
Research Article
Extraction and Classification of the Supervised Coastal Objects
Based on HSRIs and a Novel Lightweight Fully Connected Spatial
Dropout Network

Yan Chen ,1 Jiahua Wan ,2 Yantao Xi ,3 Wenxiang Jiang,1 Mengyuan Wang,1

and Menglei Kang1

1School of Artificial Intelligence and big Data, Hefei University, Hefei 230601, China
2School of big Data and Artificial Intelligence, Anhui Xinhua University, Hefei 230088, China
3School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221006, China

Correspondence should be addressed to Yan Chen; chenyan090501@126.com and Jiahua Wan; jiahwan@163.com

Received 2 July 2022; Accepted 20 July 2022; Published 12 August 2022

Academic Editor: Chia-Huei Wu

Copyright © 2022 Yan Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the protection and management of coastal ecosystems, it is crucial to monitor typical coastal objects and examine their
characteristics of spatial and temporal variation. There are limitations to the conventional object-oriented and spectrum-based
approaches to HSRIs interpretation. The majority of recently conducted studies on semantic segmentation based on DCNNs
concentrate on improving the accuracy of single objects at local scales. The completeness, generalization, and edge accuracy of
the extraction and classification of multiple objects with the complex background at regional scales still need to be improved.
We created a benchmark dataset CSRSD for coastal supervision using HSRIs and GIS in this study to address the
aforementioned problems. In the meantime, by combining the traditional U-Net and DeepLabV3+ feature fusion strategies, we
propose a novel fully connected fusion pattern by switching to deepwise separable convolution from conventional convolution
and introducing spatial dropout to create a brand new CBS module. The LFCSDN, a new lightweight fully connected spatial
dropout network, has been suggested. The findings demonstrate that our constructed semantic segmentation dataset, which has
produced reliable results on U-Net and DeepLabV3+, can be used as a benchmark for applications based on DCNNs for
coastal scenes. While maintaining high accuracy, LFCSDN can significantly reduce the number of parameters. Our suggested
CBS module can increase the model’s generalization by reducing overfitting. In order to analyze the spatiotemporal
characteristics of target changes in the study area, tests on expansive remote sensing imagery were also conducted. The
findings can be applied to ecological restoration, coastal area mapping, and integrated management. Additionally, it serves as a
resource for studies on multiscale semantic segmentation in computer vision.

1. Introduction

The coastal area is a transition zone between land and sea,
consisting of mudflats, swamps, and mangroves, which has
the functions of wind and wave prevention, shore protec-
tion, water conservation, climate regulation, and prevention
of seawater invasion and maintenance of biodiversity. Due
to urbanization, mariculture, and extreme weather, ecologi-
cal environment issues have existed in certain developing
countries’ coastal areas. Monitoring the central ecology and
mariculture objects and gaining information on their spatial

and temporal changes are crucial for coastal resource protec-
tion and utilization. They also provide decision-making sup-
port for coastal urban management and planning. However,
due to the wide coverage of the coastal area and the com-
plexity of landscape and feature categories, the traditional
means based on an on-site survey is time-consuming. A
variety of automatic technologies used for remote sensing
interpretation can rapidly capture the characteristics of spa-
tiotemporal distribution of the objects on a large scale, which
has been a principal means of ecological environment mon-
itoring in coastal areas. Optical and radar images with
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medium and coarse spatial resolution have been widely used.
With the rapid development of remote sensing technologies,
the high spatial resolution images (HSRIs) containing richer
features gradually increase, and the costs have been reduced.
Researchers have implemented numerous approaches to
extract and classify the monitored objects from HSRIs in
the coastal areas, such as spectrum-based classification [1,
2] and object-oriented image segmentation [3–5]. However,
the elaborate spatial details require adequate spectral
responses, but the spectrum distinguishability of HSRIs is
relatively insufficient, which would lead to inferior classifica-
tion in the spectral domain. For example, the classified pixels
might be occupied by an amount of salt-pepper noise. An
object-oriented trick first performs superpixel segmentation
that can fully use features such as shape, texture, and posi-
tional relation of the targets to classify the HSRIs more accu-
rately. However, due to the lack of unified criteria for the
superpixel segmentation, deviations might be exported into
the classification stage. In addition, the two-stage process
would restrict the overall efficiency.

In recent years, AlextNet [6], VGGNet [7], ResNet [8],
etc., those deep learning-based deep convolutional neural
networks (DCNNs) have achieved great success in the field
of computer vision. To compare with the classic convolu-
tional neural networks (CNNs) such as LeNet-4 and
LeNet-5 [9], DCNNs introduce several innovative tricks
such as ReLU, dropout, batch normalization, multiple
max-pooling layers, GPUs-based training, etc., which sup-
port further extension on a network depth and improvement
on the model training efficiency. Regarding remote sensing
applications, DCNNs have been extensively studied and
achieved significant results in HSRIs oriented scene classifi-
cation [10–12] and object detection [13–16]. Likewise, the
researchers have further explored the capability of DCNNs
for achieving a pixel-wise prediction/semantic segmentation
on HSRIs classification. Fully convolutional networks
(FCNs) [17], a set of novel end-to-end semantic segmenta-
tion models that use convolutional layers to replace the fully
connected layers of DCNNs-based image recognition are the
most widely used for pixel-wise prediction in the remote
sensing domain for HSRIs classification recently. Several
improved networks based on FCNs, such as U-Net [18]
and DeepLab series [19–21], demonstrate superior results
in HSRIs. Although the DCNNs-based methodology is com-
monly employed for classifying and extracting targets in
HSRIs, it mainly focuses on urban scene applications [22],
such as building and road extraction, vehicle and aircraft
detection, and land use/cover classification. Few pieces of
research have been launched on the coastal scene. We made
a brief overview to summarize the related work involving
certain representational costal objects.

