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Remaining useful life (RUL) prediction of mechanical components is of high research value in the field of prognostics and health
management (PHM). However, RUL prediction problems are completely challenging due to the complicacy of bearings’ operating
environment. In this paper, we transform the vibration acceleration signal collected by sensors into a time-frequency domain
matrix through continuous wavelet transform (CWT) and then extract the features of the time-frequency domain matrix
through the proposed multiscale residual convolutional neural network (MRCNN), which enables the model to extract more
local and global features while constructing more accurate health indicators (HI). In order to highlight the degradation trend
of mechanical components, the obtained health indicators are smoothed by exponential moving average (EMA). Finally, linear
regression is exploited to predict the RUL of the bearing. Performance evaluations based on the public dataset PRONOSTIA
demonstrate the effectiveness of our proposed algorithm, which is superior to existing data-driven algorithms in terms of
prediction accuracy.

1. Introduction

Bearing plays an irreplaceable role in the machinery industry,
which always keeps running as the core component of the
machinery, especially as a major equipment or a key basic
component. However, maintaining their availability and reli-
ability usually consumes significant resources, leading to
increased enterprise costs. Consequently, the bearings’ PHM
becomes increasingly important and attractive in the indus-
trial field, where accurate prediction of RUL of bearings can
improve production efficiency and maximize economic bene-
fits. Therefore, RUL prediction is essential for determining
bearing conditions and developing maintenance strategies
[1–4]. Fortunately, due to the development of the Internet of
Things, massive amounts of bearing operating data on PHM
systems could be collected for further data processing to esti-
mate bearing states. However, how to effectively extract fea-
tures from the data and accurately predict the remaining
useful life is still a considered challenge for PHM [5–9], due
to the harsh industrial environment and complex fault causes.

RUL prediction methods in bearings are mainly divided
into two categories: model-based methods (also known as
physics-based methods) and data-driven methods. Model-
based methods accurately describe the degradation mecha-
nism of the equipment by building mathematical-statistical
models with a full understanding of the failure mechanism.
Concurrently, the parameters of the model-based method
can be estimated by the collected data [10]. However, due
to the complex internal structure of the device and the dis-
tinct degradation mechanisms, it is impractical to rely solely
on a large amount of a priori and expert knowledge to accu-
rately predict the RUL [11–13]. Compared with model-
based methods, data-driven methods do not require estab-
lishing complex mathematical models, which predict the
degradation trend and the RUL of the equipment through
using the data analysis method and finding out the intrinsic
relationship of the degradation trend according to the his-
torical data collected by the sensor. Furthermore, with the
flourishment of the Internet of Things and the advent of
the era of big data, massive amounts of useful data can be
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collected through monitoring sensors. In addition, owing to
the advantages of low cost and high accuracy, data-driven
methods are progressively becoming a current research hot-
spot. Generally, the data-driven prediction method consists
of three steps: data collection, HI construction, and RUL
prediction [14]. Because of its powerful feature extraction
and prediction capabilities, deep learning is widely used in
PHM HI construction to predict the RUL without physical
domain knowledge. Gebraeel et al. [15] designed an artificial
neural network data-driven model to predict the RUL of
bearings, which is the initial successful attempt of deep
learning in bearing RUL prediction. Zhao et al. [16] com-
bined a convolutional neural network (CNN) with a bidirec-
tional long short-term memory (Bi-LSTM) network to form
a (CBLSTM) network to predict tool wear, where they uti-
lized CNN to extract degraded features from the original sig-
nals as inputs for a Bi-LSTM network to construct HI. This
improved deep learning model had good prediction accu-
racy; however, it also consumed more time. In [17], the Fou-
rier transform for the original signal is exploited to obtain
frequency information, and then, the deep neural network
(DNN) based on stacked autoencoder (SAE) is employed
for fault diagnosis of hydraulic pumps. Malhi et al. [18]
adopted recurrent neural networks (RNN) to possess better
prediction accuracy for long-term health condition predic-
tion of machines. Peng et al. [19] proposed a Bayesian deep
learning method to cope well with the RUL prediction
uncertainty problem. From the relatively novel articles in
recent years, data-driven methods have more significant
advantages than model-based methods in terms of predic-
tion accuracy, which is also a direction worthy of key
research in the future.

Due to massive amounts of noise, extracting effective
degradation features is always a pivotal challenge for RUL
prediction. Actually, the bearings have to keep operating in
a harsh industrial environment and frequently aggravate
complex faults. In this paper, the experimental data are
employed from PRONOSTIA in IEEE PHM 2012 Data
Challenge [20]. The bearing degradation experimental plat-
form is shown in Figure 1.

