Indian pines

2.54

Runtime(s)

In order to scientifically evaluate the performance of the
clustering method proposed in this paper, FMI, RI, AMI,
and DB are used as the evaluation indicators of the cluster-
ing performance. Among them, FMI, RI, and AMI are exter-
nal indicators that require ground truth as a reference
standard [46-48]. The higher the score, the better the clus-
tering performance. DB is an internal index [49], which rep-
resents the average similarity between clusters, and the ratio
of the flat distance within a cluster to the distance between
clusters is used as the evaluation criterion for similarity. 0
is the lowest value, and the lower the value, the better the
clustering effect. Due to the randomness of K-means cluster-
ing algorithm [50], 10 clustering experiments are carried out
in each experiment, and the clustering result with the highest
evaluation index is taken as the final output. The compari-
son of clustering results between our method and other typ-
ical clustering methods on Slinas dataset is shown in
Figure 10. The clustering results of Indian pines and
PaviuaU are shown in Figures 11 and 12, respectively. After
10 experiments, the average evaluation score is shown in
Table 4 and the curve is shown in Figure 13, which indicate
that the clustering performance of the proposed feature
extraction model combined with the improved k-means
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clustering algorithm is significantly better than that of other
typical models (the number of clustering centers of the
improved k-means clustering algorithm is 33, and the num-
ber of real clusters is 11).

The inference runtime of our method in different data-
sets is shown in Table 5. Due to our net compresses the
information into a 10-dimension vector, thus computational
cost is greatly reduced.

4. Conclusion

In this letter, we propose a novel DCAAES*C-Net, which
explore spatial-spectral information by using an asymmetric
autoencoder to suppress spatial noise information compo-
nent in feature. Besides, we use the concept of over-
clustering to improve the k-means algorithm to reduce the
influence of fuzzy feature. Finally, the improved clustering
algorithm is applied based on the output of autoencoder net-
work to obtain the HSI clustering result. Experimental
results on Salinas scene demonstrate the effectiveness of
the proposed method. The RI index of the clustering
results is 0.9960, which improves 0.4%~6.3%; the FMI
index is 0.9954, which improves 0.5%~7.8%; the AMI index
is 0.9536, which improves 2.8%~30.6%; and the DB index is
0.8359, which decreases -17.9%~39.9%.

In the future, we will focus on exploring the spatial-
spectral from multiscale patch, combining the proposed
method with one-stage clustering method and try to utilize
this method to improve the performance of semi-supervised
classification task.
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