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In this paper, we integrate image gradient priors into a generative adversarial networks (GANs) to deal with the dynamic scene
deblurring task. Even though image deblurring has progressed significantly, the deep learning-based methods rarely take
advantage of image gradients priors. Image gradient priors regularize the image recovery process and serve as a quantitative
evaluation metric for evaluating the quality of deblurred images. In contrast to previous methods, the proposed model utilizes
a data-driven way to learn image gradients. Under the guidance of image gradient priors, we permeate it throughout the design
of network structures and target loss functions. For the network architecture, we develop a GradientNet to compute image
gradients via horizontal and vertical directions in parallel rather than adopt traditional edge detection operators. For the loss
functions, we propose target loss functions to constrain the network training. The proposed image deblurring strategy discards
the tedious steps of solving optimization equations and taking further advantage of learning massive data features through
deep learning. Extensive experiments on synthetic datasets and real-world images demonstrate that our model outperforms
state-of-the-art (SOAT) methods.

1. Introduction

In the field of computer vision, image deblurring is a crucial
and challenging task. Object motion, camera shake, and
other complicated circumstances invariably result in blurry
observations during the image acquisition process. Clean
and fine image details are required for postprocessing appli-
cations such as traffic surveillance, object recognition, and
image segmentation. Therefore, the importance of image
deblurring is particularly prominent. Blind image deblurring
aims at recovering deblurred images from a known blurry
degraded image. The mathematical expression of the image
deblurring modeling process can be expressed as

b = s ∗ k + n, ð1Þ

where s, k, n, and b denote clean images, kernels, noise,
and blurry images, respectively.

According to Equation (1), we can derive that estimating
kernels and computing clean images is a tough task. In tra-
ditional image deblurring methods [1–7], the blurry kernel
is usually determined by estimating significant structures of

the image, and then nonblind deconvolution is computed
to obtain the deblurred image. However, these methods have
the following limitations: (1) these methods can only extract
features from a limited number of images. It may not stim-
ulate realistic dynamic blurry scene; (2) these methods
obtain deblurred images by computing optimization equa-
tions, which is time-consuming, and the algorithm is less
real-time.

With the development of deep learning, convolutional
neural networks (CNNs) are exploited in methods [8–11]
to learn blur kernels at the pixel level. Subsequently, non-
blind deconvolution operations are employed to generate
latent images. Although this strategy combines classic and
learning-based methods, accumulated errors are derived by
blending separately estimated kernels and deblurred images.
To overcome the limitations of the isolated image deblurring
strategy of “kernel estimation-deconvolution,” methods
[12–14] followed an end-to-endmanner to directly investigate
the underlying relationship between blurry and deblurred
images. The multiscale deblurring methods [15, 16] followed
the image deblurring strategy of “coarse-to-fine” to achieve
deblurring. However, it has some limitations: first, at some
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scales, the multiscale network structure tends to be overfitting.
Second, multiscale networks focus on the relationships
between scales rather than the relationship between the orig-
inal input and the clean counterpart. Although deep
learning-based methods alleviate the limitations of hand-
craft feature extraction methods, the lack of image prior
guidance makes the network difficult to optimize and
converge.

According to the mechanism of the human visual sys-
tem, human eyes are the most sensitive to image structures
compared to other components [17]. In other words, the
human eye is the most intuitive in observing whether the
image has clean and significant structures. On the one hand,
structures of the image can be exploited as a priori for regu-
larizing the image recovery process. On the other hand,
image structures can be served as a quantitative evaluation
metric for evaluating the quality of deblurred images. Few
works focus on integrating image structure priors to CNN-
based methods. Qi et al. [18] designed an edge adversarial
mechanism for tackling dynamic scene deblurring. However,
the processing of adaptively learning image structures is
neglected.

Inspired by the image super-resolution method of [19],
we propose an image deblurring method based on image
gradients priors for tacking the dynamic scene deblurring
task. Meanwhile, image gradient priors permeate the design
of network structure and target loss function. For the loss
functions, we propose objective loss functions aim to super-
vise the generator such that generated images have signifi-
cant structure information. For the network topology, we
propose a subnetwork of GradientNet. First, we introduce
a recurrent gradient convolutional layer (RGCL) to localize
and represent image gradient features rather than a conven-
tional edge detector. Second, multibranch reuse blocks
(MBRBs) are proposed to learn high-dimension local fea-
tures in a multipath reuse way; third, recalibrated channels
of these accumulated and enhanced nonlocal features are
highlighted by the non-local SENet module [20]. Finally,
we arrange several MBRBs in a cascaded manner to enhance
and aggregate the relationship of structural features. Exten-
sive experiments on synthetic datasets and real-world
images confirm the effectiveness of the proposed model,
which achieves decent performance and is comparable to
or better than SOTA methods.

