
Research Article
LiDAR: A Light-Weight Deep Learning-Based Malware
Classifier for Edge Devices

Jinsung Kim ,1 Younghoon Ban,1 Geochang Jeon,2 Young Geun Kim,3

and Haehyun Cho 2

1School of Software Convergence, Soongsil University, Seoul 06978, Republic of Korea
2School of Software, Soongsil University, Seoul 06978, Republic of Korea
3Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea

Correspondence should be addressed to Haehyun Cho; haehyun@ssu.ac.kr

Received 17 March 2022; Revised 15 May 2022; Accepted 2 June 2022; Published 14 June 2022

Academic Editor: Xun Shao

Copyright © 2022 Jinsung Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the advent of the 5G network, edge devices and mobile and multimedia applications are used a lot; malware appeared to
target edge devices. In the fourth quarter of 2020, 43 million pieces of malware targeting mobile devices occurred. Therefore, a
lot of researchers studied various methods to quickly protect users from malware. In particular, they studied detecting malware
for achieving the high accuracy with deep learning-based classification models on mobile devices. However, such deep
learning-based classifiers consume a lot of resources, and mobile devices have limited hardware resources such as RAM and
battery. Therefore, such approaches are difficult to be used in the mobile devices in practice. In this work, we study how a
deep learning classifier classifies malware and proposed a novel approach to generate a light-weight classifier that can
efficiently and effectively detect malware based on the insight that malware exhibits distinctive features as they are
programmed to perform malicious actions such as information leaks. Therefore, by analyzing and extracting distinctive
features used by a deep learning classifier from malicious dataset, we generate a light-weight rule-based classifier with high
accuracy to efficiently detect malware on edge devices called LiDAR. On an edge device, LiDAR detects malware with 94%
accuracy (F1-score) and 85.67% and 328.24% lower usages for CPU and RAM, respectively, than a CNN classifier, and showed
the classification time 454.37% faster than the classifier.

1. Introduction

With the introduction of the 5G network, people enter the
era of Internet of Things (IoT) in which more devices are
connected as developed IoT; edge devices are growing a
lot. It is expected that there will be more than 7.49 billion
edge device (e.g., smartphones and wearable devices) users
worldwide in 2025 [1]. Also, due to the high use of edge
devices, multimedia applications are used a lot, and it is
seen that cumulative downloads of multimedia applica-
tions (e.g., WhatsApp, YouTube, and Facebook) are about
28.4 billion or more [2]. Furthermore, mobile multimedia
usage is about 4.23 hours per day which is consumed a
lot of time [3]. Unfortunately, due to the severe security

threats (e.g., Botnets and man-in-the-middle attack) and
major privacy violations (e.g., social security numbers,
credit card numbers, and passwords), the use of the edge
devices is still risky [4–8]. For example, a single wrong
click can launch a malicious program causing damage
such as personal information leakage or financial loss. In
the fourth quarter of 2020, 43 million pieces of malware
targeting mobile devices appeared [9].

Such threats have led to the release of many commer-
cial antivirus products such as Avast, Kaspersky, McAfee,
and Norton. However, those antivirus products have a
fatal limitation: They cannot detect unknown malware
because they mostly rely on the signatures of known mali-
cious applications [10]. To overcome the limitation, a lot

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 2117883, 9 pages
https://doi.org/10.1155/2022/2117883

https://orcid.org/0000-0003-1627-1916
https://orcid.org/0000-0002-5344-5252
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2117883


of research works have focused on developing malware
detection approaches using deep learning algorithms to
protect users [11–23].

Recently, along with the advances in mobile systems-
on-a-chip (SoCs), there have been increasing pushes to
run malware detection schemes directly on edge devices
[11, 12]. This is because executing the schemes on the
edge devices can improve the service response time by
eliminating the data transfer overhead. It can save up to
46% overhead system consumption than local execution
[24]. However, running deep learning-based malware
detection approaches on edge devices is still at the nascent
stage, since the edge devices are usually energy and
resource constrained [25]. Running complex neural net-
works including many layers, nodes, and many features
makes the edge devices consume CPU usage of at least
60% or more (six cores) and RAM usage of about 10GB
[26, 27]. Although previously studied deep learning-based
malware detection approaches could achieve very high
accuracy, it is hard to apply them on the edge device of
which executing resources are limited. Consequently, it is
of importance to develop approaches that can employ
deep learning-based malware detection on the edge device.

