
Research Article
Multihop Transmission-Oriented Dynamic Workflow
Scheduling in Vehicular Cloud

Qiang Zhang

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Correspondence should be addressed to Qiang Zhang; cszhangqiang@nuaa.edu.cn

Received 11 August 2022; Revised 22 November 2022; Accepted 26 November 2022; Published 8 December 2022

Academic Editor: Mohd Dilshad Ansari

Copyright © 2022 Qiang Zhang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vehicular cloud as a kind of resource aggregation can provide cloud service flexibly for intelligent transportation systems and
individual users. However, the dynamicity of vehicular cloud such as dynamic multihop transmission also brings new
challenges to workflow scheduling. In this paper, a heuristic dynamic workflow scheduling (HDWS) strategy is proposed to
solve the problem of workflow scheduling with dynamic multihop transmission in vehicular cloud. HDWS establishes a local
scheduling based on the current resource status and task sets. The makespan of local scheduling is optimized by reassigning
tasks based on task interdependency. At run time of an application, HDWS estimates the makespan in real time based on the
current transmission rates and the unready tasks will be rescheduled once it detects the degradation of the makespan.
Experimental results show that the proposed HDWS can improve the service success ratio of vehicular cloud and decrease the
makespan compared to the existing approaches.

1. Introduction

With the advancement of vehicular ad hoc networks (VANETs)
and cloud computing, smart vehicles with certain resources
constitute vehicular cloud (VC) [1]. VC as an emerging service
paradigm has become an important part of intelligent transpor-
tation systems (ITS) and also increases the available resources
for the fixed cloud such as central cloud and edge cloudlet.
The basic definition of VC can be described as “A group of vehi-
cles whose corporate computing, sensing, communication and
physical resources can be coordinated and dynamically allocated
to authorized users” [2]. A vehicle in VC can be viewed as a
vehicular node that typically owns an on-board computer, a
GPS device, a radio transceiver, several radar devices, several
cameras, some sensors, and so on. VC can integrate and sched-
ule resources to perform applications or achieve some functions
such as collision avoidance, intersection signal control, and
automated traffic routing for intelligent transportation systems
[3–5]. Besides, VC also can be utilized as a cooperator of central
cloud and edge cloudlet. For instance, the edge cloudlet con-
nected with the base station or roadside unit can offload appli-
cations or tasks to VC or vice versa [6, 7]. The mobility of

vehicles in VC makes its resource provisioning volatile, and
the volatility should be considered for resource scheduling in
VC [8]. For example, vehicles in VC may depart from the cur-
rent vehicular ad hoc network due to moving speed difference,
and then, the corresponding resources also become unavailable.
Conversely, when vehicles enter the VC, the amount of avail-
able resources is increased. In addition, the dynamic network
topology of VC leads to the volatility of the network resource.
For instance, the vehicle-to-vehicle communication is achieved
through one hop or multihop transmission in VC and the cor-
responding transmission rate is dynamic owing to the change of
the shortest transmission path. The implications are two-fold.
On the one hand, mobile and distributed resources of vehicles
can be integrated to create various resources combinational
provisioning to expand cloud services. On the other hand, the
dynamicity of resources makes difficulties for task scheduling
in VC. How to efficiently utilize resources and meanwhile han-
dle the dynamicity of resources well in VC remains to be an
open challenge.

VC is a heterogeneous computing system that contains
diverse resources interconnected by the dynamic vehicular
ad hoc network. Some applications supported by VC are

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 2033644, 14 pages
https://doi.org/10.1155/2022/2033644

https://orcid.org/0000-0002-9111-9394
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2033644

classified into the workflow application considering the
interdependency among tasks. For example, 3D object detec-
tion and augmented reality for autonomous driving are
workflow applications [9]. Specifically, a 3D object detection
application usually consists of a 2D detector, depth genera-
tor, data transformation, segmentation, and det-net and
the entire application can be regarded as a workflow applica-
tion that contains dependent tasks [10]. A workflow applica-
tion can be modeled by a directed acyclic graph in which the
vertexes represent tasks and edges represent dependencies
among tasks. The general workflow scheduling needs to
assign tasks to suitable vehicular nodes and order task execu-
tions on each vehicular node. Meanwhile, task dependencies
are satisfied and one or more performance metrics such as
the makespan and cost are optimized. The fundamental
workflow scheduling problem is NP-complete [11]. Com-
pared to independent task scheduling, data transmissions
among dependent tasks are required by workflow scheduling
when they are assigned to different vehicular nodes. In con-
ventional cloud computing such as a datacenter, the trans-
mission rates between servers are usually stable. However,
the dynamicity of the multihop transmission path in vehicu-
lar networks leads to the dynamic transmission rate so that
the transmission time is fluctuating. Since it is difficult to
estimate all transmission time in priori with low time com-
plexity in VC, designing an efficient workflow scheduling
considering dynamic mutlihop transmission is nontrivial.

In this paper, a heuristic dynamic workflow scheduling
(HDWS) strategy is proposed to solve the problem of work-
flow scheduling in VC under the condition of dynamic multi-
hop transmission. HDWS classifies tasks into task sets based
on task dependencies and partitions the given deadline into
several time segments. Several worker node sets are created
according to time segments and task completion time. Subse-
quently, a local scheduling is established based on task sets and
worker node sets. Two scheduling algorithms are proposed to
optimize local scheduling in the aspect of the makespan.
HDWS detects current transmission rates in real time so as
to estimate the makespan. If the estimated makespan is longer
than the deadline, the unready tasks will be rescheduled by
HDWS according to the current situation.