The platform uses sensors to collect vibration accelera-
tion signal information during bearing degradation, where
two types of vibration acceleration signals are collected: hor-
izontal vibration acceleration signals and vertical vibration
acceleration signals. The raw vibration signals for the full life
of Bearing1_1 and Bearing1_2 are shown in Figure 2. The x
-axis direction indicates the time in 10 s, and the y-axis
direction indicates the amplitude. The two different types
of degradation can be clearly seen in Figure 2. One of the
Bearing1_1 is the slow degradation type, and its amplitude
shows a gradual increase with time. Seen from Figure 2,
the amplitude increases slowly and regularly from times 0 s
to 27000 s. From 27000 s to 28030 s, the amplitude increases
faster and the bearing is damaged finally when the bearing
reaches the end of its life. Bearing1_2 illustrates the type
of sudden degradation with massive amounts of noise
influence, whose trend of increasing amplitude from time
0 s to 8300 s is not obvious. From 8300 s to 8710 s, the
amplitude suddenly increases sharply, which implies that
the bearing is damaged finally. Consequently, Figure 2
shows that the slow degradation type is favourable for pre-
dicting RUL with expectation based on the growth of
amplitude, while it is challenging with sudden degradation
type of amplitude.

AC motor Speed sensor Speed reducer Torquemeter Coupling �ermocouple

AccelerometersBearing testedForce sensorCylinder pressurePressure regulatorNI DAQ card

Figure 1: Bearing degradation test platform.
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The slow degradation bearings have the characteristic of
stationary signal type, and the bearing’s time-domain fea-
tures can describe the corresponding variations well. How-
ever, many bearings are the nonstationary signal type,
which forces researchers to find weak fault information in
the background of strong noise. Fortunately, time-
frequency analysis is an effective method for analyzing non-
stationary and transient vibration signals. Consequently, a
new deep learning method for RUL prediction based on con-
tinuous wavelet transform (CWT) and multiscale residual
convolutional neural network (MRCNN) is proposed in this
paper. Firstly, the vibration acceleration signals collected
from the bearings are processed by continuous wavelet
transform and converted into a time-frequency domain 2-
D matrix. In order to cut down the input volume of the
model, the size of the 2-D matrix is reduced by exploiting
the nearest interpolation algorithm. Afterward, the resized
matrix is imported into the MRCNN model for feature
extraction, which possesses a multiscale hopping structure
allowing the model to extract more local and global features.
Consequently, the network of the MRCNN model is easier
for constructing more reasonable health indicators by train-
ing the model with excellent performance. To highlight the
degradation trend, the constructed health indicators are

smoothed by utilizing the exponential moving average
(EMA) algorithm. Finally, linear regression is exploited to
predict the remaining useful life.

The main contributions of this paper can be summarized
as follows:

(1) The proposed MRCNN model especially constructs
a multiscale hopping structure, which accurately pre-
dicts the RUL of the bearings

(2) The MRCNN model utilizes global average pooling
instead of flatten layer to reduce the number of
parameters, shorten the training time, and reduce
the problem of overfitting

(3) The obtained HI is smoothed in the final stage by
using an exponential moving average algorithm,
which highlights the recessionary trend and makes
the predicted RUL more accurate

The remainder of this paper is organized as follows: Sec-
tion 2 provides the details of the materials and methods of
the MRCNN model. In Section 3, the specific experimental
steps to verify the effectiveness of the MRCNN model using
the PRONOSTIA dataset are introduced. The experimental
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Figure 2: Raw vibration signal of Bearing1_1 and Bearing1_2.
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results are compared with existing data-driven algorithms in
terms of prediction accuracy. Finally, Section 4 concludes
this paper.

2. Materials and Methods

2.1. Data Analysis. In this paper, the famous public dataset
PRONOSTIA at the IEEE PHM 2012 Data Challenge is uti-
lized to validate the accuracy of the MRCNN model while
predicting bearing RUL. As shown in Figure 1, the sensors
on the platform collect vibration acceleration signals (hori-
zontal vibration acceleration signals and vertical vibration
acceleration signals) during bearing running. Consequently,
the MRCNN model utilizes horizontal and vertical vibration
acceleration signals datasets in this paper. The experimental
platform tests a total of 17 bearings for degradation experi-
ments, which are divided into three types according to the
external forces and rotational speeds. Each type has two
training datasets, including vibration signals with a complete
life cycle, and the test set is truncated (the first part of the life
cycle) vibration signals. Specifically, the first two types have
the vibration signals of two bearings as the training dataset
and five bearings as the test dataset (condition 1 and condi-
tion 2 in Table 1), and the third type has the vibration sig-
nals of two bearings as the training dataset and only one
bearing as the test dataset (condition 3 in Table 1). Specifi-
cally, vibration signal data is collected by the sensor at 10 s
intervals, with a collection duration of 0.1 s and a sampling
frequency of 25600Hz. Since this paper mainly studies the
prediction of bearing degradation trends under normal use,
the first working condition is the most eligible. Conse-
quently, the experiment mainly utilizes the data under the
first working condition. The other two working conditions
exert too much external force and the unpredictable events
of the bearings increase; thus, condition 2 and condition 3
can simulate the bearing degradation prediction under sud-
den events, which is challenging. The specific experimental
data are shown in Table 1.