Sun et al. [23] apply the VHR optical images and LiDAR
data to construct a three-stage mapping framework based on
deep learning for tree species diversity assessment in tropical
wetlands. They enhance three DCNNs (AlexNet, VGG-16,
and ResNet-50) to better utilize spatial contextual informa-
tion for tree species classification. The results show the effec-
tiveness of the DCNNs-based solutions for mapping species
diversity. Li et al. [24] propose a multilayer mangrove map-

ping method considering the upper and lower vegetation
detection and species classification using the combined data-
set of multispectral WorldView-3 data, airborne hyperspec-
tral imagery, and LiDAR data. Random forest (RF) and
support vector machine (SVM) are compared in the com-
pany with DCNNs. The results show that LiDAR-based RF
and SVM can obtain a greater accuracy on the species map-
ping, while spectral features are more sensitive to DCNNs.
Guo et al. [25] design an innovative DCNN, Capsule-U-
Net, which couples the capsule networks [26] with U-Net
to achieve high accuracy extraction of mangroves by learn-
ing the spatial locations of pixels between objects in images.
Guo et al. [27] develop a multiscale context embedding
module to extract multiscale contextual information and
propose a deep learning-inspired pixel classification model,
which obtains an improved mIoU on Sentinel-2A data.
Wan et al. [28] adopt the VHR images, and fuse multiscale
DCNNs for sapling detection. Diniz et al. [29] test the appli-
cation of a U-Net classifier over the coastal extension in the
BCZ to evaluate its robustness in multitemporal identifica-
tion of the coastal artificial aquaculture ponds. Cui et al.
[30] use multiple combined convolutional layers, pooling
layers, and nonlinear ReLU activation functions to build a
deep network to extract nonlinear and invariant high-level
features of aquaculture raft areas. Liu et al. [31] propose a
deep learning RCF (richer convolutional features) network
to extract the aquaculture rafts in the bay from the high-
resolution GF-2 images. The results show that the proposed
method does need not to separate the areas from land and
sea in advance, and it still can maintain good extraction in
the area with more sediment in the water and more giant
waves. The accuracy reaches more than 93%, which is
appropriate for large-scale mariculture applications. Based
on the GF-2 images, Zheng et al. [32] propose an improved
double-branch network method for marine cage extraction.
The model consists of densely connected blocks on the spa-
tial encoding path and can quickly obtain global context
information of objects using the global average pooling. Fea-
ture fusion is used to recover the spatial details to improve
the extraction accuracy of the marine cage.

Currently, DCNNs-based research for HSRIs classifica-
tion in a coastal scene generally focuses on the local scale
and accuracy improvement of a certain single object. Studies
on the multiple object extraction and spatiotemporal distri-
bution analysis on a regional scale are comparatively scarce.
In one respect, sparse multi-object datasets are inadequate
for many applications. On the other hand, HSRIs with more
spatial details might lead to additional misclassification
caused by the spectrum-class inconsistency. A variety of
nontarget classes in the background makes it difficult to
obtain a generalized accuracy for the entire target objects,
especially for certain objects possessing diverse sizes, shapes,
and structures. Meanwhile, sharp edges and accurate com-
pleteness of the simple and multiscale objects deserve more
concern. Considering the storage characteristics of HSRIs,
a lightweight network could provide support to extend the
practical deployment. Therefore, we take the mangrove,
aquaculture raft, and pond that present a multiscale charac-
teristic and concerned attention in a coastal region of China
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as target classes to create a benchmarked multi-object
semantic segmentation dataset for the coastal monitored
research and applications. To further refine the object edge
and promote the accuracy improvement of multiscale
objects, we reference the strategies of U-Net feature fusions
that connect the low-level and high-level features and of
DeepLab that connects multiple receptive fields to propose
a parallel fully connected feature encoder fusing the various
resolutions of feature maps. To minimize the model param-
eters, we construct several depthwise separable convolutions
[33] instead of the standard convolutions. Consequently, a
novel lightweight fully connected spatial dropout network
(LFCSDN) with an innovative CBS module stacking the cas-
caded layers of feature maps, batch normalization layers,
and spatial dropout [34] layers for moderating the overfit-
ting and promoting the generalization is proposed. Addi-
tionally, we make a classification on a large scale extent
and evaluate the spatiotemporal distribution characteristics
of the monitored coastal targets in the study area based on
the proposed network and the ground truth images with
diverse time stamps. The dataset would be open-sourced
later as needed, and our proposed methodology and research
conclusions could be applied to the coastal environment’s
eco-environmental management. They might provide a
broadening thought for the research of multiscale semantic
segmentation in the domain of computer vision.