The main contributions of this paper are listed as
follows:

(1) To our best knowledge, this is the first work to study
the workflow scheduling considering dynamic multi-
hop transmission in VC

(2) A multihop transmission-oriented dynamic work-
flow scheduling strategy in VC is designed to cope
with the dynamicity of transmission rates and fur-
ther optimize the makespan

(3) HDWS contains static scheduling and dynamic
scheduling. The static scheduling creates local sched-
uling based on divide and conquer and then
improves the local scheduling based on the interde-
pendency among tasks. The dynamic scheduling
detects transmission rates in real time and resched-

ules the unready tasks based on the current system
state. Besides, HDWS achieves better performance
compared to the existing method [6]

The remainder of this paper is organized as follows. In
the next section, the related work is summarized. Section 3
presents the system model and problem formulation. The
multihop transmission-oriented dynamic workflow schedul-
ing strategy is proposed in Section 4. Section 5 elaborates
performance evaluation. Finally, the conclusion is given in
Section 6.

2. Related Work

According to the service provider, the researches on work-
flow scheduling in cloud computing can be classified into
the following scenarios.

2.1. Workflow Scheduling in Central Cloud. The typical sce-
nario in this category mainly involves a workflow applica-
tion and multiple virtual machines, and workflow tasks are
allocated to virtual machines to speed up execution with
acceptable or a given cost. Calheiros and Buyya proposed
an algorithm that uses idle time of provisioned resources
and budget surplus to replicate tasks so as to increase
the probability of meeting application deadlines [12].
Zhu et al. proposed an evolutionary multiobjective
optimization-based algorithm with a novel encoding
scheme to solve the multiobjective workflow scheduling
problem which minimizes both the makespan and the cost
simultaneously [13]. Kaur and Mehta presented an aug-
mented shuffled frog leaping algorithm-based solution for
workflow scheduling in the cloud environment to optimize
the cost while meeting the specified deadline [14]. Wu et al.
proposed a heuristic task deployment and scheduling algo-
rithm that finds the minimum number of virtual machine
instances needed to guarantee an application’s deadline and
also minimizes the makespan of the application [15]. Sahni
and Vidyarthi proposed a dynamic cost-effective deadline-
constrained heuristic algorithm for scheduling a scientific
workflow in a public cloud considering virtual machine per-
formance variability [16]. However, in this scenario, transmis-
sion rates among virtual machines are usually stable during
application running. The above methods do not consider
dynamic transmission rates and are not suitable for workflow
scheduling in VC.

2.2. Workflow Scheduling in VC. Sun et al. proposed a mod-
ified genetic algorithm-based solution to achieve workflow
scheduling in VC, and the proposed encoding scheme uti-
lizes the fixed time slot [6]. Qi et al. proposed a deep rein-
forcement learning-based resource scheduling policy in
vehicular edge computing [17]. Liu et al. proposed an effi-
cient task scheduling algorithm to prioritize multiple
applications and prioritize multiple tasks so as to guaran-
tee the completion time constraints of applications [18].
Ku et al. proposed an application-adaptive task partition-
ing and offloading algorithm to minimize the end-to-end
delay and maximize application level performance [19].
But the aforementioned solutions ignore the dynamicity

2 Wireless Communications and Mobile Computing

of multihop transmission among vehicles in VC, so they
are not applicable to the scenario of dynamic multihop
transmission.

Besides the above scenarios, the researches in which a
mobile user using a smartphone or a vehicle offloads part
of its workflow tasks to one or more edge-fixed cloudlets also
involve workflow scheduling [20–22]. In this scenario, the
resource nodes usually include fixed edge servers and a user
device and the workflow application can be cooperatively
executed by them. This scenario does not involve the
dynamic multihop transmission and cooperation among
mobile vehicles, and consequently, these schemes are also
not appropriate for the scenario of dynamic multihop trans-
mission. In addition, some researchers investigate uncer-
tainty of tasks in workflow scheduling [23, 24]. For
example, the task execution time and the size of output data
cannot be accurately predicted before scheduling; the arrival
of new tasks results in fluctuation in task execution time.

The above researches focus on workflow scheduling in a
stable and certain environment or the uncertainty of task in
scheduling; the dynamicity of network resource is not well
covered. How to tackle dynamic transmission time caused
by node mobility and implement an efficient workflow
scheduling to minimize the makespan while satisfying the
stability of the service in a dynamic vehicular cloud system
is the new challenge.

3. System Model and Problem Formulation

3.1. System Architecture. As shown in Figure 1, this paper
mainly considers a VC scenario in which vehicular nodes
within the coverage of a base station (BS) provide cloud
services. An edge server is typically connected with BS.
The edge server and the corresponding BS constitute a
roadside unit (RSU). Hence, vehicular nodes can exchange
information with RSU through the on-board unit (OBU)
and wireless network [25]. When a vehicle enters into
the communication range of the BS, it will transmit its
position, velocity, and computation capability to the BS.
The VC in a specific area is maintained by the corre-
sponding BS. Nodes in VC can communicate with each
other by the vehicular multihop network as well as the
BS. The input data of an application is firstly sent by the
BS to vehicular nodes, and then, the workflow tasks are
executed by vehicular nodes. In order to provide high-

quality cloud services, the edge server needs to collect sta-
tus information about VC in real time to achieve an effi-
cient task scheduling.

3.2. Mobility and Communication Model. This paper mainly
discusses the expressway environment in which vehicles
move almost at constant speeds within a relative long dis-
tance. Vehicles at different positions have different down-
load rates from the BS. A vehicle has a higher download
rate when it is closer to BS. High mobility of vehicles in
expressway can cause the changes of vehicular network
topology and forms the dynamic shortest transmission
paths. Hence, the transmission rates may fluctuate. The BS
is able to discover the current network topology in real time
to establish the shortest transmission paths for vehicular
nodes. The transmission rate is inversely proportional to
the length of the transmission path. The system can derive
the transmission rates in real time. It is assumed that the
transmission rate does not change in each time slot. In addi-
tion, the forwarding mode of the BS can be considered as the
other transmission path (source-BS-destination). The sys-
tem will choose the path corresponding to the larger trans-
mission rate, which is called the selected transmission path.