The main contributions of this paper are presented as
follows:

First, we propose a GAN, which has decent performance
in restoring clean images for tackling the dynamic scene
deblurring task.

Second, we introduce a GradientNet to compute image
gradients via horizontal and vertical directions in parallel.

Third, we developmultiterm target loss functions to drive
the generator to generate images with salient structures.

2. Related Works

In recent years, many image deblurring methods have been
proposed. We mainly introduce image deblurring methods

from aspects of traditional segmentation-based methods
and learning-based methods.

2.1. Traditional Segmentation-Based Methods. Dynamic
blurry scenes are spatially varied in pixel level, and solutions
for the uniform blurry task may not fit the complicated
dynamic scene task. According to blurry regions in a
dynamic scene, Kim et al. [21] adopted an image segmenta-
tion method to separate blurry regions and then deal with
each of them, respectively. However, motion segmentation
cannot accurately separate blurry regions. Kim and Lee
[22] proposed an alternative segmentation-free method by
exploiting the deblurring strategy to solve this challenging
task. This scheme avoids drawbacks brought by inaccurate
segmentation. However, the dynamic blurry scene is spa-
tially varied in pixel level in extreme cases. Especially, when
object motion and camera shake simultaneously occur in the
imaging process. As a compromise, Pan et al. [23] proposed
a method based on the segmentation confidence map for
enhancing the segmentation accuracy of different regions
of the degraded images.

2.2. Learning-Based Methods. CNNs are commonly used in
image processing fields [24–28], due to their extremely
robust feature extraction capabilities. Schuler et al. [11]
and Xu et al. [29] employed multiple CNNs to implement
image features extraction, blur kernels estimation, and
deblurred image reconstruction separately. Chakrabarti
[10], Sun et al. [8], and Gong et al. [9] exploited CNNs to
estimate nonuniform blur kernels; then, they used existing
nonblind deconvolution methods to generate deblurred
images, following the image deblurring strategy that involves
kernel estimation and nonblind deconvolution algorithms.
Li et al. [30] and Ren et al. [31] adopted image priors with
the benefits of CNN to achieve image deblurring. These
methods make use of deconvolution algorithms and CNNs.
Nonetheless, this isolated deblurring strategy causes cumula-
tive errors, resulting in blurred details in the recovered
images.

To overcome the limitations of the above algorithms,
researchers further propose deblurring methods [12–14] to
directly construct the essential relationship between blurry
and clean images in an end-to-end manner. Nah et al. [15]
followed the “coarse-to-fine” image deblurring strategy and
propose a multiscale deblurring method. Although the mul-
tiscale network reduces the difficulty of image deblurring in
a divide-and-conquer manner, the weight parameters of
multiple scales are independent. And each scale of the net-
work only deals with the image of the current resolution.
Based on the literature [15], Tao et al. [16] proposed a multi-
scale CNN with shared parameters. On the one hand, this
network takes advantage of the dependence of weight
parameters between multiscales; on the other hand, it can
reduce network parameters and stabilize network optimiza-
tion. To acquire high-dimensional feature representations,
Gao et al. [32] proposed an image deblurring method based
on selective parameter sharing and nested connections,
which can effectively extract high-order nonlinear features.
Furthermore, Zhang et al. [33] introduced an image
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deblurring method based on a recurrent neural network to
learn the high-dimensional features by indirectly expanding
receptive fields for image reconstruction and deblurring.
However, image deblurring methods based on CNN do not
consider the semantic information between blurry images
and clean images.

GAN [34] is a machine learning architecture proposed
by Goodfellow et al. in 2014. GAN has been applied in the
computer vision community. Inspired by CycleGAN [35],
image deblurring can be considered as an image translation
task by translating blurry degraded input to the blurry-free
one. Since the highly unstable property of GAN, it is difficult
to simultaneously train two pairs of GAN models. Further-
more, directly transferring this recycling framework to
image deblurring task unsurprisingly generates poor results.
Nimisha et al. [36] proposed a GAN for tackling class-
specific image deblurring task in an unsupervised fashion.
Due to a lack of ground truths, they utilize blurry images
themselves to guide the network to acquire image color
information. Kupyn et al. [37] developed a conditional
GAN named DeblurGAN. They propose a content loss to
capture the semantic correspondence difference between
blurry images and corresponding ground truths. Lately, to
satisfy the different requirements of real-time processing
and deblurring performance, Kupyn et al. [38] proposed
three models with feature pyramid network architecture.
Qi et al. [18] introduced a method based on an edge adver-
sarial mechanism to narrow the difference in image structure
between deblurred images and ground truths. To further
facilitate the quality of deblurred image structures, we pro-
pose an image gradient-driven dynamic scene deblurring
method to constrain image recovery. Specifically, we design
a GradientNet to investigate the relationship between image
gradients and dynamic scene deblurring in a data-driven
way rather than adopt classic image edge detectors.