2. Study Area and Dataset

The study area, about 217 km2, is located in the western bay
of Fangchenggang City of Guangxi Zhuang Autonomous
Region of China, consisting of Dong Bay, Xi Bay, and Gang-
kou District of the city shown in Figure 1. Fangchenggang is
a coastal prefecture-level city. It is one of the 25 major
coastal ports in China and the unique city of China that con-
nects the ASEAN (Association of Southeast Asian Nations)
by land and sea.

In recent years, due to illegal construction and sewage
discharge by the factories, the mangroves (as shown in
Figure 1) in the coastal areas of Guangxi are degraded to a
certain degree, and the regional ecosystem has been disrup-
tive to some extent [35]. In addition, a few fishermen and
farmers have been fascinated by the benefits of illegally occu-
pying the offshore areas to breed the fish or shellfish using
aquaculture ponds or rafts (illustrated in Figure 1), which
endangers voyage safety and the sustainable regular fishing
ecosystem. Therefore, carrying out the research based on
HSRIs and DCNNs-based intelligent extraction of the
coastal target objects in the current area would provide
significant support for the managers to supervise the illegal
activities, which is meaningful to the city’s sustainable
development.

DCNN-based intelligent extraction or classification
methods rely on several image samples. Besides paying a
high price to purchase, collect, and process the raw images
with several bands, it is an augmented and practical way to
gain a batch of RGB images from the online map service
such as Google Earth, Gaode Maps, and Baidu Maps. We
collected four aerial HSRIs with a spatial resolution of

0.58m (UTM projection) from the Google Earth service.
The sizes of those images are all 25,856 × 25,344 by pixel,
and their timestamps are 2003, 2007, 2015, and 2018, respec-
tively, with a proximity month. In addition to the target
objects of mangroves, aquaculture rafts, and aquaculture
ponds, non-target backgrounds that consist of built-up
areas, seawater, common plants, and bare areas have been
included as well. These images have been labelled semi-
automatically or manually based on ArcGIS to create a batch
of ground truth samples.

Due to covering a large surface, a remote sensing image
generally presents a large size that cannot be input in a
DCNNs-based model directly with standard memory.
Therefore, after comprehensively evaluating the target
objects’ scale characteristics, we choose a 512 × 512 pixel
window to clip the large image into several small patches
sequentially. The sliding window is set with a certain over-
lapping to ensure more accurate edges while recombining
those patches. Ultimately, we created 12540 patches with
the size of 512 × 512 by pixel. According to the machine
learning criteria, a dataset is generally divided into a training
set, a test set, and a validation set by the ratio of 6 : 2 : 2. We
build the Coastal Supervision Remote Sensing Dataset
(CSRSD), including 7524 patches as a training set and
2508 patches as a test set and a validation set, respectively.
Currently, it does not seem to have an open-source multi-
object dataset oriented to the monitored coastal scene, so
we would open the CSRSD as needed shortly.

3. Methodology and Experiments

3.1. Lightweight Fully Connected Spatial Dropout Network.
DCNNs-based semantic segmentation for remote sensing
classification or extraction exists in two predominant pat-
terns: patch-wise and pixel-wise approaches [36]. A patch-
wise pattern first crops several smaller patches, e.g., 8 × 8
or 16 × 16, from the original larger remote sensing image
randomly or in a certain order. These patches are then fed
to a DCNNs-based image recognition model for training
and testing. The centric pixel's category of a patch is labelled
as ground truth. A sliding window of the same size as the
patches is used to traverse the whole image area to predict
each centric pixel’s category. The drawback of this method
is its low efficiency. In contrast, a pixel-wise semantic seg-
mentation does not require a set of pre-trained patches
and can perform an end-to-end pixel-level classification.
FCNs, U-Net, and DeepLabV3+ are the representational
pixel-wise models or networks. FCNs are the first proposed
pixel-wise end-to-end semantic segmentation approaches,
which have been widely used as baselines of the modified
methods as the extracted objects’ edges by FCNs are com-
monly blurred. U-Net is applied for medical image segmen-
tation in the early days. It introduces a skip connection to
optimize an object’s edges by fusing low-level and high-
level features. However, U-Net employs max pooling to
expand the receptive field, resulting in losses in a certain fea-
ture’s position. A dilated/atrous convolution has been pro-
posed instead of max pooling for downsampling to obtain
high-level features in DeepLab series models. In addition,
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an Atrous Spatial Pyramid Pooling (ASPP) [19] in Dee-
pLapV2 takes effect for multiscale object segmentation. To
further optimize the segmentation accuracy, we propose a
lightweight fully connected spatial dropout network
(LFCSDN) by integrating the U-Net and DeepLab series fea-
ture fusion strategies. The architecture of our proposed net-
work is shown in Figure 2.