3.3. Task Model and Problem Formulation. When an edge
server has an application request of ITS, it will create a task
scheduling scheme. This type of request usually contains
some information about the application type and relevant
parameters. And then, the workflow tasks will be executed
by the selected vehicular nodes according to the above
scheduling scheme. A workflow application can be modeled
as a directed acyclic graph G = ðV , EÞ in which V indicates
the task set and elements in E represent the interdependency
among tasks. If an edge ði, jÞ exists between task i and task j,
it means that task i is a predecessor of task j. Meanwhile,
edge ði, jÞ indicates that task j is a successor of task i. If a task
has no predecessor, it is called an entry task. And a task
which has no successor is called an exit task. The data size
corresponding to each edge in a task graph is stored in an
adjacency matrix. An entry task can be considered to have
a virtual edge from itself to itself, and its input data size is
also stored in the adjacency matrix. For an application
request, the input data of the entry task will be transferred
to the VC by the BS before task execution. The notations
used in this paper are shown in Table 1.

Base station

Edge server

Figure 1: System architecture of VC.

3Wireless Communications and Mobile Computing

The computing time of task i on vehicle m can be calcu-
lated by the following equation:

TP i,mð Þ = Ci

f m
: ð1Þ

This paper interchangeably uses the two terms, comput-
ing time and execution time, and they all indicate the time
that a CPU spends on the computation load of a task.

The transmission time of di,j can be analyzed according
to the dynamicity of the transmission rate. If the transmis-
sion rate does not change during the di,j transmission, when
the source node and destination node are vehicle m and
vehicle n, respectively, the transmission time of di,j can be
given by

TR i, j,m, nð Þ = di,j
bm,n

: ð2Þ

If the transmission rate changes during the di,j transmis-
sion, when the source node and destination node are vehicle
m and vehicle n, respectively, the relationship between trans-
mission time TRði, j,m, nÞ and date size di,j can be given by

〠
TR/TS

t=1
b m, n, tð Þ ⋅ TS = di,j, ð3Þ

where TR is the abbreviation of TRði, j,m, nÞ and bðm,n,tÞ is
the transmission rate in timeslot t. For the above case, if
the network topology changes frequently, the system will
have a high computation cost when predicting all the trans-
mission paths and the corresponding lifetimes.

The earliest start time of task i on vehicle m can be given
by

EST i,mð Þ =max TA mð Þ, max
k∈pre ið Þ

AFT kð Þ + TR k, ið Þð Þ
� �

,

ð4Þ

where TRðk, iÞ is the transmission time of dk,i and AFTðkÞ
represents the actual finish time of task k. For task i, the cor-
responding earliest start time can be derived based on the
finish time of its predecessors, input data transmission time,
and the ready time of vehicle m. The earliest finish time of
task i on vehicle m can be given by

EFT i,mð Þ = TP i,mð Þ + EST i,mð Þ: ð5Þ

When task i is allocated to a vehicular node, the corre-
sponding EFT is equal to its AFT.

If there is only one exit task in a given application, the
makespan is the actual finish time of the exit task. Otherwise,
the makespan is the time when all exit tasks are finished.
Therefore, ACT (i.e., makespan) can be given by

ACT =max
i∈F

AFT ið Þf g: ð6Þ

The objective of this paper is to minimize the makespan
so as to improve the quality of VC services. The workflow
scheduling problem in VC can be formulated as follows:

min max
i∈F

AFT ið Þf g: ð7Þ

4. The Proposed HDWS Strategy

HDWS contains a static scheduling module and dynamic
scheduling module. HDWS first runs the static scheduling
and then updates the schedule at each time slot using
dynamic scheduling. The static scheduling contains steps
(Section 4.1 to 4.5). The dynamic scheduling adjusts the
schedule in real time according to dynamic transmission
rates and execution progress.

4.1. Task Set Establishment. In order to control the make-
span and reduce the complexity of the problem, HDWS par-
titions a given application to several task sets based on
topological sorting. Then, the available time (i.e., from start-
ing time to deadline) is divided into several time segments
for the generated task sets.

Due to task dependencies in DAG, a task i must be exe-
cuted after the executions of its predecessors. Therefore, it is
unable to estimate the completion time of task i if the prede-
cessors have not been totally scheduled. Task sets are estab-
lished in the sequence of topological sorting so as to conform
to scheduling sequence. For a DAG, each task that has the
in-degree 0 will be added into a task set, and then, these tasks
and the corresponding edges will be deleted from DAG. So,
the in-degrees of the remaining tasks will be updated. Next,
HDWS uses the above method to create a new task set com-
posed of tasks with in-degree 0. Therefore, the task sets can

Table 1: Notation definition.

Notation Description

Ci Computation load of task i

f m Computing speed of vehicle m

di, j Data size corresponding to edge i, jð Þ
bm,n Transmission rate between vehicle m and vehicle n

pre ið Þ The set of predecessors of task i

F The set of exit tasks that have no successor

TS Duration of one time slot

TD Deadline of the requested application

TP i,mð Þ Computing time of task i on vehicle m

TR i, j,m, nð Þ Transmission time corresponding to di,j and bm,n

TA mð Þ The earliest time at which vehicle m is ready for
computing

EST i,mð Þ The earliest start time of task i on vehicle m

EFT i,mð Þ The earliest finish time of task i on vehicle m

AFT i,mð Þ The actual finish time of task i on vehicle m

ACT The application completion time, i.e., makespan

4 Wireless Communications and Mobile Computing

be iteratively established. For example, all the tasks in
Figure 2 can be partitioned into four sets sequentially, i.e.,
{1}, {2, 3}, {4, 5, 6}, and {7}.

4.2. Node Selection for the First Task Set. Tasks in the first
task set need to download input data from the BS, so the
data download rate is one factor of influencing the make-
span. In order to alleviate the local optimum, we consider
the following factors to select nodes for the first task set.

The first factor is computing speed. A node with faster
computing speed can finish a task within less time. The sec-
ond factor is the average computing speed of neighboring
nodes. Considering that the successor tasks may be executed
by several nodes in parallel, the neighboring nodes with
stronger computing capability will be preferred. The number
of neighboring nodes is the third factor. The last factor is the
data download rate.