In this work, we propose a novel approach to generate a
deep learning-based light-weight classifier, named LiDAR, to
enable efficient malware detection at the edge. To build the
LiDAR, we first analyze malicious dataset such as SMS spam
dataset, e-mail spam dataset, and Android malware dataset.
We then extract word tokens from the malware dataset
and train a convolutional neural network (CNN) algorithm
using the extracted word tokens. Based on the trained
CNN algorithm, we extract features that have high weight
values using a visual explanation method of decisions from
a large class of a CNN-based model, called gradient-
weighted class activation map (Grad-CAM) [28], assuming
that those features highly contribute to the prediction accu-
racy. Based on those features, we build a light-weight rule-
based classifier.

To show the efficiency and effectiveness of LiDAR, we
evaluate it on a workstation as well as the Raspberry Pi.
Our evaluation results clearly demonstrate that LiDAR sig-
nificantly improves the resource utilization as well as the
classification time, compared to the state-of-the-art CNN-
based classifiers, achieving the feasible accuracy: on aver-
age, LiDAR showed 85.67% and 328.24% lower usages
for CPU and RAM, respectively, than a CNN classifier,
and showed the classification time 454.37% faster than a
CNN classifier to detect Android malware, while achieving
93% of the prediction accuracy.

In summary, our contributions are as follows:

(i) First, we analyze general approaches of malware
detection process using deep learning-based classifi-
cation models with spam dataset and Android
application dataset

(ii) Second, based on the analysis, we use a deep learn-
ing algorithm to find distinctive features of mal-
ware. And, we design a light-weight classifier with

the high accuracy to efficiently detect malware on
edge devices

(iii) Lastly, we thoroughly evaluate a prototype of
LiDAR. Also, we compare our classifier against deep
learning classifiers to demonstrate the computation
resources and classification time of it. Our approach
shows better performance of 85.67% and 328.24%
lower usages for CPU and RAM than CNN classi-
fiers with 94% accuracy (F1-score)

2. Background and Related Work

In this section, we introduce the advantages and disadvan-
tages of Android malware detection using deep learning-
based approaches. We, also, discuss commonly used features
of Android malware employed by the previous studies.

2.1. A Limitation of Deep Learning-Based Android Malware
Classification Approaches. Recently, a surge of studies were
proposed to detect Android malware by using deep
learning-based approaches using various features [11–23].
The advance of deep learning algorithms helps achieve the
high accuracy by learning distinctive features of data with
complex neural networks. Table 1 shows the accuracies (or
F1-score) of previous deep learning-based malware detec-
tion approaches with algorithms and features used. How-
ever, classifiers generated by deep learning algorithms
usually require the high computation time and resource
usage because many approaches use excessive and detail fea-
tures based on complex neural networks to achieve the high
accuracy [11–19]. Consequently, even though they could
achieve the high accuracy, it is difficult to employ them in
practical on the most of smart edge devices which have lim-
ited computing resources.

2.2. Commonly Used Features for Android Malware
Detection. Table 1 summarizes state-of-the-art deep
learning-based malware detection approaches. In general,
the methods are built based on various features including
permissions and/or API calls. Permissions include informa-
tion on the system-level functionalities, such as current loca-
tion and network status. API calls are related to the
functionalities that an application provides to users (e.g.,
SMS functions, call functions, and read and write functions).
Malicious applications usually exploit specific permissions
or API calls, such as reading sensitive data (e.g., a function
reading a password) or transferring data (e.g., a function
writing to a socket), to leak private data or capture the user
behaviors. By using combinations of such features, previ-
ous approaches aimed to not only detect malware but also
discover its malicious behaviors to assist the wholistic
analysis process.However, in edge use cases, it does not
necessarily use such detailed features because we merely
need to discover whether an application is malicious or
not rather than discovering its malicious behaviors in
detail. Also, malicious applications usually share distinct
features because they are programmed to inflict damages
such as sensitive information leaks or financial loss to
users. Hence, based on this insight, we propose a way to

2 Wireless Communications and Mobile Computing



generate a light-weight classifier that can efficiently detect
malicious applications.