Through analyzing the vibration signals of Bearing1_1
and Bearing1_2, Figure 2 illustrates that accurately predict-
ing the RUL of the bearings is unrealistic only by the ampli-
tude of the vibration signal. Fortunately, the CWT is an
effective signal processing method, which extracts time-
frequency features by transforming the original time-
domain vibration signal into a 2-D time-frequency matrix.
The CWT algorithm can effectively demonstrate the differ-
ent changes in the frequency domain as time grows. For a
stationary signal, its time-domain characteristics can well
describe its relative variation. As seen from Figure 2 (Bear-
ing1_2), the vibration signals of the bearings are nonstation-
ary and have a weak fault signal in the strong noise
background. Time-frequency analysis is an effective method
for analyzing nonstationary and transient vibration signals.
This paper utilizes the CWT to generate the time-
frequency matrix as the dataset for training, while other
papers use time-frequency images as the dataset, but this
operation will encounter two problems of uniform colour
bars and loss of accuracy. Consequently, as shown in
Figures 3 and 4, time-frequency diagrams are only used as

a demonstration of time-frequency characteristics. Figure 3
shows the waveform and time-frequency images of the first
and last samples of Bearing1_1. According to the increase
of the high-frequency component in the time-frequency
plot, the colour change becomes increasingly obvious and
the degradation characteristics are clearly demonstrated. In
order to show the degradation trend of bearings completely,
Figure 4 shows the time-frequency diagrams of Bearing1_1
and Bearing1_2 with the display step of 25 percent of the
complete life. Obviously, the bearing failure becomes more
serious, and the colour change on the time-frequency dia-
gram becomes more obvious with time. This shows that
time-frequency analysis can well expose the fault character-
istics of bearings.

2.2. Proposed Framework. Model-based methods and com-
mon data-driven methods have the drawback of low accu-
racy in predicting RUL. Consequently, this paper proposes
a more accurate RUL prediction method based on CWT
and MRCNN models. The framework diagram of the pro-
posed method is shown in Figure 5 as follows:

In this paper, the proposed prediction algorithm is
generally divided into three stages: the first stage is feature
extraction, where the vibration signal is converted into a
2-D time-frequency matrix by CWT to extract time-
frequency features. Concurrently, the training dataset and
test dataset are obtained by extracting the time-frequency
features utilizing the CWT algorithm. In order to cut down
the input volume of the model, the size of the 2-D matrix is
reduced by utilizing the nearest interpolation algorithm.
The second stage is the offline health indicators construc-
tion, where the resized time-frequency matrix is imported
into MRCNN. Since CNN is a supervised learning method,
the design of its labels largely affects its RUL prediction
results. This paper assumes that the bearing degradation
trend is committed to a linear trend, thus setting the labels
to decrease linearly from 1 to 0 to learn each stage’s degra-
dation characteristics. HIs are structured by importing the
test dataset into the trained MRCNN model. Finally, the
third stage is online RUL prediction. To highlight the degra-
dation trend, the structured HIs are smoothed by an expo-
nential moving average algorithm. The RUL was finally
obtained by linear regression. The main techniques are
detailed described below.

Table 1: Experimental data specification.

Condition 1 Condition 2 Condition 3

Load (N) 4000 4200 5000

Speed (rpm) 1800 1650 1500

Training dataset
Bearing1_1
Bearing1_2

Bearing2_1
Bearing2_2

Bearing3_1
Bearing3_2

Testing dataset

Bearing1_3
Bearing1_4
Bearing1_5
Bearing1_6
Bearing1_7

Bearing2_3
Bearing2_4
Bearing2_5
Bearing2_6
Bearing2_7

Bearing3_3
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2.3. Continuous Wavelet Transform. With the development
of signal analysis techniques, different time-frequency trans-
form techniques have emerged accordingly. Fourier trans-

form, as the most basic time-frequency transform method,
can transform the signal from the time domain to the fre-
quency domain. Consequently, the Fourier transform can
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Figure 3: Bearing1_1: (a) waveform for the first sample; (b) time-frequency image for the first sample; (c) waveform for the last sample; and
(d) time-frequency diagram for the last sample.
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Figure 4: Bearing1_1 and Bearing1_2 display time-frequency images every 25% in the whole life.
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extract much information about the essence of the signal.
However, the Fourier transform has the shortcoming in
reflecting the trend of frequency variation over time. The
windowed Fourier transform comes out accordingly, which
enables us to observe the frequency components on different
time domains by choosing the corresponding windows. But
the fixed-size window makes us feel inconvenient. Conse-
quently, the continuous wavelet transform was invented to
solve this problem. The continuous wavelet transform
replaces the infinite length trigonometric basis with a finite
length decaying wavelet basis, which makes us intuitively
feel the changes of time-frequency characteristics [21]. The
vibration signal of the faulty bearing contains periodic pulses
whose shape is similar to Morlet wavelets; thus, the experi-
ment in this paper utilizes the Morlet wavelet basis function
to transform the original vibration signal. The Morlet wave-
let basis function is shown as follows:

ψ tð Þ = exp iω0tð Þ exp −
t2

2

� �
, ð1Þ

where exp ðiω0tÞ is called the complex trigonometric func-
tion whose role is to identify the frequency and exp ð−t2/2Þ
is called the decay function, which can guarantee finite sup-
port in its time domain. In order to get different frequency
signals, the original signals are multiplied by different scales
of wavelet basis functions ψðtÞ. Consequently, the different
frequency signals can be obtained only by stretching the
wavelet basis function. The continuous wavelet transform
formula is as follows:

U α, βð Þ = x tð Þ, ψα,β

D E
=
ð∞
−∞

x tð Þ�ψα,β tð Þ

=
ð∞
−∞

tð Þ 1ffiffiffi
α

p �ψ
t − β

α

� �
dt,

ð2Þ

where xðtÞ is the input original 1-D signal and ψðtÞ is the
mother wavelet function, �ψα,βðtÞ is the complex conjugate
function of ψα,βðtÞ, and the coefficients α, β, respectively,

represent the scale coefficients (frequency variables) and
translation coefficients (time variables). By setting the input
1-D signal xðtÞ and the mother wavelet function ψðtÞ, the
time-frequency coefficient matrix can be obtained according
to the above integral (formula (2)). Consequently, the CWT
can identify a specific frequency β under a specific time α.

2.4. Multiscale Residual Convolutional Neural Network.
CNN is a deep learning model inspired by the visual cortex of
the brain [22], which extracts the location information of the
original image by convolutional operations. Since the percep-
tual fields of convolution kernels with different sizes on the
input image are different, the learned features are also different.
Consequently, the multiscale convolution structure contributes
to the network learning more local and global features, which
has a good application in the field of RUL prediction [23].
CNN mainly consists of three structures: convolutional layer,
pooling layer, and fully connected layer. Deep CNN achieves
stronger data representation capability by stacking convolution
and pooling layers, whose end generally adopts a fully con-
nected layer for classification and regression. Convolution ker-
nels, also known as weights, are slid over the input image by
performing convolution operations on each corresponding
local perceptual field. The weight sharing greatly reduces the
number of parameters and avoids the overfitting problem.
The input image is convolved with a convolution layer to obtain
the feature map, which is a feature representation of the image,
and its calculation formula is as follows:

xtj = φ 〠
i

xt−1i ∗ ktij + btj

 !
, ð3Þ

where xtj is the feature map of the t-th layer and the j-th output,

ktij is the convolution kernel of the t-th layer, b
t
j is the bias of the

t-th layer, and φ is the nonlinear activation function. This
means that all feature maps in layer t − 1 do the convolution
operation with the convolution kernel in layer t, and the convo-
lution result is summedwith the bias btj. Finally, the featuremap
in layer t is obtained by the nonlinear activation function.

Feature extraction

Vibration signal
Continuous

wavelet 
transformation

Reduce the size
of time-frequency

matrix
Training dataset

Training
MRCNN model

Trained
MRCNN model

Linear regression
and extension

Testing dataset

Exponential
moving average RUL prediction

HI construction (offline)

RUL prediction (online)

Figure 5: Framework of the proposed method.
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A pooling layer is usually added between adjacent con-
volutional layers. The pooling operation can reduce the size
of the parameter matrix, simplify the complexity of the net-
work, speed up the computation, and prevent overfitting.
The output feature map of the pooling layer has the same
variance as the input feature map. As shown in Figure 6,
MRCNN model utilizes two pooling methods: maximum
pooling and global average pooling. Maximum pooling takes
the maximum value of the data within the perceptual field to
achieve the effect of subsampling. The global average pooling
layer takes the average of the entire feature map. In the
MRCNN model, global average pooling is utilized instead
of flatten layers to reduce the number of parameters, shorten
the training time, and reduce the occurrence of overfitting
problems.