3.1.1. Lightweight Fully Connected Encoder. As shown in
Figure 2, the input image size and the number of channels
are assumed to be W×H×C. Notation s denotes a convolu-
tional stride in the figure, and k denotes a kernel or filter size.
The colorful lines with arrows and block layers represent the

meanings shown in the upper right corner of the figure. The
regular convolution operation is denoted by the term
“Conv2D” in Figure 2’s legend. The figure labels the stride
and the size of the convolution kernel that was used for con-
volution. “ReLU” and “BN” stand for batch normalization
and nonlinear activation, respectively. The upsampling pro-
cess is identified as “UpSample2D.” The deepwise separable
convolution “SepConv2D” is identified by the graph’s mark-
ings for the stride and convolution kernel size. “Softmax”
refers to the convolutional maps’ multiclassification output,
which is akin to the activation function. The new module
we propose, which will be discussed below, is referred to as
“CBS.” Firstly, low-level features are extracted by several
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standard convolutions. Convolution with a stride greater
than one instead of a max pooling has been adopted for
downsampling, which is notated as “downsampling convo-
lution.” It reduces the loss of positional information while
obtaining a larger receptive field. To further decrease param-
eters and achieve a lightweight model, we construct three
branches of deepwise separable convolutions [33] based on
the first downsampled feature maps. The branches contain
two main branches and a side branch for later feature fusion,
where the main branch is denoted as a “fully connected
branch.” The initial convolutional kernel size in the fully
connected branch 1 is 3 × 3, and the convolutional stride is
1. The convolutional stride in the fully connected branch 2
is set to be 2, i.e., a feature map is subjected to two-fold
downsampling. The kernel size in the side branch is 1 × 1.
Namely, it is compressed and downsampled with the same
size for a subsequent feature fusion. After downsampling,
output feature maps of the fully connected branch 1 and
fully connected branch 2 can be used as a new input for
the encoding stage, and the image resolution will be main-
tained in the respective branches, which is denoted as the
“constant resolution feature map.” A convolution that
remains the feature maps unchanged in image resolution is
denoted as “constant resolution convolution.”

After several constant resolution convolutions, the out-
put feature maps in the fully connected branch 1 and fully
connected branch 2 are downsampled and upsampled,
respectively, to two times in size for constructing a new
branch feature layer. Meanwhile, a constant resolution con-
volution is also performed on the original fully connected
branch. The depthwise separable convolution with a stride
greater than 1 is still used for downsampling, and the bilin-

ear interpolation is employed to upsample the feature map.
Downsampled feature maps from the fully connected branch
1 and constant feature maps from the fully connected
branch 2 are connected by a CBS module to generate a
new fully connected branch. Suppose a feature map gener-
ated by the aforementioned operations is treated as a
neuron. In that case, the crossing fusion between several fea-
ture maps with diverse scales builds a structure similar to a
fully connected neural network, which retains more features
than the standard VGGNet and ResNet using step-by-step
downsampling. The proposed model further downsamples
the output feature maps of the fully connected branch 2 to
generate a new fully connected branch, given the complexity
of the non-target background. The feature maps of branch 3
are reduced by 4 times. Feature fusing and CBS are per-
formed on the fully connected branches 1, 2, and 3 to output
new feature maps for each branch. To generate advanced
semantic features, the feature maps in fully connected
branches 1 and 2 are downsampled to be four times and
two times as small, respectively, and then cascaded to the
feature maps of the fully connected branch 3, which couples
the CBS module in the end to obtain the final output feature
maps.

To obtain multiscale and elaborate features from certain
hierarchical feature maps, a skip connection and ASPP have
also been coupled in our network. Atrous convolutions with
diverse dilated rates are used in the encoded feature maps.
Its output is fused with the previous side branch, followed
by another CBS module and upsampling operation. The ulti-
mate predicted output of the network is generated following
the depthwise separable convolutions, upsampling and soft-
max operation in turn.
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3.1.2. CBS Module. There are two kinds of feature fusion
methods in general, an “add” way of channel-aligned fusion
and a “concatenate” way of channel-cascaded fusion. The
former requires the same number of channels to be fused,
which can rich certain feature information of the original
channel and lead to few parameters for the subsequent cal-
culation. The latter can extend the feature dimension, result-
ing in a larger number of parameters but provides many
more features. Therefore, as the computation condition
allows, “concatenate” is more appropriate for a multi-
object application. Although “concatenate” can gain a
greater variety of features, it might also introduce certain
redundant details leading to overfitting or poor generaliza-
tion. Accordingly, we innovatively couple the spatial drop-
out [34] layer into concatenated feature maps to diminish
the detailed noise by randomly dropping the entire feature
channel of feature maps.

A spatial dropout abbreviated as “SPD” in this paper is
a dropout [37] method proposed by Tompson et al. for
the image processing application. A standard dropout ran-
domly zeroes certain neurons’ values, but a spatial dropout
zeroes all pixels’ values of certain feature maps, as shown
in Figure 3. This approach has proven to be effective in
practice in image recognition [38]. The standard dropout
method randomly zeroes values of the independent neu-
rons in a certain feature map, which cannot normalize
the output if a strong correlation exists between neighbor-
ing neurons. At the same time, SPD can help improve the
contrast’s independence. To speed up the model’s conver-
gence and avoid the gradient explosion and gradient van-
ishing, a CBS module is ultimately constructed by adding
a batch normalization layer between concatenation and
spatial dropout. In subsequent experiments, several abla-
tion studies, including the combinations of CBS modules
and U-Net and DeepLabV3+, have been set up for further
discussion.