3. Proposed Method

In this section, we introduce specific illustrations of the over-
all network architecture, GradientNet, and target loss
functions.

3.1. Network Architecture. We tailor a deep learning frame-
work specifically for the challenging dynamic scene deblur-
ring task. Figure 1 depicts the overall pipeline of the
proposed network. The generator is designed to generate
deblurred images with clean appearances and salient struc-
tures in an end-to-end fashion, while the discriminator is
designed to assign correct labels to the fake and real images.
Furthermore, the discriminator supervises the generator to
ensure that it produces images infinitely close to being clean.

3.1.1. Generator. As shown in Figure 2, the generator is
employed to map deteriorated blurry images to their clean
counterparts. At the stage of the encoder, the blurry
degraded inputs are spatially compressed and encoded. At
the bottle of the U-Net, we introduce a GradientNet to
investigate and preserve significant structures in a multi-
branch reuse fashion. Correspondingly, at the stage of the

decoder, decoded feature representations of blurry images
are accessible for recovering deblurred images. Specific net-
work framework and parameters configuration of the devel-
oped model are marked in Figure 2. Furthermore, skip
connections are exploited to bridge the semantic gap
between encoded features and their decoded counterparts.
Following that, we introduce the backbones of GradientNet
in detail.

3.1.2. GradientNet. In this paper, we propose a GradientNet
to investigate the relationship between gradient representa-
tions and dynamic scene deblurring in a data-driven way.
As shown in Figure 2, GradientNet consists of a preposi-
tional feature transition module (PRFTM) and a multi-
branch reuse unit (MBRU). Next, we introduce PRFTM
and MBRU in detail, respectively.

(1) PRFTM. PRFTM is employed to extract higher-
dimensional features by acting as partitions and buffers. In
particular, PRFTM consists of two cascaded convolutional
layers with kernels of 3 × 3. The following is the mathemat-
ical expression:

U−1 = f FE1 Un−1ð Þ, ð2Þ

U0 = f FE2 U−1ð Þ, ð3Þ
where f FE1 and f FE2 denote the first and second convolu-

tional layer in PRFTM, respectively. Un−1 implicates the
input feature that delivers to PRFTM. U−1 represents the
output feature from f FE1. U0 implies the output feature from
f FE2. Convolutional layers increase the number of channels
of the input image and maps it to a space with more poten-
tial features.

(2) MBRU. As shown in Figure 2, MBRU consists of 10
MBRBs and a CA module [20]. Features of an image are
usually obtained from local receptive fields that reflect spa-
tial relationships within the image domain. For the dynamic
scene deblurring task, it is essential to capture features that
represent the overall data distributions of images. Therefore,
we first learn high-order local features from MBRBs; then,
recalibrated channels of these accumulated and enhanced
nonlocal features are highlighted by the CA module. Indi-
rectly, the proposed MBRU constructs the interdepen-
dencies between pixels and channels. Assuming there are n
MBRBs, the n-th output Un can be expressed as

Un =MBRBsn U0ð Þ, ð4Þ

where U0 denotes input features from PRFTM, and Un
implicates output features processed by MBRU.

(3) MBRBs. It is essential to tightly correlate the learned fea-
tures among the proposed network for addressing the image
deblurring task. Therefore, we adopt the multipath reuse
manner to enhance gradient features obtained by RGCL.
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Reasons for not adopting a multiscale structure are (1) mul-
tiscale methods of [15, 16] follow the image deblurring strat-
egy of “coarse-to-fine” to generate deblurred image
gradually. Unlike [15, 16], we capture image gradient fea-
tures in a multipath reuse manner simultaneously; (2) for
blurry images, the images at multiple scales have different
degrees of blurry. When the image features at different scales
are fused, it is easy to produce blurry appearances; (3) this is

not conducive to achieve gradient features enhancement.
The specific network architecture of MBRBs is displayed in
Figure 2. Each MBRB contains following steps: first, we
arrange three RGCL in multipath reuse mode; second, these
reused features are fused by a concatenate operation; third,
the CA module is also employed to recalibrate essential
channel features; fourth, two convolutional layers and ReLU
activation function [39] are followed as a buffer to obtain