3. Overview

We first analyze how deep learning-based classifiers classify
malware. Based on the analysis, we aim to design an
approach to generate a light-weight classifier with the high
accuracy to efficiently detect malware on edge devices. To
achieve the goal, we employ a deep learning algorithm to
find distinctive features of malware. Since we cannot directly
obtain the distinctive features from the trained neural net-
work due to its insufficient explainability, we use Grad-
CAM that visualizes how much the features contribute to
the classification accuracy. Based on the extracted distinctive
features, we build a light-weight rule-based classifier, named
LiDAR. It is worth noting that our approach can be applied
onto the malware classification problem as well as other
types of data which have remarkable features such as scam

email. In general, such “malicious” samples in any dataset
have distinguishable features from benign samples because
attackers create them to have uncommon features shared
by benign samples. Therefore, by using distinctive features
from malware, we could reduce features and lowering over-
head classification for malware detection.

In the following sections, we show how we collected the
dataset for this study (in Section 4.1), how we preprocess the
dataset (in Section 4.2), how we learn features of the dataset
by using a deep learning algorithm (in Section 4.3), how we
select important features with a visual explanation technique
from the deep learning-based model (in Section 4.4), and
how we generate a light-weight classifier based on the fea-
tures (in Section 4.5).

4. Design

In this section, we demonstrate our approach to generate a
light-weight classifier based on the learning result of a deep

Table 1: Summary of deep learning-based malware classification approaches.

Name Algorithm Accuracy or F1-score Features

MalDozer [11] CNN 96% API call

DL-Droid [12] MLP 99% Permission, etc.

Droid-Sec [13] DBN 97% Permission, API call, etc.

Kim et al. [14] DNN 99% Permission, component, string, opcode, API

DroidDetector [15] DBN 97% API, permission, etc.

DroidDeep [16] DBN 99% Permission, API call, action, component, etc.

Li et al. [17] DNN 97% Permission, API call, etc.

Ganesh et al. [18] CNN 93% Permission

Nix and Zhang [19] CNN 99% API call

Extracting
word

tokens
&

normalizing
words

B M

H HS S

Extracting
features

&
making

Classifier

Light- 
weight 

classifier

Embedding 
words

&
learning
model

Figure 1: The overview of our approach to generate a deep learning-based light-weight classifier.

Table 2: The summary of our dataset.

Malicious data Benign data

Spam SMS Spam e-mail
Android
malware Spam SMS Spam e-mail

Android
malware

2019 2020 2019 2020

Training dataset 600 2,953 1,600 1,600 3,857 5,575 1,600 1,600

Test dataset 147 768 400 400 968 1,364 400 400

3Wireless Communications and Mobile Computing



Table 3: Malicious and benign features discovered by Grad-CAM.

(a)

SMS spam dataset E-mail spam dataset
No. Weight value Features No. Weight value Features

1 0.0023 call 1 0.0159 click

2 0.0016 free 2 0.0141 run

3 0.0016 www 3 0.0088 could

4 0.0014 stop 4 0.0086 file

5 0.0013 txt 5 0.0074 remov

6 0.0013 repli 6 0.0070 modem

7 0.0010 cash 7 0.0068 send

… …

800 -0.0017 see 31,860 -0.0144 link

801 -0.0017 heart 31,861 -0.0178 make

802 -0.0018 give 31,862 -0.0237 one

803 -0.0018 weekend 31,863 -0.0334 nbsp

804 -0.0031 get 31,864 -0.0454 emailaddr

805 -0.0038 got 31,865 -0.1133 httpaddr

(b)

Android malware dataset
2019 2020
No. Weight value Features No. Weight value Features

1 0.0118
android.app->
android.view

1 0.0180
android.app->
android.view

2 0.0094
android.content->
android.content

2 0.0142
android.view->
android.content

3 0.0088
android.content->

android.app
3 0.0135

android.os->
java.lang

4 0.0082
android.webkit->

java.lang
4 0.0130

android.content->
java.lang

5 0.0081
android.app->
android.content

5 0.0124
android.content->

android.app

6 0.0068 android.app->android.os 6 0.0094
android.view->
android.view

7 0.0058
android.view->
android.view

7 0.0092
android.net->
android.net

… …

4,667 -0.0051 java.net->java.lang 13,201 -0.0018
android.content.res->

java.lang

4,668 -0.0056 android.view->java.lang 13,202 -0.0023
android.database.sqlite->
android.database.sqlite

4,669 -0.0064 java.io->java.io 13,203 -0.0025
android.webkit->

android.util

4,670 -0.0065
android.widget->

java.lang
13,204 -0.0064 java.io->java.io

4,671 -0.0069
android.content->

android.os
13,205 -0.0065

android.view->
android.util

4,672 -0.0081
android.widget->

android.util
13,206 -0.0068

android.widget->
android.util

4 Wireless Communications and Mobile Computing



learning algorithm to classify data samples that have distinc-
tive features such as malware. Figure 1 shows the overview of
our approach.