3.2. Evaluation Metrics. In addition to using the evaluation
metrics commonly used in remote sensing image classifica-
tion, such as the overall accuracy (OA), user’s accuracy
(UA), producer’s accuracy (PA), kappa, and F1-score (F1),
it should be noted that OA is primarily the probability that
every category is correctly predicted in the predicted out-
come, whereas PA is calculated in accordance with the recall
used in machine learning or deep learning, i.e., the probabil-
ity that a category is correctly predicted in the real outcome,
or the proportion of correctly classified pixels to the real
total pixels. The probability that a category is correctly pre-
dicted in the predicted outcome, or the percentage of cor-
rectly classified pixels out of the total predicted pixels, is
how “UA,” which is used in machine learning or deep learn-
ing, is calculated. At the same time, F1 reconciles and bal-
ances UA and PA. Kappa is a useful remedy for the
skewed evaluation caused by sample imbalance. We also
choose the mIoU, which is an abbreviation of “mean inter-
section over union” used to measure the accuracy of a
DCNNs-based semantic segmentation network. It calculates
an average ratio of the intersection and union of the pre-
dicted pixels and labelled pixels (i.e., ground truth). It takes

into account the number of pixels and pixel positions.
Equation (1) shows the mathematical expression:

mIoU = 1
n
〠
n

i=0

pii

∑n
j=0pij +∑n

j=0 pji − pii
� � , ð1Þ

where n is the number of categories, i is a labelled cate-
gory, j is a predicted category, pij denotes the probability
of a predicted pixel i as j, pii denotes the probability of
a predicted i like i, and pji denotes the probability of a
predicted j as i.

In addition, to measure the lightweightness of diverse
ablation models, the parameters’ amount has been used as
an additional evaluation metric. Innovatively, we calculate
the mean square error of each epoch between the training
and validation set to measure the degree of overfitting or
generalization. It is identified as a “loss coefficient” in cur-
rent research.

3.3. Experiments. Three experiments have been implemented
one after another. Firstly, we use the representative DCNNs-
based semantic segmentation networks to conduct a bench-
marking experiment on our constructed CSRSD dataset.
Then, we analyze and discuss the results based on the evalu-
ation mentioned above metrics. The results could be used as
a baseline. Secondly, to verify the suppression of overfitting
and the improvement of generalization of the CBS module,
we design several ablation experiments by adding and
removing BN and SPD following the concatenation fusion.
It should be noted that the BN always follows a block of con-
volutions and ReLU functions in each designed experiment
containing BN. To ensure the integrity of the feature infor-
mation, all CBS modules are placed only at the fully con-
nected branch junctions. Thirdly, to describe the model’s
generalization and efficiency in classifying a larger-scale
image, we select another image with the same date and sen-
sor but near the study area for the experiment. We analyze
and discuss the characteristics and potential causes of spatial
and temporal changes of three coastal target objects in the
study area based on the labelled images from a regional
scale. A Conda virtual environment, Pycharm IDE, several
third-party libraries of Python, Tensorflow framework, and
NVIDIA RTX3090 GPU have been adopted to support the
experiments. All hyperparameters, cost, and optimization
functions remain the same.

4. Results and Discussion

4.1. Effectiveness Evaluation of the Proposed Networks.
Table 1 shows the major ablation study’s overall accuracy
(OA), kappa, mIoU, and parameter amount of storage occu-
pied on a disk. The loss coefficient of each network is also
presented in Table 1. It can be seen that the DCNNs-based
classification for HSRIs can achieve high accuracy. An opti-
mal OA, kappa, and mIoU appear in the DeepLabV3+ (CBS)
method, while our LFCSDN obtains the best parameters and
loss coefficient. The results show that the U-Net and Dee-
pLabV3+ with the addition of a CBS module as well as our

6 Wireless Communications and Mobile Computing



proposed LFCSDN have enhanced the accuracy signifi-
cantly. All loss coefficients are decreased, demonstrating
an improved generalization. DeepLabV3+ (CBS) performs
best in accuracy, while our proposed models are lighter
overall due to the deepwise separable convolutions. Mean-
while, it possesses the best generalization, followed by
DeepLabV3+ (CBS).

More intuitively, Figure 4 shows the trend of loss
changes in the training and validation sets of DeepLabV3+
and LFCSDN before and after the addition of the CBS mod-
ule, respectively. It can be seen that the overall variability of
the training loss and validation loss per epoch is reduced
with a less volatile. During the training, CBS can promote
the consistency of the losses of training and validation sets
that further validates the improved generalization, which
has a certain mitigation effect on overfitting.

Table 2 shows the PA, UA, IoU, and F1 of three target
objects of the mangrove, aquaculture raft, and aquaculture
pond, demonstrating the single category accuracy. To elabo-
rate on the PA concerning the mangrove, all models achieve
good classification except for the standard U-Net, which
does not reach above 90%. The best model is our proposed
LFCSDN with 94.88%, which has an encoder that uses fully
connected feature fusion and BN. For the aquaculture raft,
the results of all models are also high. The best one is the
improved U-Net combined with a CBS module. Dee-
pLabV3+ with just over 90% is the best aquaculture pond
classification. Using the UA as an evaluation metric, the best
three models for the categories are DeepLabV3+ (CBS)
(94.45%), LFCSDN (94.32%) and DeepLabV3+ (CBS)

(87.92%), respectively. The best F1 for the mangrove is
94.24%, produced by DeepLabV3+ (CBS). The best F1 of
95.49% of the aquaculture raft is obtained by U-Net (CBS).
88.40% of the aquaculture pond classification is still
obtained by DeepLabV3+ (CBS). While the evaluation met-
rics described above the results in terms of the number of
pixels, IoU takes into account the spatial position character-
istics of the pixels and therefore requires a higher level of
pixel-wise classification. The vast majority of IoU results
for each method are below 90%, with the best IoU classifica-
tion for the mangrove and aquaculture pond both produced
by the method of DeepLabV3+ (CBS) at 89.11% and 79.2%,
respectively, while the best IoU for aquaculture raft is pro-
duced by U-Net (CBS) at 91.38%.