Input
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Lcontent
Lgradient

G of network

D of network
Deblurred image

Clean image

Loss
functions

Figure 1: The entire framework of the proposed model comprises target loss functions and the network training process. The generator
aims to generate deblurred images with clear appearances and discernible structures, while the discriminator is designed to assign correct
labels to the fake and real images. Solid lines represent forward propagations, while dashed lines implicate back propagations.
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processed features; finally, building a residual connection
between the input and output. The mathematical expression
of MBRB can be formulated as

f n = Con RGCL1 U0ð Þ + RGCL2 U0ð Þ + RGCL3 U0ð Þð Þð Þ,
ð5Þ

f n = f FE4 ReLU f FE3 CA f nð Þð Þð Þð Þ +U0, ð6Þ
where RGCL denotes recurrent gradient convolutional

layer, Con implicates a concatenate operation, f FE3 and
f FE4 denote two convolutional layers in MBRB, and f n
implies processed features.

(4) RGCL. Classic edge detectors, such as Sobel and Laplace,
can only calculate edges of a certain intensity. Given the
above limitations, we introduce a RGCL that deals with
image gradients in horizontal and vertical directions in par-
allel, as shown in Figure 3. Compared to plain convolutional
layers, the idea of this rectangle convolution kernel design is
based on the following: first, reducing network parameters
and algorithmic complexity of the proposed network; sec-
ond, dedicating to dealing with a certain dimension (vertical
or horizontal) structures information. The parallel investiga-
tion can conserve more information than sequential design.
In general, RGCL has the following advantages: (1) RGCL
emphasizes image structures information by using the verti-
cal and horizontal gradient information in parallel; (2) ker-
nels of plain convolutional layers with the same receptive
field have more computing complexity and parameters; (3)
the recurrent mechanism is adopted to continuously
enhance significant image structures obtained by gradient
convolutional layers.

In order to implement the “parallel” processing strategy,
inspired by cascaded several convolutional layers, we recon-
sider the traditional convolutional layer as two convolutional
layers with asymmetrical kernels in horizontal and vertical
directions, as shown in Figure 3. We specifically develop
asymmetrical convolutional kernels with sizes of 3 × 1 and
1 × 3 rather than the generally square kernels. Furthermore,
the recurrent number of gradient convolutional layers is
configured as 3. The mathematical expression of GCL is as
follows:

URGCL = CA Sigmoid Conv LR k1×n ⊗U0 + kn×1 ⊗U0ð Þr
� �� �� �

+ Input,
ð7Þ

where k implies convolution kernels, n standards for ker-
nel sizes, ⊗ denotes convolutional operations, r denotes the
recurrent times, and URGCL expresses gradients information
processed by RGCL.

Figure 4 depicts a sample of structural textures obtained
using various filters. Compared to the Sobel operator, RGCL
identifies edges in both vertical and horizontal directions.
The results of Sobel and RGCL are shown in Figures 4(b)
and 4(e), respectively. Gradient maps obtained by the filters

of Sobel are rough outlines. In contrast, our method is able
to extract and preserve significant structural features of the
image, thus validating the possibility of the proposed RGCL
to successfully investigate image structures. In particular, in
Figures 4(c) and 4(d), we compare the produced edge maps
with horizontal and vertical filters demonstrating that RGCL
may extract more edge information than other edge detect
operators.

3.1.3. Discriminator. The discriminator receives a generated
image or a real image as input. The discriminator returns a
probability in the range of [0,1] that indicates how real the
input image is. Unlike the high-level task, deblurred image
clarity is heavily influenced by local attributes rather than
overall assessment. As a result, we use PatchGAN [40] as
the discriminator in this paper.

3.2. Loss Functions. Throughout the design of network struc-
tures and target loss functions, we use image gradient priors.
The proposed network’s objective loss functions include (1)
the semantic content loss Lcontent, which drives the image
semantic coherence between generated images and clean
ones; (2) the structure loss Lgradient, which facilitates gener-
ated images to retain salient structures; and (3) the adversar-
ial loss Ladv, which supervises generated results to toward
sharp counterparts.

3.2.1. Content Loss Function. Johnson et al. [41] propose a
VGG19-based [42] semantic loss that has been pretrained
on the ImageNet dataset to meet the visual perception of
human eyes. For network optimization, we apply content
loss [41] to drive perceptual similarity between generated
images and corresponding ground truths at the feature level.
Accordingly, the following is the mathematical expression of
Lcontent:

Input

1 × m Conv m × 1 Conv

Leaky ReLU

Conv + sigmoid

CA

Output

Figure 3: The pipeline of the proposed RGCL. Unlike normal
convolution, RGCL aims at processing images parallel in vertical
and horizontal directions by the rectangular kernel size.
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Lcontent =
1

CWH〠
W

x=1
〠
H

y=1
ϕi,j skð Þx,y − ϕi,j G bkð Þð Þx,y

���
���
2
, ð8Þ

where sk represents the ground truth, GðbkÞ denotes the
generated image, C, W, and H imply the number, height,
and width of feature maps, respectively. Following [41], we
restrict the content difference of sk and GðbkÞ via
kϕi,jðskÞx,y − ϕi,jðGðbkÞÞx,yk2. Let ϕi,j be the feature map

obtained by the j-th convolutional after activation and
before the i-th pooling layer within the pretrained VGG19
network ϕ. Here, we experimentally select the “ReLU4-3”
layer in the pretrained VGG19 model to extract semantic
feature representations of generated images and sharp ones,
respectively.