4.1. Dataset. In this work, we collected 24,232 real-world
data as in Table 2, which consists of SMS spam message
dataset [29], e-mail spam dataset [30], and Android malware
dataset appeared from 2019 to 2020 [4]. By using our data-
set, we demonstrate that malicious samples of the dataset
have notable features to distinguish them from benign data
samples, and thus, we can generate a much lighter classifier
than deep learning-based models.

4.2. Preprocessing. To make light-weight classifiers, we use
word tokens. We, thus, transform the malicious dataset
(i.e., SMS spam dataset, e-mail spam dataset, and Android
malware dataset) to word tokens. Finally, we remove dupli-
cated word tokens.

4.2.1. Word Normalization. To remove unnecessary texts
such as special characters, newline, and stopword for mal-
ware classification, we normalize the dataset. We, then,
group texts that means the same (e.g., abc@abc.com to email
address, https (http) to http address, and $ to dollar). On the
other hand, Android malware datasets have many text

1.00E–06

W
ei

gh
t v

al
ue

Pi
ck

Va
lu

Ea
si

Vo
da

fo
n

C
om

pu
t

Cu
sto

m

W
in

C
ol

le
ct

Pr
iz

e

Ca
ll

5.00E–07

–5.00E–07

–1.00E–06

–1.50E–06

–2.00E–06

0.00E+00

Figure 2: Examples of weights obtained from the SMS spam dataset by using Grad-CAM.

Table 4: The number of word tokens used in our experiments. M: malicious features; B: benign features.

SMS spam [37] E-mail spam [38]
Android malware [4]

2019 2020

CNNc 6,272 82,005 9,211 18,925

CNNg and LiDAR
M B M B M B M B

428 337 12,382 19,483 2,644 2,028 6,576 6,630

8%
F1-score

SMS e-mail 2019 2020
4%

–1%
6%
6%

1%
–4%

5%
3%

4%
0%

–4%
–8%

4500%
CPU

SMS e-mail 2019 2020
548.55%
345.65%

4064.45%
3704.49%

3888.45%
3707.22%

1925.43%
1755.53%

3000%
1500%

0%

CNNc

CNNg

800%
RAM

SMS e-mail 2019 2020
215%
208%

714%
299%

569%
470%

327%
258%

600%
400%
200%

0%

CNNc

CNNg

CNNc

CNNg

1000%
Classification time

SMS e-mail 2019 2020
925%
902%

271%
21%

331%
185%

20%
15%

500%

0%

CNNc

CNNg

Figure 3: The comparison of F1-scores and the performance overhead of the CNN-based classifiers on the workstation based on the
evaluation results of LiDAR.

5Wireless Communications and Mobile Computing



features (in Section 2.2). Hence, we use Android framework
APIs as the main feature of Android malware. We, also,
extract API call graphs (ACG) by which we can track data
flows between a point where sensitive data is read and
another point where the sensitive data is exported by using
FlowDroid [31].

4.2.2. Word Encoding for the Malware Dataset. To learn the
malware dataset, we convert a preprocessed each word token
in the malware dataset to an integer number for the effi-
ciency. When we meet unknown tokens that could not find
in the learning process, we map such word tokens to
“Unknownword” token. Lastly, add paddings to make the
malware dataset the same length.

4.3. CNN Architecture. We employ a simple CNN for the
deep learning algorithm [32, 33]. CNN is widely used to find
common features of malware word tokens that are fre-
quently used in actual malware dataset [34]. We use a stan-
dard convolutional neural network architecture. The input
first goes through an embedding layer and then a one-
dimensional convolutional layer (Conv1D) with ReLu acti-
vations. The last layer is a dense layer after we flattened data

into a vector. The Conv1d is trained by a word using kernel
size of 1 to capture a feature of each. We also use the Sig-
moid activation function, to further classify binary labels.