Regardless of the evaluation metric, three categories are
classified in descending order of accuracy: aquaculture raft,
mangrove, and aquaculture pond. When a CBS module is
added, the values of most of the indicators have been
increased. The best accuracy in terms of the target categories
is probably due to the aquaculture raft’s special texture and
color structure, which has fewer features with a similar
structure to the other two categories and the complex back-
ground features. In terms of shape features, buildings in the
background are similar, but the textural and dimensional
features differ more between them. Therefore, the architec-
tural features in the background have less influence on the
classification of aquaculture rafts. In the case of the man-
grove, it has the same color characteristics as the regular veg-
etation in the background but has a certain textural
difference. In addition, the mangroves are mostly found in
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Figure 3: Feature maps generated by the dropouts. (a) Standard dropout. (b) Spatial dropout.

Table 1: Results of the overall effectiveness evaluation.

Methods OA (%) Kappa mIoU (%) Parameters (MB) Loss coefficient

U-Net 96.34 0.73 76.96 252 0.0275

U-Net (CBS) 98.12 0.87 87.34 252 0.0051

DeepLabV3+ 98.33 0.88 86.77 65 0.0043

DeepLabV3+ (CBS) 98.50 0.90 88.47 65 0.0028

LFCSDN (ours, BN) 98.24 0.87 87.72 16 0.0040

LFCSDN (ours, CBS) 98.22 0.88 86.72 16 0.0012
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Figure 4: Continued.
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mudflats with saltwater intrusion, which is a robust spatial
feature. The worst classification accuracy of the aquaculture
pond relative to the others might be due to the presence of
large areas of seawater in the background category that have
the same texture and color characteristics as aquaculture
ponds, resulting in obvious misclassification.

Table 3 and Figure 5 show the mangrove misclassifica-
tion rate, i.e., the number of mangrove pixels that have been
misclassified into the aquaculture raft, pond, and back-
ground categories as a proportion of all true mangroves’
pixels. It can be seen that regardless of the modelling
approach, the mangrove is misclassified into other categories
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Figure 4: Comparisons of the generalization performance. (a) DeepLabV3+. (b) DeepLabV3+ (CBS). (c) LFCSDN(BN). (d) LFCSDN(CBS).
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in the order of background, aquaculture pond, and aquacul-
ture raft, with the highest number being misclassified into
the background. In the study area, the background consists
of buildings, bare areas, farmlands, and regular vegetation,
a complex composition. Due to the spectral similarity
between the farmlands and vegetation, a mangrove could
likely be misclassified into the background, resulting in the
highest percentage of misclassification. On the other hand,
the mangrove and aquaculture pond, with distinctly differ-
ent characteristics, are near each other in terms of spatial
position and are likely to be misclassified due to a very small
number of incorrectly labelled samples. For example, the
true pixel belongs to the mangrove, but a small number of
pixels distributed on edges are labelled as the aquaculture

pond. The model identifies those pixels as mangroves based
on the correct labelled samples’ statistics, resulting in mis-
classification. The mangrove is uncorrelated with the aqua-
culture raft with the least misclassification. Remarkably, the
misclassification rate has been improved in all three net-
works with an additional CBS module.

Table 4 and Figure 6 show the proportion of misclassi-
fied aquaculture rafts in mangroves, aquaculture ponds,
and the background. The background is still the most mis-
classified due to its complexity. For example, some bare
areas in the background resemble aquaculture rafts. In
addition, aquaculture rafts are spatially located in seawater,
and their labelled edges are inevitably subject to certain
errors. The least misclassification of the six models is

Table 3: Misclassification rates of the mangroves.

Methods Aquaculture raft Aquaculture pond Background

U-Net 0.006395 0.262101 10.747875

U-Net (CBS) 0.000132 0.008735 8.345952

DeepLabV3+ 0.001192 0.051232 7.494523

DeepLabV3+ (CBS) 0.000038 0.029939 5.522487

LFCSDN (ours, BN) 0.013667 0.048097 8.883216

LFCSDN (ours, CBS) 0.000366 0.039204 7.215670

Table 2: Results of the individual target’s effectiveness evaluation.