3.2.2. Gradient Loss Function. We introduce a gradient loss
function to supervise the generator that learns image struc-
ture information because gradient maps are capable of
reflecting salient structures of images. We adopt a gradient
loss to narrow the gap between blurry images and ground
truths in horizontal and vertical gradient directions. Accord-
ingly, the following is the mathematical expression of
Lgradient:

Lgradient =
1

WH〠
W

x=1
〠
H

y=1
∇h skð Þx,y − ∇h G bkð Þð Þx,y

���
���

h i

+ ∇v skð Þx,y − ∇v G bkð Þð Þx,y
���

���
h i

,
ð9Þ

where ∇h and ∇v represent gradient operations in the horizon-
tal and vertical directions, respectively.We supervise the struc-
ture difference of sk and GðbkÞ along the horizontal direction
and vertical direction via k∇hðskÞx,y − ∇hðGðbkÞÞx,yk1 and

k∇vðskÞx,y − ∇vðGðbkÞÞx,yk1.

3.2.3. Adversarial Loss. The purpose of adversarial loss opti-
mization is to lead image feature maps from the blurry
image domain B to the clean image domain S. We also
employ WGAN-GP [43] as a network optimization critique

function. Ladv can be expressed mathematically as follows of
Ladv :

Ladv = EG bkð Þ~Pdata bð Þ D G bkð Þð Þ½ � − Esk~Pdata sð Þ D skð Þ½ �
− λEx̂~Px̂

∇x̂D x̂ð Þk kp� �� �
,

ð10Þ

where λEx̂~px̂ ½ðk∇x̂Dðx̂Þk2 − 1Þ2� represents a sample uni-
formly sampled on the line between sk and bk, GðbkÞ signifies
the generated image, sk expresses the clean one,
EGðbkÞ~PdataðbÞ½DðGðbkÞÞ� and Esk~PdataðsÞ½DðskÞ� denote the
expectation of D allocate the correct label to GðbkÞ and sk,
respectively.

Finally, we use multiterm loss functions to optimize the
proposed model from the perspectives of Lcontent, Lgradient,
and Ladv. The following is the definition of our network’s
overall loss function:

L G,Dð Þ = αLcontent + βLgradient + γLadv, ð11Þ

we adopt the following weight coefficients for each con-
straint item: α = 10, β = 1, and γ = 1, respectively.

4. Experiments

In this part, we first introduce datasets and implementation
details. The results of the proposed method are compared
with SOTA methods subjectively and objectively on syn-
thetic and real datasets. Then, we perform user study and
computational complexity. Finally, we conduct ablation
investigations to evaluate the relationship between image
deblurring performance and loss functions as well as build-
ing blocks.

4.1. Datasets. In this paper, standard benchmarks of GOPRO
[15], Köhler et al. [44], and Lai et al. [45] are utilized to train
and test the proposed network. To train the network model,
we select the training dataset of GOPRO [15]. The datasets
of Köhler et al. [44] and Lai et al. [45] are adopted as test
datasets to evaluate the deblurring performance of the

(a) Input (b) Sobel (c) Horizontal filter

(d) Vertical filter (e) RGCL

Figure 4: Gradient maps are visualized. Gradient maps of input have distinct structures, whereas gradient maps obtained by filters of Sobel
are rough outline. Our method is capable of regenerating gradient maps with distinct outlines.
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proposed model. Next, we further present these datasets as
follows:

4.1.1. GOPRO. The GOPRO dataset was introduced by Nah
et al. in 2017 as a standard dataset for training neural net-
works for image deblurring. A GoPro4 Hero Black camera
is used to shoot the video sequence of the dataset, and blurry
images are processed by averaging clear frames. The
GOPRO collection has 3214 pairs of blurry and clear images
with a total resolution of 1280 × 720 pixels. The 2103 pairs of
images are employed for training, and the remaining 1111
pairs of images are utilized for testing. An example of the
dataset of GOPRO is shown in Figure 5.