For each factor, a ranking is made to represent the corre-
sponding superiority. HDWS adopts the sum of weighted
ranking to quantify the advantages in scheduling. For node
i, the four rankings are denoted as Wi, Xi, Yi, Zi and the
weights are represented as α, β, γ, and δ, respectively. For
α, β, γ, and δ, each parameter has a value in the range (0,
1). The selection priority of node i can be calculated by the
following equation:

Pi = αWi + βXi + γYi + δZi: ð8Þ

The size of the first task set is denoted as q, and the top-q
nodes in selection priority will be selected. Tasks in the first
task set are sorted in a descending order by workload. The i
th task is assigned to the ith node sorted by selection prior-
ity. If the number of nodes in VC is smaller than q, tasks will
be assigned circularly to the existing nodes by the above
method.

4.3. Time Partition. For the first task set, the estimated finish
time can be derived by using the above approach and is
denoted as T1. The total number of task sets is denoted as
m. So, (TD − T1) is the rest available time and HDWS will
divide it into (m − 1) time segments for the rest task sets.
The available time is divided according to the particular
workload of the rest task sets. For a task set, the finish time
is usually dependent on the task with the maximal workload,
because the tasks can be executed in parallel. Hence, HDWS
uses the maximal workload as the particular workload for
each task set. The workload of a task contains computation

load and transmission load which have different attributes,
so it is hard to directly quantify them together. To tackle this
difficulty, the workload is transformed into working time
that consists of transmission time and computing time.
The workload of task i can be calculated by the following
equation:

Wi =
di
bv

+
ci
f v
, ð9Þ

where di denotes the size of input data of task i. Besides, bv
and f v denote the maximal transmission rate and the maxi-
mal computing speed, respectively.

The particular workload of the jth task set Sj can be
given by

Wj
p =max

i∈Sj
Wif g, j > 1: ð10Þ

The time segment for the task set Sj can be calculated by

TS jð Þ = Wj
p

∑m
k=2W

k
p

TD − T1ð Þ: ð11Þ

As shown in Figure 3, the duration (TD − T1) can be
partitioned into several time segments. The number of time
segments is equal to the number of the rest task sets which
do not contain the first task set. Hence, the time boundary
can be derived by

T j = TS jð Þ + T j−1, ð12Þ

and it is designed to control the finish time of task sets in
order to satisfy the deadline constraint. Meanwhile, the time
boundary is utilized to classify nodes to reduce problem
complexity of local scheduling for each task set.

4.4. Node Classification and Local Scheduling. Compared to
scheduling the entire workflow, it is easier to create a local
scheduling for a task set to meet the requirement of the cor-
responding time boundary. For each task set, HDWS clas-
sifies nodes based on the time boundary to select suitable
nodes as worker nodes. Hence, the number of worker nodes
can be controlled. For a node m, the completion time of task
i can be calculated by

1

2

5

i

n

TD. . .T0 T1 T2 Tj

Figure 3: Time segment.

1

2

3
4

5

6

7

Figure 2: An example of the task graph.

5Wireless Communications and Mobile Computing

Input: Number of tasks N, number of nodes M, current assignment ass, start time stime
Output: Node assignment
1: ACT=Caltime(ass, stime); //estimate the makespan
2: for each task set in the order of set establishment
3: Sort tasks in ascending order by computation load;
4: Add the sorted tasks into array tsort;
5: endfor
6: for each task i in tsort
7: Sort all successors of task i in ascending order by computation load;
8: Add the sorted successors into an array suc(i);
9: Estimate the transmission rate between each node and ass[i];
10: Sort all nodes in descending order by the above transmission rate;
11: Add the sorted nodes into an array veh(i);
12: for each node j in veh(i)
13: for each task k in suc(i)
14: reass= ass;
15: reass[k] = j;
16: newtime=Caltime(reass, stime);
17: if (newtime<ACT).
18: ACT=newtime;
19: ass[k] = reass[k];
20: endif
21: endfor
22: endfor
23: endfor

Algorithm 1: Successor Task Reassignment.

Input: Number of tasks N, number of nodes M, current assignment ass, start time stime
Output: Node assignment
1: ACT=Caltime(ass, stime); //estimate the makespan
2: for each task set in the order of set establishment
3: Sort tasks in ascending order by computation load;
4: Add the sorted tasks into array tsort;
5: endfor
6: for each task i in tsort
7: Add all successors of task i into a set suc(i);
8: for each node j
9: sum_rate=0;
10: for each task k in suc(i)
11: sum_rate= sum_rate+ b(j, ass[k]);
12: endfor
13: ave_rate(j) = sum_rate / |suc(i)|;
14: endfor
15: Sort all nodes in descending order by ave_rate;
16: Add the sorted nodes into an array veh(i);
17: for each node j in veh(i)
18: reass= ass;
19: reass[i] = j;
20: newtime=Caltime(reass, stime);
21: if (newtime<ACT)
22: ACT= newtime;
23: ass[i] = reass[i];
24: endif
25: endfor
26: endfor

Algorithm 2: Predecessor Task Reassignment.

6 Wireless Communications and Mobile Computing

CT i,mð Þ =max AFT kð Þ + TR k, ið Þ + TP i,mð Þf g, k ∈ pre ið Þ:
ð13Þ

Since the scheduling of the previous task set has been
made, TRðk, iÞ can be derived.

For task set Sj, the nodes which satisfy the following
inequalities will be selected as worker nodes to execute tasks.

CT i,mð Þ ≤ T j, i ∈ Sj,

POS m, CT i,mð Þð Þ ≤ L, i ∈ Sj,
ð14Þ

where POSðm, tÞ is the updated position of node m after a
period of time t and L represents the boundary of VC. The
other nodes are referred to as alternative nodes. If the num-
ber of worker nodes is smaller than the number of tasks in
the task set, alternative nodes will be added into the worker
node set so that their amounts are equal. This operation can
improve the parallelization of task execution.