4.4. Feature Selection. To investigate how different word
token features contribute to the accuracy of a CNN classifier,
we use Grad-CAM. Grad-CAM enables one to visualize each
feature map layer and understand how the input data of a
CNN affect the classification. Also, Grad-CAM can extract
weight values without architectural changes or retraining.
Grad-CAM exploits the feature maps extracted from the
Conv1D layers to identify the impact of the features on the
classification results. Grad-CAM sorts the feature maps
based on the weight values of any class flowing into the final
convolutional layer. As a result, Grad-CAM can extract a
heat map of weight values for the word tokens which can
be used for the light-weight classification.

Table 3 shows extracted features of the malware dataset
using Grad-CAM. Higher values indicate malicious features,
while lower values indicate benign features.

4.5. LiDAR. To build the light-weight classifier, we identify
important features to classify malware from the malware

Table 5: The evaluation results on the workstation using the three classifiers.

Dataset Classifier CPU (%) RAM (MB) Classification time (seconds) F1-score

SMS

CNNc 245.80% 262.13 0.96 0.94

CNNg 168.90% 256.27 0.94 0.89

LiDAR 37.90% 83.30 0.09 0.90

E-mail

CNNc 4,451.80% 1,986.491 14.04 0.99

CNNg 4,067.00% 972.08 4.57 0.98

LiDAR 106.90% 243.92 3.78 0.93

Malware in 2019

CNNc 3,868.80% 980.04 1.85 0.94

CNNg 3,693.00% 835.86 1.22 0.90

LiDAR 97.00% 146.55 0.43 0.94

Malware in 2020

CNNc 3,862.50% 944.33 1.57 0.99

CNNg 3,538.50% 792.52 1.51 0.97

LiDAR 190.70% 221.27 1.31 0.94

Table 6: The evaluation results on the Raspberry Pi using the three classifiers.

Dataset Classifier CPU (%) RAM (MB) Classification time (seconds) F1-score

SMS

CNNc 176.00% 264.21 3.31 0.94

CNNg 169.00% 256.54 3.28 0.89

LiDAR 84.70% 111.01 0.34 0.90

E-mail

CNNc 353.00% 2,029.13 130.73 0.99

CNNg 345.80% 870.11 45.35 0.98

LiDAR 167.50% 280.37 18.44 0.93

2019

CNNc 306.70% 582.38 7.51 0.94

CNNg 294.10% 515.59 5.94 0.90

LiDAR 189.60% 166.84 1.71 0.94

2020

CNNc 305.40% 638.52 8.15 0.99

CNNg 303.40% 582.70 6.99 0.97

LiDAR 172.80% 262.40 6.51 0.94

6 Wireless Communications and Mobile Computing



dataset based on the weight values of the extracted features
(Section 4.4). As a running example, Figure 2 shows the
classified malicious data from the SMS spam dataset based
on the weighted values by using the CNN algorithm. In
Figure 2, the first three words indicate malicious weighted
values, and the others indicate benign weighted values. In
this case, an average of more than one-third of the 600
training SMS spam dataset can be identified as the mali-
cious weight values. This means that the malware dataset
has more than one-third of distinct malicious features,
and the malware dataset can be classified by the number
of malicious values. The rule-based classifier can be built
based on the observation, by analyzing the number of
malicious weight values. Because the CNN classifier does
not classify the malware with the context information of
SMS spam dataset but with the observed number of dis-
tinct words, the rule-based classifier can be built using
the following two conditions: (i) When a data has a lot
of prelearned words—in this case, we can apply a heuristic
condition when a data do not have more than 1/3 of pre-
learned malicious or benign words. If a data sample has
more than one-third of malicious words, we classify it as
malware. (ii) On the other hand, if a data sample contains
more malicious words than benign words, we classify it as
malware. By exploiting distinctive features of malware, we
can generate an effective classifier much lighter than a
deep learning classifier, albeit we need manual efforts to
decide the threshold for classifying malware.

5. Evaluation

In this section, we evaluate our approach to demonstrate
its efficiency and effectiveness. We use a Raspberry Pi
using the ARM64 architecture as well as a workstation.
For the convenience, we refer the CNN classifier to CNNc,
CNN classifier using high-weight features to CNNg, and
our approach to Light-weight Deep Learning-based Mal-
ware Classifier (LiDAR).