4.1.2. Köhler. Köhler et al. [44] put up an experimental envi-
ronment for recording and sampling the six-dimensional
camera’s motion trajectory to capture a series of clear
images. Köhler consists of four clean images that correspond
to 12 blurry images of a different blur. The dataset contains a
total of 48 blurry images. An example of the dataset of Köh-
ler is shown in Figure 6.

4.1.3. Lai. In 2016, Lai et al. presented a dataset [45] for eval-
uating image deblurring algorithms. The dataset contains
two synthetic datasets and one real dataset. The dataset
includes natural images, text images, face images, and other

images. An example of the dataset of Lai is shown in
Figure 7.

4.2. Training Strategy and Implementation Details. This sec-
tion delves into the training process for the entire frame-
work. We use the GOPRO dataset to train the proposed
model in order to obtain deblurred images in a data-driven
manner. The generator is fed blurry inputs that have been
randomly cropped to 256 × 256 pixel sizes for training. To
optimize the network, target loss functions reduce the dis-
tance between the learned picture and the label image. The
discriminator receives the deblurred image or a real image
at random, and it generates a probability in the range of
[0, 1] that shows how real the input image is. The discrimi-
nator is used to supervise the training of the generator,
which is used to learn deblurred images with distinct struc-
tures and clean appearances.

The experimental software configurations for our net-
work are as follows: the operating system is Ubuntu 14.04,
and the deep learning framework is Pytorch. The graphics
card is an NVIDIA 1080Ti, and the processor is an Intel(R)
Core(TM) I7 (16GB RAM). The network is trained using
150 epochs in total. We set the generator and discriminator
learning rates to 0.0001 and the batch size to 4. The Adam
optimizer [46] is used for optimization training, with the
parameters β1 = 0:5 and β2 = 0:999. During training, the
generator is updated once, and the discriminator is upgraded

Figure 5: The blurry sample images of GOPRO [15].

Figure 6: The blurry sample images of [44].

Figure 7: The blurry sample images of the real-world subdataset of Lai [45].
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5 times. When the network has converged, original blurry
inputs are conveyed to the pretrained generator to obtain
deblurred images.

4.3. Experiments on Synthetic Data. Subjective and objective
comparison studies using simulated blurry datasets are used
to validate the proposed network’s efficiency and effective-
ness. Several typical learning-based methods are selected
for comparing image deblurring performance on the test
datasets of GOPRO [15] and Köhler et al. [44]. In the con-
ventional maximum a posteriori framework, Gong et al.
[9] adopted a data-driven method to replace the kernel esti-
mate operator. Nah et al. [15] is a multiscale CNN in the tra-
ditional sense. GAN-based methods of [37, 38] are also
considered. In addition, the image deblurring method based
on the edge adversarial mechanism [18] is also compared.
To be fair, we recurrent these methods by conducting their
official implementations with default settings and parame-
ters. Deblurred results on these synthetic test datasets are
shown in Figures 8–10.

Figure 8 displays some deblurred outcomes as a result of
severe camera shake. From degraded observations with sub-
stantial blur, the developed network is capable of recovering
clean appearances and significant structures. CNN is used by
Gong et al. [9] to estimate blur kernels in an end-to-end
manner. Due to the operator’s erroneous kernel estimation,
the outcomes are indiscriminately blurry. Even though
receptive fields are enlarged on 120 convolution layers, the
method of [15] is disabled to solve blur caused by significant

camera motion. The nonuniform image deblurring difficulty
is insurmountable for GAN-based methods [37, 38]. Using
only a semantic content loss function, for example [37],
the image deblurring method may not be penalized.

Figure 9 depicts a case caused by object motion. Methods
[9, 37, 38, 47] fail to recover blurry local areas even though
the fraction of blurry regions in the overall image is minimal.
The deblurred image generated by the proposed method
contains distinct structures as shown in Figure 9(h).

Figure 10 shows some deblurred results from complex
blurring settings involving considerable camera shake and
object motion. Methods [9] do not yield good outcomes.
Although stacking numerous convolutional layers can
increase receptive fields, Nah et al. [15] produce underlying
results without sharp edges, such as person motion outlines.
Because content loss functions can only attempt to capture
semantic correspondences between high-level representa-
tions, semantic content loss functions may not be able to
deal with complex non-uniform scenarios. Therefore,
methods of [37, 38, 47] are unable to restore substantial
edges and fine details. To some extent, the results of
methods [18] can recover image appearances. However, the
background and pedestrian movement trajectory are not
clean enough. The proposed network has a robust capacity
for producing deblurred images with conspicuous structure
and fine features when compared to SOTA methods.