Local scheduling is performed iteratively in the sequence
of task set establishment except the first task set. The specific
steps are as follows. If the number of tasks in a task set is
larger than h, local scheduling will sort tasks in a descending
order by workload and assign the top-h tasks at first. For the
top-h tasks, local scheduling traverses all mapping between
tasks and the worker nodes to find the local optimal sched-
uling which minimizes their maximal completion time. For
the rest tasks in the current task set, local scheduling per-
forms the above operations iteratively until all the rest tasks
have been assigned. Otherwise, all the tasks in the task set
will be assigned by the local optimal scheduling. The value
of h will be reasonably set to guarantee the acceptable com-
putation complexity.

4.5. Task Reassignment. The successor task reassignment
(STR) and predecessor task reassignment (PTR) algorithms
are proposed in order to further reduce ACT-based on local
scheduling. The core idea of these two algorithms is to reassign
tasks to nodes corresponding to higher transmission rates to
search better solution with acceptable time complexity.

The STR algorithm mainly contains three phases: suc-
cessor sorting phase, node sorting phase, and node selection
phase.

4.5.1. Successor Sorting Phase. At first, tasks in each task set
are sorted independently in an ascending order by computa-
tion load and the sorted tasks are added into an array tsort.
For each task in tsort, its successors are sorted in an ascend-
ing order by computation load.

4.5.2. Node Sorting Phase. This phase estimates the transmis-
sion rates between each node and already designated node of
each task i (in tsort) whose successors will be reassigned to
reduce ACT. All nodes are sorted in a descending order by
the above transmission rate. The higher transmission rate
can reduce data transmission time. If the designated node
of the successor is the same with task i, the data transmission
time is zero.

4.5.3. Node Selection Phase. According to successor sorting
and node sorting, successor task reassignment is iteratively
performed to retain the scheduling result of less ACT. In
addition, when STR tries to evaluate a candidate node, the
position of the node will be calculated according to the
updated task finish time. If the updated position is out of
the coverage of BS, the node will not be selected.

The pseudocode of the STR algorithm is shown in
Algorithm 1.

The STR algorithm has an Oðvqe2Þ time complexity for v
tasks, q nodes, and e edges.

The PTR algorithm has three phases: predecessor sorting
phase, node sorting phase, and node selection phase.

4.5.4. Predecessor Sorting Phase. Tasks in each task set are
sorted independently in an ascending order by computation
load, and the sorted tasks are added into an array tsort.

4.5.5. Node Sorting Phase. This phase estimates the average
transmission rates between each node and already assigned
nodes of successors of each task i in tsort (viewed as predeces-
sors) which will be reassigned to reduce ACT. All nodes are
sorted in a descending order by the average transmission rate.

4.5.6. Node Selection Phase. According to predecessor sorting
and node sorting, predecessor task reassignment is itera-
tively performed to retain the scheduling result of less ACT
. In addition, when PTR tries to evaluate a candidate node,
the position of the node will be also updated to check
whether it satisfies the system requirement.

The pseudocode of the PTR algorithm is shown in
Algorithm 2.

For v tasks, q nodes and e edges, the PTR algorithm has
an Oðvqðq + eÞÞ time complexity.

As an illustration, Figure 4 presents the basic explanation
of STR and PTR algorithms. Specifically, when task 3 has been
assigned to node B, its successors {4, 5, 6} will be reassigned to
other nodes which have an advantage in the transmission rate
by the STR algorithm and the better solution will be retained.
For the PTR algorithm, the predecessor of task 3 (i.e., task 1)
will be reassigned and the average transmission rate corre-
sponding to edge (1, 2) and (1, 3) is used to search a more suit-
able node in order to achieve less makespan.

1

2

3
4

5

6

7

A B C D E

Predecessor task
reassignment

Successor task
reassignment

Figure 4: Task reassignment.

7Wireless Communications and Mobile Computing

4.6. Dynamic Scheduling. The mobility of vehicular nodes
leads to dynamic network topology which causes the change
of the transmission rate between the source node and the desti-
nation node. However, static task scheduling derives transmis-
sion rates and makes decisions based on the static network
topology, which is not suitable for the dynamic scene. To tackle
this problem, a dynamic scheduling scheme is designed to
adjust node assignment according to network topology.

The core idea is to discover the changes of transmission
rates in real time and determine the time to trigger the
scheduling scheme again for unready tasks based on the
updated transmission rates. In each time slot, HDWS esti-
mates and records the transmission rates for all pairs of nodes
based on the current network topology. If there is any change
of transmission rates compared to the previous time slot,
HDWS will make decision according to the specific change.

All the situations of changes of transmission rates are
classified into three categories, and the detailed operations
are described as follows:

(1) Situation: transmission rates change and the current
data transmissions of one or more tasks are affected

(i) Estimate the finish time of affected tasks based
on the current transmission rates and transmis-
sion status. Estimate the finish time of tasks

which are ready to execute or in execution sta-
tus. The maximal value of the above time is
denoted as maxpoint

(ii) Estimate the transmission start time of tasks which
have not started to receive input data. The mini-
mal value of the above time is denoted asminpoint

(iii) Ifminpoint is equal to or greater than maxpoint,
trigger the above scheduling scheme (Section
4.4–4.5) at time maxpoint for the unready tasks
based on transmission rates corresponding to
maxpoint (denoted as operation A)

(iv) Otherwise, the system continues to run based on
the original scheduling (denoted as operation B)

(2) Situation: transmission rates change, and there is no
task whose current data transmission is affected

(i) Estimate the finish time of tasks which are in
transmission status. The maximal value of the
above time is denoted as maxpoint

(ii) Estimate the transmission start time of tasks which
have not started to receive input data. The mini-
mal value of the above time is denoted asminpoint

(iii) Ifminpoint is equal to or greater than maxpoint,
perform operation A

(iv) Otherwise, perform operation B

(3) Situation: transmission rates change, and there is no
data transmission in the current time slot

(i) Estimate the finish time of tasks which are ready
to execute or in execution status. The maximal
value of the above time is denoted as maxpoint

(ii) Estimate the transmission start time of tasks which
have not started to receive input data. The mini-
mal value of the above time is denoted asminpoint

(iii) Ifminpoint is equal to or greater than maxpoint,
perform operation A

(iv) Otherwise, perform operation B

Table 2: Parameters of VC and workflow.