5.1. Experiment Setup. We performed our evaluations on a
workstation running Ubuntu 18.04 with 20-core Intel Xeon
Gold 6230 two CPUs at 2.10GHz, 256GB RAM, and a NVI-
DIA GeForce RTX 2080 GPU. And we conduct experiments
on a Raspberry Pi 4 Model B (Rev 1.4) running Ubuntu
18.04 with a 4-core Cortex-A72 (ARM v8), 4GB RAM. We
implemented LiDAR by using Python v3.7.1, TensorFlow
GPU v1.14.0, Keras v2.2.4, CUDA v11.2, and FlowDroid
v1.5 for extracting ACG.

Table 4 shows that the number of words used for perfor-
mance comparison in each classifier.

5.2. Evaluation Metrics. To explore the effectiveness and effi-
ciency, we used the following metrics.

(1) CPU Usage. We consider the maximum workload
that a single CPU can handle is 100%, and we show
the classifier’s CPU usage based on it (e.g., if CPU
usage is 200%, it means we need two cores fully to
perform a classification)

(2) RAM Usage. We measure the resident set size (RSS)
of a classifier when it runs

(3) Classification Time. We measure the total execution
time of a classifier

(4) F1-Score. We use the F1-score of classification results
to show the effectiveness of each classifier

5.3. Evaluation Results on the Workstation. In this section,
we evaluate classifiers on a workstation using malware data-
set (SMS spam dataset, e-mail spam dataset, Android mal-
ware dataset).

Figure 3 and Table 5 show the experimental results.
CNNc used an average of 3,107% of the CPU usage, and
CNNg used an average of 2,867%. On the other hand,
LiDAR showed an average of 108% of the CPU usage, which
is much lower than the CPU usage of CNNc and CNNg. In
addition, the RAM usage of LiDAR is also averagely 500.4%

120%
CPU

SMS e-mail 2019 2020
107.79%
99.53%

110.75%
106.45%

61.76%
55.12%

76.74%
75.58%

90%

30%
60%

0%

800%
RAM

SMS e-mail 2019 2020
138%
131%

624%
210%

249%
209%

143%
122%

600%

200%
400%

0%

8%
F1-score

SMS e-mail 2019 2020
4%

–1%
6%
6%

1%
–4%

5%
3%

4%
0%

–4%
–8%

1000%
Classification time

SMS e-mail 2019 2020
861%
853%

609%
146%

340%
248%

25%
7%

500%
250%

750%

0%

CNNc

CNNg

CNNc

CNNg

CNNc

CNNg

CNNc

CNNg

Figure 4: The comparison of F1-scores and the performance overhead of the CNN-based classifiers on the Raspberry Pi based on the
evaluation results of LiDAR.

7Wireless Communications and Mobile Computing



and 311.02% lower than that of CNNc and CNNg, respec-
tively, as shown in Table 4. These results yielded the signif-
icant improvement of classification time of LiDAR
(averagely 228% and 46.78% faster than CNNc and CNNg,
respectively). Nevertheless, LiDAR achieves almost similar
F1-score with CNNs and CNNg; the accuracy difference of
CNNc and CNNg is only 3.87%. These results imply that
LiDAR strikes a good trade-off point between the perfor-
mance and prediction accuracy.

5.4. Evaluation Results on the Raspberry Pi. Table 6 and
Figure 4 illustrate evaluation results of each classifier on
the Raspberry Pi. CNNc and CNNg used 285% and 278%
CPU usages on average, but the CPU usage of LiDAR is
154% on average, which is 80.98% and 85.67% lower than
the CPU usage of CNNc and CNNg, while the RAM usage
of CNNc and CNNg is 328.24% and 171.13% on average,
which is much higher than that of LiDAR. As a result,
LiDAR has an average classification time of 454.37% and
127.95% faster than CNNc and CNNg. Despite the improve-
ment of these results, there is only a small difference in F1-
score of 3.87% with CNNs and CNNg, such as the experi-
mental results on a workstation. Consequently, we can
observe that LiDAR offers a good compromise between the
performance and classification accuracy in any environment.

6. Conclusion

With the advent of the 5G network, a lot of malware target-
ing IoT devices occurred. Accordingly, a lot of research is on
deep learning-based approaches to quickly protect users
from malware. However, such deep learning-based
approaches consume a lot of resources. In this work, to
enable efficient malware detection on the edge devices, we
proposed a novel approach to generate a light-weight classi-
fier, LiDAR. We analyzed the SPAM and malware features
by using deep learning-based Grad-CAM. Based on distinct
features extracted by Grad-CAM, we built LiDAR with a
rule-based classifier. Our evaluation results show that
LiDAR can effectively detect malware achieving 92.78% of
prediction accuracy, while only exhibiting 154% and
205.15MB of CPU and memory resources, respectively,
which resulted in the significant improvement in the classi-
fication time: roughly two times faster than a CNN-based
deep learning model on average.