We conduct several experiments on the synthetic data-
sets of Köhler et al. [44] to further demonstrate the general-
ization of the proposed network. Figure 11 shows some

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 8: The visual effect of comparison methods and the proposed model on the synthetic dataset of GOPRO [15]. Our method has
satisfactory visual effects and good details.
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(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 10: The visual effect of comparison methods and the proposed model on the synthetic dataset of GOPRO [15]. Our method has
satisfactory visual effects and good details.

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 9: The visual effect of comparison methods and the proposed model on the synthetic dataset of GOPRO [15]. Our method has
satisfactory visual effects and good details.

9Wireless Communications and Mobile Computing



recovered results from SOTA methods and our model.
Because methods [15, 18, 37, 38] are trained on the GOPRO
dataset, they have some deblurring performance on the same
test dataset. Their methods exhibit weak robustness on dif-
ferent datasets according to their over smoothed results on
the Köhler dataset. In comparison to SOTA results, the pro-
posed network has good generalization and generates
deblurred images with significant structure and fine details.

To objectively evaluate the proposed method and SOTA
methods on synthetic datasets, we use two quantitative
assessment metrics: peak signal to noise ratio (PSNR) and
structural similarity index (SSIM) [48]. Table 1 provides
average PSNR and SSIM values from GOPRO and Köhler
test datasets. Our network outperforms the competition in
terms of PSNR and SSIM. The highest PSNR score indicates
that there are the fewest similarities in content between the
deblurred image and the matching ground truth. The SSIM
value increases as the structural similarity difference between
the deblurred image and the matching ground truth
decreases. Because (1) the developed network directly nar-
rows differences by various restrictions, resulting in greater
pixel-wise coherence; and (2) image appearances are aided
by primary building blocks, which contribute to structural
similarity.

4.4. Experiments on Real Datasets. The evaluation of image
deblurring performance is carried out on synthetic datasets,
as mentioned in the preceding subsection, and satisfactory
results are obtained. Real-world blurry images are frequently
the result of more convoluted scenarios. This section uses
the dataset of Lai [45] as a test dataset to confirm the effec-
tiveness and generalization of the proposed network.
Figures 12–14 show three groups of results from our net-
work and comparison methods, respectively.

Figure 12 illustrates a blurry image under low-light situ-
ations. Gong et al. [9] adopt a data-driven way to estimate
kernels and then adopt existing nonblind deconvolution
algorithms to yield deblurred images. Because the kernel
estimation and deblurred image computation are carried
out independently, the “two-step”method rarely yields satis-
factory results. Kupyn et al. [37] have low compatibility with
real-world blurry images. The method [38] is an enhanced
version of DeblurGAN that can restore appearances on syn-
thetic blurry images. Because synthetic datasets cannot stim-
ulate the true blur imaging process, methods of [15, 38] have
limited generalization on real datasets, as seen in
Figures 12(d) and 12(g). Although the developed network
does not use low-light training samples, it still performs well
on synthetic datasets.

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 11: Visual comparison on the dataset of Köhler et al. [44], zoom in for the best view. The proposed method has a photo-realistic
effect and generates much clearer details.
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Figures 13, 13(d), 13(e), 13(f), and 13(g) show that the
class-specific blurry image has a light blur effect, but no
high-quality deblurred results. This is because the methods
of [9, 15, 37, 38, 47] fail to stimulate the real-world image
blurring process. Figure 14 displays a blurry image under
low-light conditions. Our method can restore blurred text
and image background decently.

In conclusion, the proposed network is trained on simu-
lated datasets and then tested on real-world images, con-
firming the model’s efficiency and generalization that
surpass SOTA methods. It takes advantage of the training
data as well as the elaborately constructed network.

4.5. User Study. We randomly select 10 blurry images from
datasets of Lai et al. [45] and GOPRO [15] for user study
to perform an objective visual comparison. The results proc-
essed by various methods are displayed randomly and com-
pared to the corresponding blurry input. Following that, we
invite 5 participants with image processing experience to
score the results. Furthermore, the participants have no idea
which results are generated by ours. The scores range from 1
(worst) to 10 (best). We set the raw underwater image scores
to 5 as a baseline. We anticipated that the good result has
visual pleasant effects and abundant details, particularly the
edge information.

Table 1: Performance comparison with SOTA methods evaluated by quantitative assessment of PSNR (dB) and SSIM. We calculate average
values on synthetic datasets of GOPRO [15] and Köhler et al. [44].