Parameters Value

The coverage range of BS 1000m

The communication range between vehicles 250m

Computing speed of the vehicle [1000, 1500]MHz

Duration of one time slot 0.01 s

Moving speed of the vehicle [100, 120] km/h

Download rates of different road segments {3, 6, 12, 24}Mbps

Data size of workflows a, b, c, and d (1510, 3210, 3600, 2400) KB

The minimum of the computation load of one task 200Mcycle

The maximum of the computation load of one task 2900Mcycle

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Tr
an

sm
iss

io
n

ra
te

 (M
bp

s)

Hop number of transmission through ad hoc networks

Figure 5: Transmission rate.

8 Wireless Communications and Mobile Computing

5. Performance Evaluation

In this section, the performance evaluation on the HDWS
strategy and two existing methods is presented. The perfor-
mance metrics contain the service success ratio and average
makespan. A requested application has a deadline. If the
makespan does not exceed the deadline, it is considered that
the service is successful. The metrics of the service success
ratio and makespan reflect service stability and service effi-
ciency of VC, respectively.

A simulator is designed to simulate the dynamic multihop
transmissions among vehicles and all the execution processes
of VC. In the simulator, a counter is utilized to emulate and
record time sequences. When a time slot passes, the value of
the counter will be increased by one. The simulator is imple-
mented by C++, and it is able to record the system state at each
time slot. The simulation runs 100 times for each workflow
instance, and the initial positions of nodes are randomly gen-
erated in the interval of [0, 520]m each time.

5.1. Experimental Setup. In this section, the relevant setting
and parameters in simulation experiment is described from
the following aspects.

5.1.1. Vehicular Cloud. VC services in expressway are sim-
ulated, and vehicles move at constant speeds. The param-
eters about VC are described in Table 2. The transmission
rate between a source node and a destination node
through ad hoc networks is set to the value in Figure 5.
Vehicles on different road segments have different down-
load rates from BS. The total service range is divided into
seven road segments which have lengths of 200, 100, 100,
200, 100, 100, and 200 (m). So the fourth road segment
corresponds to the highest download rate, since it is closer
to BS compared with other road segments. Since downlink
and uplink are asymmetric, the upload rate to BS is usu-
ally much smaller than the download rate. The transmis-
sion rate corresponding to the mode of BS forwarding is
set to 0.2Mbps.

(a) Epigenomics (b) SIPHT

(c) LIGO (d) Montage

Figure 6: Workflow test instances.

9Wireless Communications and Mobile Computing

5.1.2. Workflow Application. Four standardized workflows
Epigenomics [26], SIPHT [27], LIGO [28], and Montage
[29] with different workloads are used to evaluate perfor-
mances. The specific task graphs are shown in Figure 6,
and the specific parameters are illustrated in Table 2.

5.1.3. Scheduling Scheme. The parameter h is set to 6. The
sum of α, β, γ, and δ is one, and they are set to 0.5, 0.1,
0.1, and 0.3, respectively. Genetic algorithm (GA) was mod-
ified to perform as a workflow scheduling algorithm called
MGA in VC [6]. Since MGA only considers the fixed trans-
mission time among tasks, which is not suitable for dynamic
transmission, hence, we select GA rather than MGA as the
comparison scheme. As far as we know, there is no research
on workflow scheduling strategy considering dynamic trans-
mission rates by now. So, greedy scheduling (GS) as a base-
line approach is also selected for comparison. GS sorts tasks
in the sequence of topological order and allocates the node

with the least task completion time to the current task. In
GA, the iteration number of genetic operations is set to
200 and the number of individuals is set to 10. A larger iter-
ation number such as 500 will exceed the duration of one
time slot and violate the requirement of being real time of
the application.

5.2. Experimental Results and Analysis. Figure 7 shows the
average makespan of GA, GS, and the proposed HDWS with
different computation loads. The number of vehicular nodes
is set to 10 for each workflow. When the data size of each
workflow remains unchanged, the average makespan of
GA, GS, and HDWS shows an increasing trend with the
increase of the total computation load. As the total compu-
tation load increases, the more execution time will be taken
so that the corresponding makespan is increased. HDWS
has less average makespan than comparison schemes and
satisfies the corresponding deadline for all tested workflows.

15 17 19 21 23 25
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

A
ve

ra
ge

 m
ak

es
pa

n
(s

)

Total computation load (Gcycle)

Deadline
GS

GA
HDWS

(a) Epigenomics

15 17 19 21 23 25
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5

A
ve

ra
ge

 m
ak

es
pa

n
(s

)

Total computation load (Gcycle)

Deadline
GS

GA
HDWS

(b) SIPHT

15 17 19 21 23 25
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

A
ve

ra
ge

 m
ak

es
pa

n
(s

)

Total computation load (Gcycle)

Deadline
GS

GA
HDWS

(c) LIGO

15 17 19 21 23 25
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0
A

ve
ra

ge
 m

ak
es

pa
n

(s
)

Total computation load (Gcycle)

Deadline
GS

GA
HDWS

(d) Montage

Figure 7: Average makespan with respect to the total computation load.

10 Wireless Communications and Mobile Computing

For workflow Epigenomics, the average makespan of HDWS
is 7% and 11% less than GS and GA, respectively, and GA
does not satisfy the deadline when the total computation
load is not less than 19Gcycle. For workflow SIPHT, the
average makespan of HDWS is 36% less than GS and it is
a little superior to GA. For workflow LIGO, the average
makespan of HDWS is 44% and 26% less than GS and
GA, respectively, and GS does not satisfy the deadline for
all tested computation loads. For workflow Montage, the
average makespan of HDWS is 20% and 12% less than GS
and GA, respectively, and GS does not satisfy the deadline
for all tested computation loads as well as GA.