6.1. Limitations and Future Works. First off, LiDAR has the
out of vocabulary problem as the other deep learning-based
approaches have. If our classifier meets an unknown word
token, the token is simply ignored. Therefore, to use LiDAR
in practice, it is important to continuously learn emerging
malware. In addition, similar to the other malware classifica-
tion approaches, LiDAR cannot detect heavily obfuscated
malware because we cannot find effective word tokens from
malware if obfuscation techniques such as the class encryp-
tion are applied on the malware. We note that classifying
unknown and obfuscated malware is a challenging problem,
and the limitation is common in deep learning-based
approaches. We leave these limitations as future work.

Data Availability

The data used to support the findings of this study were sup-
plied by Jinsung Kim under license and so cannot be made
freely available. Requests for access to these data should be
made to Jinsung Kim (okokabv@soongsil.ac.kr).

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) Grant through the Korean Government
(MSIT) under Grant NRF-2021R1A4A1029650.

References

[1] L. S. Vailshery, “Number of connected wearable devices world-
wide by region from 2015 to 2022,” 2021, https://www.statista
.com/statistics/490231/wearable-devices-worldwide-by-
region.

[2] L. Ceci, “Most downloaded mobile apps worldwide from 1st
quarter 2014 to 3rd quarter 2021,” 2021, https://www.statista
.com/statistics/1280313/downloads-top-apps-worldwide/.

[3] L. Ceci, “Time spent per day with mobile non-voice media in
the United States from 2019 to 2023,” 2022, https://www
.statista.com/statistics/469983/time-spent-mobile-media-
type-usa/.

[4] VirusShare, “Android malicious applications dataset,” 2021,
https://virusshare.com/.

[5] K. W. Ching and M. M. Singh, “Wearable technology devices
security and privacy vulnerability analysis,” International
Journal of Network Security & Its Applications, vol. 8, no. 3,
pp. 19–30, 2016.

[6] A. D. Raju, I. Y. Abualhaol, R. S. Giagone, Y. Zhou, and
S. Huang, “A survey on cross-architectural IoT malware threat
hunting,” IEEE Access, vol. 9, pp. 91686–91709, 2021.

[7] M. Al-Hawawreh, F. den Hartog, and E. Sitnikova, “Targeted
ransomware: a new cyber threat to edge system of brownfield
industrial Internet of Things,” IEEE Internet of Things Journal,
vol. 6, no. 4, pp. 7137–7151, 2019.

[8] H. Haddadpajouh, A. Mohtadi, A. Dehghantanaha,
H. Karimipour, X. Lin, and K.-K. R. Choo, “A multikernel
and metaheuristic feature selection approach for IoT malware
threat hunting in the edge layer,” IEEE Internet of Things Jour-
nal, vol. 8, no. 6, pp. 4540–4547, 2020.

[9] McAfee, “Labs Mobile Threat Report,” 2021, https://www
.mca f e e . c om/ con t en t / d am/g l ob a l / i n f o g r aph i c s /
McAfeeMobileThreatReport2021.pdf.

[10] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,
“Opcode sequences as representation of executables for data-
mining-based unknown malware detection,” Information Sci-
ences, vol. 231, pp. 64–82, 2013.

[11] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Mal-
Dozer: automatic framework for android malware detection
using deep learning,” Digital Investigation, vol. 24, pp. S48–
S59, 2018.

8 Wireless Communications and Mobile Computing

https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region
https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region
https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region
https://www.statista.com/statistics/1280313/downloads-top-apps-worldwide/
https://www.statista.com/statistics/1280313/downloads-top-apps-worldwide/
https://www.statista.com/statistics/469983/time-spent-mobile-media-type-usa/
https://www.statista.com/statistics/469983/time-spent-mobile-media-type-usa/
https://www.statista.com/statistics/469983/time-spent-mobile-media-type-usa/
https://virusshare.com/
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf


[12] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, p. 101663, 2020.

[13] Z. Yuan, Y. Lu, Z.Wang, and Y. Xue, “Droid-sec: deep learning
in android malware detection,” ACM conference on SIG-
COMM, p. 2014, 2014.

[14] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multi-
modal deep learning method for android malware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019.