The first two layers of the MRCNN model are ordinary
convolutional layers, which consist of convolution, BN
(batch normalization), Relu activation function, and max
pooling. The Relu activation function is formulated as Relu
ðxÞ =max ð0, xÞ, which serves to enable the network to per-
form nonlinear operations and to keep the gradient from
decaying when the input x is greater than 0, alleviating the
vanishing gradient problem. Since BN operation can main-
tain the input data in the activation function sensitive region
(mean γ and variance β learned by BN), speed up the con-
vergence speed during model training, and make the model
training process more stable. Consequently, adding the BN
operation before the activation function is necessary. The
BN formula is as follows:

y bð Þ
i = BN xið Þ bð Þ = γ ⋅

x bð Þ
i − μ xið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ xið Þ2 +E

q
0B@

1CA + β, ð4Þ

where xi is a row vector of size one batch, which represents
the value of the b-th input node of the layer at the i-th sam-
ple in the current batch. Where μ and σ, respectively, repre-
sent the mean and variance of the row, and a minimal
amount E is introduced to prevent the denominator from
being zero. The purpose of the BN operation is to obtain a
data distribution that makes convergence faster during

training yðbÞi . The training learning parameters γ and β,
respectively, represent the mean and variance of the data
after BN operation.

In the MRCNN model, from the third layer to the sixth
layer is the multiscale residual layer composed of four multi-
scale residual blocks. The specific multiscale residual block
structure is shown in Figure 7. The feature map of the upper
layer is input into the multiscale residual block, which expe-
riences four structures: the first structure has a convolution
layer with a kernel size of 1 × 1, the second structure has
two convolution layers with kernel sizes of 3 × 3 and 1 × 1,
respectively, the third structure has both convolution and
pooling layers, in which the convolution kernel size is 1 × 1
, and the pooling layer kernel size is 3 × 3. The fourth struc-
ture has three convolutional layers, whose first two layers
have a kernel size of 3 × 3 and whose last layer has a kernel
size of 1 × 1. The purpose of adopting the above structure
is to utilize multiscale convolution kernels with different
perceptual fields on the upper feature map, which can
extract a variety of different features. Since the convolutional
layer with a kernel size of 3 × 3 has a perceptual field of 9 on
the previous feature map, the superposition of two layers
with a kernel size of 3 × 3 has a perceptual field of 25 on
the previous feature map at a step size of 1. Consequently,
the superposition of two layers with a kernel size of 3 × 3
can replace a convolutional layer with a kernel size of 5 × 5
, and more information can be learned because of the deeper
network. The maximum pooling layer can learn the edge
and texture structure of the image. The 1 × 1 convolutional
layer in the multiscale residual block can be seen as a fully
connected layer, which can serve to change the number of
output channels. Eventually, these four structures are
stitched together. The residual structure of the multiscale
residual block is learned from the ResNet [23] network,
which solves the network degradation and deep network
model vanishing gradient and exploding gradient prob-
lems. Since the residual structure learns the difference
between the target value and the input value when training
to the optimal model, the structure will train the redun-
dant layers into the identity function. Therefore, when
the number of network layers deepens, its accuracy will
not decline. In the fifth layer of the MRCNN model, due
to the change in the number of channels, the residual
structure is represented by a dashed line. The multiscale
convolution block is activated by Relu nonlinear unit.
Finally, the MRCNN model adopts the full connection
layer and sigmoid activation function to distribute the out-
put HI in the region of 0 to 1.

Commonly convolution Multiscale residual layer Global average pooling

Sigmoid

Residual structure

Full connection

Figure 6: MRCNN structure.
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2.5. Exponential Moving Average. The HI generated by the
MRCNN model is smoothed by exploiting an exponential
moving average algorithm. Although the HI shows a clear
degradation trend from the overall, there will exist some
HI deviation from the overall trend due to the interference
of some strong noise. Consequently, in this paper, HI is dis-
crete in narrowing the specified period. The exponential
moving average algorithm is utilized to perform the smooth-
ing operation on HI. The exponential moving average equa-
tion is presented as follows:

vt = βvt−1 + 1 − βð Þθt , ð5Þ

where vt denotes the current predicted value, vt−1 is the pre-
vious moment predicted value, θt refers to the current HI,
and β is the decay factor. According to Equation (5), the cur-
rent prediction value vt is obtained by weighting the previ-
ous prediction value vt−1 with the current θt . Therefore,
Equation (5) can be expanded as follows:

vt = 1 − βð Þθt + β 1 − βð Þθt−1
+ β2 1 − βð Þθt−2+⋯βt−1 1 − βð Þθ1:

ð6Þ

As seen from Equation (6), the current prediction value
vt is associated with the values of all previous moments,
where the last predicted value vt is obtained by a process
called sliding backward from the first value θ1 to the last
value θt . As a result, the relationship between the current
predicted value vt and the previous value θn shows βnð1 −
βÞ exponential decay. Ultimately, the exponential moving
average algorithm makes the recession trend more visible
and enables a more accurate prediction of RUL.