The number of vehicular nodes overall reflects the
amount of computation resource in VC. In order to evaluate
the impact of the number of vehicular nodes on the average
makespan, we fix the computation load, data size, and dead-
line for each workflow. The total computation load for

workflow Epigenomics is set to 21Gcycle as well as Montage.
The total computation load for workflow SIPHT is set to
23Gcycle as well as LIGO. The number of vehicular nodes
is set to 10, 12, 14, 16, 18, and 20. As shown in Figure 8,
the average makespan of GA, GS, and HDWS shows a little
decreasing trend with the increase of the number of vehicu-
lar nodes in general. As the number of vehicular nodes
increases, the scheduling schemes utilize more computation
resources to speed up execution. HDWS achieves less aver-
age makespan than GS and GA for all tested workflows with
respect to the number of nodes. For workflow Epigenomics,
the average makespan of HDWS is 5% and 9% less than GS
and GA, respectively, and GA does not satisfy the deadline
for all tested number of nodes. For workflow SIPHT, the
average makespan of HDWS is 36% less than GS and it is
a little superior to GA. For workflow LIGO, the average
makespan of HDWS is 44% and 20% less than GS and

10 12 14 16 18 20
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0
A

ve
ra

ge
 m

ak
es

pa
n

(s
)

Number of vehicular nodes

Deadline
GS

GA
HDWS

(a) Epigenomics

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

A
ve

ra
ge

 m
ak

es
pa

n
(s

)

10 12 14 16 18 20
Number of vehicular nodes

Deadline
GS

GA
HDWS

(b) SIPHT

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

A
ve

ra
ge

 m
ak

es
pa

n
(s

)

10 12 14 16 18 20
Number of vehicular nodes

Deadline
GS

GA
HDWS

(c) LIGO

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0
A

ve
ra

ge
 m

ak
es

pa
n

(s
)

10 12 14 16 18 20
Number of vehicular nodes

Deadline
GS

GA
HDWS

(d) Montage

Figure 8: Average makespan with respect to the number of vehicular nodes.

11Wireless Communications and Mobile Computing

GA, respectively, and GS does not satisfy the deadline for all
tested number of nodes. For workflow Montage, the average
makespan of HDWS is 19% and 11% less than GS and GA,
respectively, and GA does not satisfy the deadline for all
tested number of nodes as well as GS.

As shown in Figure 9, the service success ratio (SSR)
with respect to deadline is evaluated. Deadline has a direct
impact on SSR and represents the required real time of an
application. For workflow Epigenomics and Montage, the
number of vehicular nodes is set to 16 and the total compu-
tation load is set to 25Gcycle. For workflow SIPHT and
LIGO, the number of vehicular nodes is set to 12 and the
total computation load is set to 23Gcycle. The SSR of GA,
GS, and HDWS shows an nondecreasing trend with the
increase of the deadline. For workflow Epigenomics, the
SSR of HDWS is averagely higher than GS and GA by 26%
and 71%, respectively. For workflow SIPHT, the SSR of

HDWS is averagely higher than GA by 2% and GS has no
successful service for all tested deadlines. For workflow
LIGO, the SSR of HDWS is averagely higher than GA by
46% and GS has no successful service for all tested deadlines.
For workflow Montage, the SSR of HDWS is averagely
higher than GS and GA by 94% and 83%, respectively, and
GS has no successful service when the deadline is not greater
than 8.4 s as well as GA.

6. Conclusion

In this paper, the problem of workflow scheduling in VC
under the condition of dynamic multihop transmission is
studied. We propose a dynamic scheduling strategy called
HDWS which contains task assignment algorithms and
dynamic scheduling scheme. HDWS utilizes the current sys-
tem status in real time to complete dynamic scheduling to

7.4 7.6 7.8 8.0 8.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
rv

ic
e s

uc
ce

ss
 ra

tio

Deadline (s)

GS
GA
HDWS

(a) Epigenomics

6.8 7.3 7.8 8.3 8.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
rv

ic
e s

uc
ce

ss
 ra

tio

Deadline (s)

GS
GA
HDWS

(b) SIPHT

4.8 5.0 5.2 5.4 5.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
rv

ic
e s

uc
ce

ss
 ra

tio

Deadline (s)

GS
GA
HDWS

(c) LIGO

8.2 8.4 8.6 8.8 9.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Se

rv
ic

e s
uc

ce
ss

 ra
tio

Deadline (s)

GS
GA
HDWS

(d) Montage

Figure 9: Service success ratio with respect to deadline.

12 Wireless Communications and Mobile Computing

cope with dynamic transmission rates. The experimental
results show that the HDWS strategy improves efficiency
and stability of VC services. In our future work, energy con-
sumption of smart vehicles in vehicular cloud computing
will be considered. Hence, energy-conserved task scheduling
will be investigated in vehicular cloud. The scheduling of
task execution and data transmission will be improved to
make a good tradeoff between energy consumption and
quality of services.

Data Availability

The datasets generated during the current study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (grant number 61802181).

References

[1] S. K. Pande, S. K. Panda, S. Das et al., “A smart cloud service
management algorithm for vehicular clouds,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 22, no. 8,
pp. 5329–5340, 2021.

[2] M. Eltoweissy, S. Olariu, and M. Younis, “Towards autono-
mous vehicular clouds,” in Ad Hoc Networks. ADHOCNETS
2010, J. Zheng, D. Simplot-Ryl, and V. C. M. Leung, Eds.,
vol. 49 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering,
pp. 1–16, Springer, Berlin, Heidelberg, 2010.

[3] Y. Fei, M. Adams, and S. Roy, “V2V wireless communication
protocol for rear-end collision avoidance on highways,” in
ICCWorkshops - 2008 IEEE International Conference on Com-
munications Workshops, pp. 375–379, Beijing, China, 2008.

[4] J. Lee and B. Park, “Development and evaluation of a cooper-
ative vehicle intersection control algorithm under the con-
nected vehicles environment,” IEEE Transactions on
Intelligent Transportation Systems, vol. 13, no. 1, pp. 81–90,
2012.

[5] S. Demmel, D. Gruyer, and A. Rakotonirainy, “V2V/V2I aug-
mented maps: state-of-the-art and contribution to real-time
crash risk assessment,” in Proceedings of the 20th Canadian
Multidisciplinary Road Safety Conference, pp. 1–15, Niagara
Falls, Ontario, Canada, 2010.