[15] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[16] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning
approach to android malware feature learning and detection,”
IEEE TrustCom-BigDataSE-ISPA, p. 2016, 2016.

[17] D. Li, Z. Wang, and Y. Xue, “Fine-grained android malware
detection based on deep learning,” IEEE Conference on Com-
munications and Network Security (CNS), 2018, pp. 1-2, Bei-
jing, China, 2018.

[18] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park,
and H. Jeon, “CNN-based android malware detection,” in
International Conference on Software Security and Assurance
(ICSSA), pp. 60–65, Altoona, PA, USA, 2017.

[19] R. Nix and J. Zhang, “Classification of android apps and mal-
ware using deep neural networks,” in International joint con-
ference on neural networks (IJCNN), pp. 1871–1878,
Anchorage, AK, USA, 2017.

[20] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son,
“PICAndro: packet inspection-based android malware detec-
tion,” Journal of Internet Services and Information Security
(JISIS), vol. 2021, no. 2, pp. 1–11, 2021.

[21] J. Jung, H. Kim, S. Cho, S. Han, and K. Suh, “Efficient android
malware detection using API rank and machine learning,”
Journal of Internet Services and Information Security (JISIS),
vol. 9, no. 1, pp. 48–59, 2019.

[22] A. L. Marra, F. Martinelli, F. Mercaldo, A. Saracino, and
M. Sheikhalishahi, “D-BRIDEMAID: a distributed framework
for collaborative and dynamic analysis of android malware,”
Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol. 11, no. 3, pp. 1–
28, 2020.

[23] R. Casolare, C. De Dominicis, G. Iadarola, F. Martinelli,
F. Mercaldo, and A. Santone, “Dynamic mobile malware
detection through system call-based image representation,”
Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol. 12, no. 1,
pp. 44–63, 2021.

[24] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and
Y. Yang, “Efficient and secure multi-user multi-task computa-
tion offloading for mobile-edge computing in mobile IoT net-
works,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2410–2422, 2020.

[25] S. Wang, A. Pathania, and T. Mitra, “Neural network inference
on mobile SoCs,” IEEE Design & Test, vol. 37, no. 5, pp. 50–57,
2020.

[26] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” 2019, http://arxiv
.org/abs/1906.02243.

[27] J. Liu, J. Liu, W. Du, and D. Li, “Performance analysis and
characterization of training deep learning models on mobile
device,” in IEEE 25th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 506–515, Tianjin,
China, 2019.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-CAM: visual explanations from deep net-
works via gradient-based localization,” in IEEE international
conference on computer vision, pp. 618–626, Venice, Italy,
2017.

[29] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, “Contribu-
tions to the study of SMS spam filtering: new collection and
results,” 11th ACM symposium on Document engineering, pp.
259–262, 2011.

[30] The Apache Software Foundation, “SpamAssassin public mail
corpus,” 2006, https://spamassassin.apache.org/old/
publiccorpus.

[31] S. Arzt, S. Rasthofer, C. Fritz et al., “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM SIGPLAN Notices, vol. 49, no. 6,
pp. 259–269, 2014.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[33] Y. Kim, “Convolutional neural networks for sentence classifi-
cation,” in Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Doha, Qatar, 2014.

[34] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial
examples for CNN-based malware detectors,” IEEE Access,
vol. 7, pp. 54360–54371, 2019.

9Wireless Communications and Mobile Computing

http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
https://spamassassin.apache.org/old/publiccorpus
https://spamassassin.apache.org/old/publiccorpus

	LiDAR: A Light-Weight Deep Learning-Based Malware Classifier for Edge Devices
	1. Introduction
	2. Background and Related Work
	2.1. A Limitation of Deep Learning-Based Android Malware Classification Approaches
	2.2. Commonly Used Features for Android Malware Detection

	3. Overview
	4. Design
	4.1. Dataset
	4.2. Preprocessing
	4.2.1. Word Normalization
	4.2.2. Word Encoding for the Malware Dataset

	4.3. CNN Architecture
	4.4. Feature Selection
	4.5. LiDAR

	5. Evaluation
	5.1. Experiment Setup
	5.2. Evaluation Metrics
	5.3. Evaluation Results on the Workstation
	5.4. Evaluation Results on the Raspberry Pi

	6. Conclusion
	6.1. Limitations and Future Works

	Data Availability
	Conflicts of Interest
	Acknowledgments