Metrics Methods Mangrove Aquaculture raft Aquaculture pond

PA (%)

U-Net 86.64 94.33 78.77

U-Net (CBS) 94.88 96.80 89.77

DeepLabV3+ 94.50 94.95 90.71

DeepLabV3+ (CBS) 94.04 94.40 88.90

LFCSDN (ours, BN) 94.88 93.76 89.85

LFCSDN (ours, CBS) 93.50 90.99 88.49

UA (%)

U-Net 88.98 89.10 56.26

U-Net (CBS) 91.65 94.23 79.23

DeepLabV3+ 92.45 88.58 83.05

DeepLabV3+ (CBS) 94.45 91.91 87.92

LFCSDN (ours, BN) 91.06 94.32 82.19

LFCSDN (ours, CBS) 92.74 94.25 83.63

F1 (%)

U-Net 87.80 91.64 65.64

U-Net (CBS) 93.24 95.49 84.17

DeepLabV3+ 93.47 91.66 86.71

DeepLabV3+ (CBS) 94.24 93.14 88.40

LFCSDN (ours, BN) 92.93 94.04 85.85

LFCSDN (ours, CBS) 93.12 92.59 85.99

IoU (%)

U-Net 78.25 84.58 48.86

U-Net (CBS) 87.33 91.38 72.67

DeepLabV3+ 87.74 84.60 76.54

DeepLabV3+ (CBS) 89.11 87.16 79.22

LFCSDN (ours, BN) 86.79 88.74 75.20

LFCSDN (ours, CBS) 87.13 86.21 75.43
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DeepLabV3+ (CBS) for the aquaculture raft and U-Net
(CBS) for the aquaculture pond and LFCSDN (ours,
CBS) for the background.

Table 5 and Figure 7 show the misclassification rate for
the aquaculture pond. Overall, there is a significant increase
in the misclassification of the aquaculture pond into the

background relative to the mangrove and aquaculture raft,
reaching over 10%. This is mainly because an aquaculture
pond consists of seawater. In contrast, the seawater and reg-
ular ponds in the background coincide with the category and
are difficult to distinguish from each other in terms of a
coarse spectrum. The shape feature of the aquaculture pond
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Figure 6: Misclassification rates of the aquaculture rafts.

Table 4: Misclassification rates of the aquaculture rafts.

Methods Mangrove Aquaculture pond Background

U-Net 0.093508 0.022565 10.782253

U-Net (CBS) 0.099160 0.000000 5.674210

DeepLabV3+ 0.037697 0.027594 11.352514

DeepLabV3+ (CBS) 0.004317 0.000979 8.084409

LFCSDN (ours, BN) 0.019538 0.001602 5.662638

LFCSDN (ours, CBS) 0.101653 0.025324 5.619378
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Figure 5: Misclassification rates of the mangroves.
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can be used to distinguish it from the seawater, whereas it is
relatively difficult to distinguish with a regular pond in the
background. In addition, as the labelled samples are collected
from the dynamic temporal scale, some of the ponds have
been abandoned, whose bare bottoms are similar to the bare

areas of the background, so this might contribute to a large
number of misclassification of the aquaculture pond.

Several representative samples of the mangrove, aqua-
culture pond, and raft containing diverse orientations,
shapes, colors and textures have been selected from the test
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Figure 7: Misclassification rates of the aquaculture ponds.

Input Ground truth U-Net U-Net (CBS) DeepLabV3 + DeepLabV3 + (CBS) LFCSDN (BN) LFCSDN (CBS)

Sample 4

Sample 3

Sample 2

Sample 1

Figure 8: Comparisons of the mangroves extracted by the models.

Table 5: Misclassification rates of the aquaculture ponds.

Methods Mangrove Aquaculture raft Background

U-Net 0.134942 0.002740 43.599243

U-Net (CBS) 0.012220 0.001137 20.759122

DeepLabV3+ 0.003515 0.000000 16.947220

DeepLabV3+ (CBS) 0.008277 0.000012 12.074753

LFCSDN (ours, BN) 0.008212 0.000160 17.802990

LFCSDN (ours, CBS) 0.010225 0.000027 16.359246
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set and visualized in the individual category, as shown in
Figures 8, 9, and 10, respectively. The mangrove samples
include samples that are easily confused with the typical veg-
etation in addition to the essential characteristics. The aqua-
culture pond samples also include the samples that are easily
confused with the seawater and regular ponds. The results
are consistent with the data in the previous tables, with the
misclassification mainly concentrated on the background.
In addition, the results show that U-Net is more prone to
classification incompleteness than DeepLabV3+ and our
proposed method, mainly because it does not consider
multi-scale feature fusion. But the edge obtained by U-Net
is more refined due to its skip connection which unites all
low-level features. DeepLabV3+ uses only one feature fusion
in the upsampling stage, resulting in a coarser pixel resolu-

tion on the edge. Our proposed method falls in the middle
of U-Net and DeepLabV3+.

To test the generalization of the model and the classifica-
tion efficiency on a larger scale image, we select an area out-
side the study area. Its image has been collected from the
same sensor and possesses the same spatial resolution and
date. The image covers an area of approximately 12.5 km2

and has an image resolution of 6180 × 5901 by pixel. This
area contains mangroves, aquaculture rafts, aquaculture
ponds, and the background. As the area is used as a predic-
tion, it has not been labelled. We describe the classification
quality through a visualization result map. We only use U-
Net and Deeplabv3+, which contain the CBS module and
our proposed model. Under the same hardware and software
environment, three models spent 146, 148, and 158 seconds

Input Ground truth U-Net U-Net (CBS) DeepLabV3 + DeepLabV3 + (CBS) LFCSDN (BN) LFCSDN (CBS)

Sample 4

Sample 3

Sample 2

Sample 1

Figure 9: Comparisons of the aquaculture ponds extracted by the models.