2.6. Linear Regression Prediction. The final step of RUL pre-
diction is a linear regression operation on the smoothed
health indicators. Since the label design of MRCNN model
is that the bearing decay follows a linear change, the label
design is to reduce linearly from 1 to 0 to learn the degrada-
tion characteristics of each stage. Consequently, for accurate
prediction of RUL, a linear regression prediction in the last
step is essential. Formally, the linear equation y = at + b is
exploited to fit the last 1/3 HI values of the life cycle of the
bearings, and the final RUL is obtained by extension. Refer-
ring to the ordinary least squares, the slope a and the inter-
cept b can be obtained by the following two formulas [24].

a = ∑N
i=0tiyi − N + 1ð Þ�t�y
∑N

i=0t
2
i − N + 1ð Þ�t2

,

b = �y − a�t,
ð7Þ

where ti and yi represent the time of i-th and its correspond-

ing predicted HI. The final predicted RUL ðdRULÞ can be
obtained by intercepting b over the upper slope a and sub-
tracting the truncated time point tN , which is shown as fol-
lows:

dRUL = b
a
− tN : ð8Þ

3. Results and Discussion

3.1. MRCNN Model Construction HI. In this section, the
structure of the MRCNNmodel and the experimental proce-
dure of constructing HI is described in detail. Firstly, the
original vibration signals are converted into a 2-D matrix
of size 2560 × 2560 by CWT. In order to cut down the input

Previous layer

1x1 Conv

3x3 Conv3x3 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv 3x3 Max pooling

Relu activation

Filter concat

+

Figure 7: Multiscale residual block.
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volume of the model, the size of the 2-D matrix is reduced to
224 × 224 by utilizing the nearest interpolation algorithm,
which greatly saves massive amounts of training time. The
PRONOSTIA public dataset collects vibration signals in hor-
izontal and vertical directions. Consequently, the input of
MRCNN model is set as two channel numbers, which,
respectively, correspond to the time-frequency matrices in
these two directions. Afterward, the first two layers of
MRCNN model are ordinary convolution layers, which uti-
lize the structures of convolution, BN, Relu, and maximum
pool. The convolution kernel size of the first layer is 7 × 7
and the step size is 1. The first layer convolution operation
will not change the size of the 2-D matrix. The 2-D matrix
output from the first layer of MRCNN model is halved to
the size of 112 × 112, and the number of output channels is
64. The second convolutional layer uses a similar structure,
doubling the number of output channels to 128 × 128 and
halving the 2-D matrix size to 56 × 56. The difference is that
the convolution operation has a convolution kernel of 3 × 3,
stride of 1 and padding of 1. Next is the multiscale residual
layer, which is composed of four multiscale residual blocks,
each of which has four multiscale feature mapping opera-
tions. Specifically, the first operation is 1 × 1 convolution to
extract feature map. The second is 1 × 1 convolution plus 3
× 3 convolution, and the output ratio is 1 : 2. The third is
max pooling plus 1 × 1 convolution, and the output ratio is
1 : 1. The fourth is 1 × 1 convolution plus two 3 × 3 convolu-
tions, and the output ratio is 1 : 2 : 2. Overall, the output ratio
of these four channels is 2 : 4 : 1 : 1. The above parameters are
obtained through massive amounts of experimental tuning
parameters, which have strong applicability. In particular,
MRCNN uses the residual hopping structure from layer 3
to layer 6 but further doubles the number of channels from
layer 4 to layer 5 to 256 × 256. Therefore, the residual hop-
ping structure here is first realized by changing the number
of channels through 1 × 1 convolution and then hopping.
The seventh layer of MRCNN is a normal convolutional
layer with a convolutional kernel size of 3 × 3, a stride of 1,

a padding of 1, and an output channel of 64. The eighth layer
of MRCNN is the global averaging pooling layer, which is
implemented by taking the average of a 56 × 56 size 2-D
matrix and outputting 64 parameters. The ninth to eleventh
layers of MRCNN are full connection layers, and the num-
ber of neurons in each layer is 128, 64, and 1, respectively.
Finally, the MRCNN model obtains HIs through sigmoid
activation function, which makes the distribution of HIs
from 0 to 1.