[6] F. Sun, F. Hou, N. Cheng et al., “Cooperative task scheduling
for computation offloading in vehicular cloud,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 11, pp. 11049–
11061, 2018.

[7] I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload
scheduling in vehicular networks with edge cloud capabilities,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 9,
pp. 8472–8486, 2019.

[8] S. Olariu, “A survey of vehicular cloud research: trends, appli-
cations and challenges,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 6, pp. 2648–2663, 2020.

[9] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object
detection for autonomous driving,” in 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pp. 7644–7652, Long Beach, CA, USA, 2019.

[10] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan,
“Accurate monocular 3d object detection via color-embedded
3d reconstruction for autonomous driving,” in 2019 IEEE/
CVF International Conference on Computer Vision (ICCV)pp.
6851–6860, In, Seoul, Korea (South), 2019.

[11] J. Ullman, “NP-complete scheduling problems,” Journal of
Computer and System Sciences, vol. 10, no. 3, pp. 384–393, 1975.

[12] R. Calheiros and R. Buyya, “Meeting deadlines of scientific
workflows in public clouds with tasks replication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 7, pp. 1787–1796, 2014.

[13] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-
objective workflow scheduling in cloud,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1344–
1357, 2016.

[14] P. Kaur and S. Mehta, “Resource provisioning and work flow
scheduling in clouds using augmented shuffled frog leaping
algorithm,” Journal of Parallel and Distributed Computing,
vol. 101, pp. 41–50, 2017.

[15] H. Wu, X. Hua, Z. Li, and S. Ren, “Resource and instance hour
minimization for deadline constrained DAG applications
using computer clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 3, pp. 885–899, 2016.

[16] J. Sahni and D. Vidyarthi, “A cost-effective deadline-
constrained dynamic scheduling algorithm for scientific work-
flows in a cloud environment,” IEEE Transactions on Cloud
Computing, vol. 6, no. 1, pp. 2–18, 2018.

[17] Q. Qi, J. Wang, Z. Ma et al., “Knowledge-driven service off-
loading decision for vehicular edge computing: a deep rein-
forcement learning approach,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 5, pp. 4192–4203, 2019.

[18] Y. Liu, S. Wang, Q. Zhao et al., “Dependency-aware task
scheduling in vehicular edge computing,” IEEE Internet of
Things Journal, vol. 7, no. 6, pp. 4961–4971, 2020.

[19] Y. Ku, S. Baidya, and S. Dey, “Adaptive computation partition-
ing and offloading in real-time sustainable vehicular edge
computing,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 12, pp. 13221–13237, 2021.

[20] L. Liu, H. Tan, S. Jiang, Z. Han, X. Li, and H. Huang, “Depen-
dent task placement and scheduling with function configura-
tion in edge computing,” in IWQoS '19: Proceedings of the
International Symposium on Quality of Service, pp. 1–10,
Phoenix, AZ, USA, 2019.

[21] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading
dependent tasks in mobile edge computing with service cach-
ing,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, Toronto, ON, Canada, 2020.

[22] J. Yan, S. Bi, and Y. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: a deep rein-
forcement learning approach,” IEEE Transactions on Wireless
Communications, vol. 19, no. 8, pp. 5404–5419, 2020.

[23] S. K. Panda and P. K. Jana, “Uncertainty-based QoS min-min
algorithm for heterogeneous multi-cloud environment,” Ara-
bian Journal for Science and Engineering, vol. 41, no. 8,
pp. 3003–3025, 2016.

[24] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-aware
online scheduling for real-time workflows in cloud service

13Wireless Communications and Mobile Computing

environment,” IEEE Transactions on Services Computing,
vol. 14, no. 4, pp. 1167–1178, 2021.

[25] S. K. Pande, S. K. Panda, and S. Das, “Dynamic service migra-
tion and resource management for vehicular clouds,” Journal
of Ambient Intelligence and Humanized Computing, vol. 12,
no. 1, pp. 1227–1247, 2021.

[26] “Illumina,” April 2015, https://www.illumina.com/.

[27] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-
throughput, kingdom-wide prediction and annotation of bac-
terial non-coding RNAs,” PLoS One, vol. 3, no. 9, article e3197,
2008.

[28] D. A. Brown, P. R. Brady, A. Dietz et al., “A case study on the
use of workflow technologies for scientific analysis: gravitatio-
nalwave data analysis,” inWorkflows for E-Science, I. J. Taylor,
E. Deelman, D. B. Gannon, and M. Shields, Eds., pp. 39–59,
Springer, London, 2007.

[29] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The cost of doing science on the cloud: the Montage exam-
ple,” in 2008 SC - International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–
12, Austin, TX, USA, 2008.

14 Wireless Communications and Mobile Computing

https://www.illumina.com/

	Multihop Transmission-Oriented Dynamic Workflow Scheduling in Vehicular Cloud
	1. Introduction
	2. Related Work
	2.1. Workflow Scheduling in Central Cloud
	2.2. Workflow Scheduling in VC

	3. System Model and Problem Formulation
	3.1. System Architecture
	3.2. Mobility and Communication Model
	3.3. Task Model and Problem Formulation

	4. The Proposed HDWS Strategy
	4.1. Task Set Establishment
	4.2. Node Selection for the First Task Set
	4.3. Time Partition
	4.4. Node Classification and Local Scheduling
	4.5. Task Reassignment
	4.5.1. Successor Sorting Phase
	4.5.2. Node Sorting Phase
	4.5.3. Node Selection Phase
	4.5.4. Predecessor Sorting Phase
	4.5.5. Node Sorting Phase
	4.5.6. Node Selection Phase

	4.6. Dynamic Scheduling

	5. Performance Evaluation
	5.1. Experimental Setup
	5.1.1. Vehicular Cloud
	5.1.2. Workflow Application
	5.1.3. Scheduling Scheme

	5.2. Experimental Results and Analysis

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