Input Ground truth U-Net U-Net (CBS) DeepLabV3 + DeepLabV3 + (CBS) LFCSDN (BN) LFCSDN (CBS)

Sample 4

Sample 3

Sample 2

Sample 1

Figure 10: Comparisons of the aquaculture rafts extracted by the models.
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to extract and classify the area, respectively. Our proposed
model takes the most time overall, mainly since the model
requires multiple times upsampling and downsampling
operations when predicting.

The results of the visual extraction and classification
are shown in Figure 11. The results show that all three
methods perform well in terms of the overall accuracy of
the interpretation and classification of the large-scale
image from the same sensor on the same date and posses-
sing the same spatial resolution. In the red circles of the
figure, the U-Net (CBS) method misclassified several regu-
lar ponds into the background. At the same time, both
DeepLabV3+ (CBS) and LFCSDN (CBS) can correctly
identify and classify them. In the purple circles, LFCSDN
(CBS) can better preserve the integrity of a larger man-
grove. For the decoding and classification of aquaculture
rafts, all three methods show a significant loss in the mis-
classification of rafts into the background, as shown in the
black circles in the upper right corner of the figure. In the

black circles in the lower right corner, U-Net (CBS) per-
forms best in classifying the aquaculture rafts that are
non-concentrated ones. In addition, we have also experi-
mented with other large-scale images collected from
diverse sensors with various dates and resolutions. The
results show that many coastal datasets are still needed
for real applications.

4.2. Spatiotemporal Distribution Characteristics. The spatial
and temporal distribution of the three target objects in the
study area in 2003, 2007, 2015, and 2018 is shown in
Figure 12 and Table 6, which gives the total area.

On the temporal scale, the total area of the man-
groves in the study area remains stable without a large
change in fifteen years. A slight decrease after 2015 might
be related to the damage to mangroves due to illegal con-
struction and sewage discharge from the factories men-
tioned in the introduction section. The area of the
aquaculture ponds used for breeding fish and shrimp
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Aquaculture raft

Aquaculture pond
Background

(a)

Mangrove
Aquaculture raft

Aquaculture pond
Background

(b)
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(c)
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Aquaculture raft

Aquaculture pond
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(d)

Figure 11: Extraction and classification in a large scale area. (a) Input image. (b) Output by U-Net (CBS). (c) Output by DeepLabV3+
(CBS). (d) Output by LFCSDN (CBS).

14 Wireless Communications and Mobile Computing



has decreased by 20% between 2003 and 2018, probably
due to the rise of oysters and scallops markets as well
as the impact of the widespread use of new aquaculture
technologies such as aquaculture rafts and net cages. On
the other hand, strengthening governance for the illegal
activities by fishers and farmers has been done well.

The number of the aquaculture raft, a critical oyster
breeding method, increased significantly between 2003
and 2018, mainly probably due to the increased demand
for oysters in inland areas, prompting the fishers to
increase their investment in aquaculture rafts. On the
spatial scale, the mangroves, aquaculture ponds, and
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Figure 12: The spatiotemporal distribution of the target objects (a) in 2003, (b) in 2007, (c) in 2015, and (d) in 2018.
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aquaculture rafts distribute in both Xi bay and Dong bay
of the Gangkou District of Fangchenggang. Mangroves
are more in the east than in the west. Aquaculture rafts
showed explosive growth in the east bay in 2018. As seen
in the figure, since 2015, some of the aquaculture ponds
have been replaced by other lands.

5. Conclusions

Coastal typical object monitoring based on HSRIs is one of
the important means of coastal ecological environment
supervision. However, the complexity of high-resolution
remote sensing images makes the traditional methods not
very efficient. DCNNs-based semantic segmentation pro-
vides a new pattern to improve the extraction and classifica-
tion accuracy. However, due to the lack of coastal scene
datasets and the large-scale characteristics of remote sensing
images, as well as the current semantic segmentation models
still need to be improved in terms of accuracy and generali-
zation, the research on the classification or extraction of
coastal scene HSRIs based on DCNNs generally focuses on
the local scale and the accuracy improvement of a single
object. Few studies focus on multi-object extraction and spa-
tiotemporal distribution analysis at the regional scale.
Objects with different sizes, shapes, and structures have dif-
ficulty obtaining universal accuracy for the whole target
object due to various nontarget categories in the back-
ground. Meanwhile, sharpened edges and accurate com-
pleteness of simple and multiscale objects deserve more
attention.

This study constructs a multi-object coastal dataset
CSRSD using HSRIs and GIS. Meanwhile, we modify
the feature fusion strategies of U-Net and DeepLabV3+,
replace the standard convolution with deepwise separable
convolution, and introduce the spatial dropout to build a
new CBS module. As a result, a new lightweight fully
connected, connected spatial dropout network, LFCSDN,
has been proposed based on the abovementioned modifi-
cation. The experimental results demonstrate that the
semantic segmentation dataset we constructed, with cred-
ible results on baseline-based U-Net and DeepLabV3+,
can be used as a benchmark dataset for a DCNNs-
based application on coastal scenes. LFCSDN can greatly
reduce the number of parameters while ensuring good
accuracy. The proposed CBS module can alleviate overfit-
ting and improve the model’s generalization. In addition,
testing on large-scale remote sensing images and analyz-
ing the spatial and temporal characteristics of the target
changes in the study area could be used for ecological
restoration, mapping, and comprehensive management

in coastal areas. It also provides a reference for the
research of multiscale semantic segmentation in computer
vision.
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