After CWT algorithm transformation, the training data-
sets from PRONOSTIA public dataset are successively
imported into MRCNN model for training, because an obvi-
ous advantage of data-driven methods is that it does not
require massive amounts of a priori knowledge. The label
is set to decrease linearly from 1 to 0. In this paper, the full
life of the bearing is recorded as Ta and the current operat-
ing time is recorded as Tc. The true label of HI can be
obtained by the following formula:

label = 1 − Tc

Ta
: ð9Þ

The HI represents the health of bearings, 1 indicates com-
plete health, and 0 indicates damage and no longer usable.
The loss function of the MRCNN model utilizes mean
square error (MSE), which is widely adopted as the loss
function of regression model. MSE is shown as follows:

L ŷ ; yð Þ = 1
2 ŷ − yk k2, ð10Þ

where ŷ is the predicted value of the MRCNN model and y is
the true value. The MRCNN model adjusts the parameters
by back propagation and gradient descent to reduce the loss
function and make the target value closer to the true value.
Since the optimizer utilizes stochastic gradient descent
(SGD), which approximates the gradient on the loss func-
tion of the entire dataset by using the gradient on the loss
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Figure 8: (a) Learning rate. (b) Training loss and testing loss.
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function of small batch data, therefore, it is easier to adjust
the direction of gradient descent and achieve global optimi-
zation in the training process. The learning rate is adjusted
by the exponential decay method, whose initial learning rate
is 0.1 and the multiplication factor is set to 0.95. Dynami-
cally, decaying the learning rate can quickly reduce the loss
in the early iteration stage and slightly reduce the loss in
the later stage. The learning rate decay is shown as follows:

lr = lr ⋅ 0:95ð Þn, ð11Þ

where lr denotes the learning rate and n is the number of
iterative rounds. The training dataset includes Bearing1_1
and Bearing1_2, and the test dataset includes Bearing1_3
to Bearing1_7. In this paper, a total of 100 training rounds
were performed. Figure 8(a) illustrates that the learning rate
decays exponentially with the increase of round, and the
decline law of the loss function is the same as expected. In
the early stage, the loss is rapidly reduced, and in the later
stage, the loss is slightly reduced. However, as shown in
Figure 8(b), when the 5th to 10th rounds of training are per-
formed, the loss function on the training and test dataset
increases instead, which is caused by the excessive learning
rate at that time. By utilizing the decay operation of the
learning rate, the loss can be correctly reduced in the subse-
quent rounds. In addition, the MRCNN model adopts global
average pooling before the fully connected layer to reduce
the problem of overfitting.

The trained MRCNN model is used to test Bearing1_3.
The GPU model used in the experimental platform is
GTX1080ti, and the MRCNN model is implemented based
on the deep learning framework Pytorch. The truncation
time point of test dataset Bearing1_3 is 18010 s, and it
spends 6.4 s for MRCNN model to construct HIs. The
MRCNN model constructs HIs on the test dataset Bear-
ing1_3, whose results are shown in the blue curve in
Figure 9. The degradation trend of bearings can be clearly

seen from HI in Figure 9. Firstly, in the range from 0 s to
7500 s, the bearing degradation is slow, and the bearing
can operate stably in the early stage of its service life. After-
ward, the degradation trend suddenly becomes faster at
7500 s, 10500 s, 13000 s, 15700 s, and 17500 s. Due to the
influence of external force, the degradation of bearings grad-
ually accelerates until it is finally damaged. Although the HIs
shows a clear degradation trend from the overall, there will
exist some HI deviation from the overall trend due to the
interference of some strong noise. Consequently, as shown
in Figure 9, HI is discrete in narrowing the specified period.

3.2. RUL Prediction Results. After obtaining the HI through
the MRCNN model, the next step is to perform RUL predic-
tion based on the HIs. Since the obtained HI distribution is
more discrete, this problem is solved by fitting HIs with an
exponential sliding average algorithm. According to formu-
las (5) and (6), the current predicted value is associated with
the values of all previous moments. The last predicted value
is obtained by a process like sliding backwards in sequence
from the first value to the last value, doing exponential decay
according to the decay factor. The decay factor in the exper-
iment takes the value of 0.95. Consequently, the exponential
sliding average algorithm makes the decline trend more
obvious and enables more accurate prediction of the RUL,
as shown in the orange curve in Figure 9. In this paper,
through massive amounts of experiments, the following
operations are the most accurate prediction of RUL: take
the last 30% of the smooth data and expand it through linear
fitting. As shown by the green line in Figure 9, the predicted
life can be obtained by intersecting with the line whose ordi-
nate is equal to zero. Consequently, the RUL of bearing can
be obtained by subtracting the current time from the pre-
dicted life. The results of RUL prediction from Bearing1_4
to Bearing1_7 are shown in Figure 10. Specifically, Bear-
ing1_4 predicts a full life of 14740 s, Bearing1_5 predicts a
full life of 24980 s, Bearing1_6 predicts a full life of 24300 s,
and Bearing1_7 predicts a full life of 21880 s.

Regarding the performance evaluation metrics of RUL
prediction, this paper adopts the method given in the IEEE
PHM 2012 Prognostic Challenge: error percentage, evalua-
tion metric Ai, and mean value of evaluation metric Ai.
The error percentage is shown in

Eri = 100 × ActRULi − RÛLi
ActRULi

, ð12Þ

where ActRULi represents the true RUL of the i-th bearing
and RÛLi represents the predicted RUL of the i-th bearing,
since the error percentage Er represents the deviation of
the predicted RUL from the true RUL. Consequently, the
closer the predicted RUL is to the true RUL, the closer the
error percentage is to 0. In addition, the evaluation index is
shown in

Ai

exp −ln 0:5ð Þ ⋅ Eri/5ð Þð Þ if Eri ≤ 0,
exp ln 0:5ð Þ ⋅ Eri/20ð Þð Þ if Eri > 0:

(
ð13Þ
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Figure 9: RUL prediction result of Bearing1_3.
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The evaluation metric Ai represents a measure of RUL
predictive performance. If the Eri is 0, Ai is equal to 1. As
the absolute value of Eri increases, the Ai becomes larger.
However, the cost of overpredicting and underpredicting
the RUL is different. In the field of RUL prediction, the cost
of underestimating RUL is lower than overestimating RUL.
Equation (13) captures this well. The final score is shown
in Equation (14), which represents the mean value of the
evaluation metrics.

Score = 1
n
〠
n

i=1
Ai: ð14Þ

To verify the superiority of the method proposed in this
paper, other data-driven methods using the same dataset are
compared. The literature [24] is the champion model of
IEEE 2012 Data Challenge. Lei et al. [5] proposed WMQE
model, which has good prediction performance by fusing
several weighted features to predict RUL through correlation
clustering between 28 features of bearings. Chen Y et al. [25]
extracted five bandpass energy values of the spectrum as fea-
tures to construct a network based on code and decoding
framework and attention mechanism for network prediction
of RUL. Attention model based on signal decomposition
brings us a new idea. Table 2 writes the final scores for each
bearing current time, actual RUL, predicted RUL by this
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Figure 10: RUL prediction result of Bearing1_3 to Bearing1_7.

Table 2: Comparison results of this research and related researches in the PRONOSTIA dataset.

Testing dataset Current time (s) Actual RUL (s) Predicted RUL (s) Er1 Er2[24] Er3[5] Er4[25]
Bearing1_3 18010 5730 5470 4.53 37 -0.35 7.62

Bearing1_4 11380 2890 3360 -16.26 80 5.60 -157.71

Bearing1_5 23010 1610 1970 -22.36 9 100.00 -72.57

Bearing1_6 23010 1460 1290 11.64 -5 28.08 0.93

Bearing1_7 15010 7570 6870 9.24 -2 19.55 85.99

Er
�� �� 12.81 26.6 30.71 64.96

Score 0.47 0.46 0.45 0.35
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method, and the percentage of error compared to the other
three methods. In addition, the absolute mean of the error
percentage jErj is added in this paper, which judges the
merits of the method by comparing the dispersion degree
of the RUL prediction error. As seen from Table 2, jErj is
12.81 and the final score is 0.47. Both in terms of prediction
accuracy and dispersion of prediction, the method in this
paper is better than the other three methods.

3.3. Discussion. The effectiveness and advantage of the pro-
posed MRCNN method have been verified by experimental
data and point out the shortcomings of the MRCNN model
and the direction of improvement in the future.

(1) The MRCNN model adopts the time-frequency
matrix transformed from the vibration signal, which
saves the training time by reducing its size. However,
reducing the size of features will lose a lot of useful
information. Therefore, it is a very important prob-
lem to achieve a balance between the cost of time
and the input of enough features

(2) The structure of MRCNN model design is complex,
and the optimal parameters are obtained through a
large number of experiments. In the future, attention
model will be used, which can enable neural network
to learn more important information of the channels

(3) In addition to time and frequency features, other
useful features can be used, such as temperature
and humidity. If there is a suitable dataset, we will
use these features

4. Conclusions

In this paper, the CWT algorithm is utilized to convert the
time-domain signal into a time-frequency domain 2-D matrix
firstly. Afterword, HIs are successfully constructed by
MRCNN model. The advantages of the MRCNN model are
summarized as follows. The multiscale structure of MRCNN
model can extract the local and global features of multiple
scales. The residual structure of MRCNN model can make
the network easier to train into an accurate model. The
MRCNN model uses global average pooling instead of flatten
layers to reduce the problem of overfitting. Concurrently, the
EMA algorithm is used to highlight the degeneration trend.
RUL was finally obtained by linear regression prediction.
The RUL prediction results prove the validity of the method.
Finally, we compare with the method in recent years that pre-
dicts RUL on the same dataset, and the results show that the
method in this paper has the best prediction results in terms
of prediction accuracy and dispersion of prediction.

Data Availability

In this paper, the public dataset PRONOSTIA at the IEEE
PHM 2012 Data Challenge can be obtained through the link:
https://github.com/wkzs111/phm-ieee-2012-data-challenge-
dataset.
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