Methods
GOPRO GOPRO Köhler Köhler
PSNR SSIM PSNR SSIM

Qi et al. [18] 28.9019 0.8694 21.3521 0.6521

Gong et al. [9] 27.2778 0.8187 21.2371 0.6490

Nah et al. [15] 28.3225 0.8588 20.8507 0.6340

Kupyn et al. [37] 25.2363 0.7773 19.0843 0.5838

Mustaniemi et al. [47] 25.9563 0.8285 20.4833 0.6442

Kupyn et al. [38] 27.8086 0.8664 21.2987 0.6544

Ours 29.2252 0.8714 21.3728 0.6602

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 12: Visual comparison on the real-world images of Lai et al. [45]. Our network has satisfactory visual effects and good details.
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Table 2 displays the average visual quality scores of 10
test images. In Table 2, our results get the highest score. It
indicates that our results are more consistent with human
visual perception. In addition, the image deblurring methods
also achieve decent scores. For blurry input, Qi et al. [18],
Gong et al. [9], Nah et al. [15], Kupyn et al. [37], Mustaniemi
et al. [47], Kupyn et al. [38], and ours, the average visual
quality scores for the selected 20 blurry images are 5, 6.3,
5.3, 6.4, 5.4, 6.0, 5.6, and 7.2.

4.6. Execution Time and Computational Complexity. We
show the developed method’s efficiency by comparing it to
SOTA methods in terms of execution time and computa-
tional complexity. The results of calculating floating point
operations per second (FLOPs) and average execution time
on images with a resolution of 1280 × 720 pixels are shown
in Table 3. Because the deblurring method [9] involves a
nonblind deconvolution procedure, they encounter compu-

tational difficulties. Nah et al. [15] use a multiscale CNN to
expand the receptive fields for image deblurring perfor-
mance. Because multiscale networks are independent
between scales, the method [15] takes longer than Kupyn
et al. [37] and Kupyn et al. [38]. Mustaniemi et al. [47] con-
struct a U-Net-based CNN to optimize the network for
image recovery. Mustaniemi et al. [47] increase the receptive
fields by constructing the feature pyramid network. Qi et al.
[18] propose a partial weight sharing network by building
several blocks for achieving image deblurring. Unlike the
previously described methods for image deblurring, the pro-
posed method involves the formation of GradientNet, which
saves a little more time than Kupyn et al. [38].

4.7. Investigation of the Impact of Loss Functions. To demon-
strate the efficiency of each loss function in our model, we
conduct ablation experiments, which include the following
three experiments:

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 13: Visual comparison on the real-world images of Lai et al. [45]. Our network has satisfactory visual effects and good details.
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(1) The proposed network without Lcontent (w/o cont)

(2) The proposed network without Lgradient (w/o
gradient)

(3) The proposed network

Parameter setting and training methods consistent with
the proposed network are used in the ablation experiments.
The quantitative evaluation is performed on the dataset of
GORPO. Figure 15 exhibits the visual results obtained from
the ablation experiments performed on each module of the

proposed network. The blurred image is presented in
Figure 15(a). As illustrated in Figure 15(b), the network
without Lcontent generates visually unpleasant results. Such
findings demonstrate that the performance of the proposed
network has a positive correlation with Lcontent. In compari-
son, Lcontent measures image semantic content coherence
more robust. As shown in Figure 15(c), without the restric-
tions of Lgradient, the visual quality of the deblurred image
significantly declined. Finally, an ablation investigation of
proposed loss functions demonstrates that Lcontent and

(a) Blurry input (b) Qi et al. [18] (c) Gong et al. [9] (d) Nah et al. [15]

(e) Kupyn et al. [37] (f) Mustaniemi et al. [47] (g) Kupyn et al. [38] (h) Ours

Figure 14: Visual comparison on the real-world images of Lai et al. [45]. Our network has satisfactory visual effects and good details.

Table 2: The average visual quality scores of test images.

Methods I1 I2 I3 I4 I5

Inputs 5 5 5 5 5

Qi et al. [18] 6.3 6.5 6.9 6.0 6.0

Gong et al. [9] 5.0 5.2 5.6 5.9 5.0

Nah et al. [15] 6.8 6.9 6.3 5.5 6.5

Kupyn et al. [37] 5.1 5.5 5.3 5.4 5.6

Mustaniemi et al. [47] 5.5 6.1 6.3 5.5 6.5

Kupyn et al. [38] 5.4 5.7 5.3 6.5 5.0

Ours 7.5 7.7 7.2 6.9 6.8

Table 3: The efficiency of comparison image deblurring methods
and the proposed method. We calculate algorithmiccomplexity
and the average execution time on images with the size of 1280 ×
720 of the test dataset of GOPRO.

Methods FLOPs Seconds

Qi et al. [18] 468.54G 0.8

Gong et al. [9] 4.12G 1300

Nah et al. [15] 1760.04G 8.1

Kupyn et al. [37] 678.29G 1.1

Mustaniemi et al. [47] 128.13G 4.5

Kupyn et al. [38] 411.34G 0.6

Ours 446.98G 0.7
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Lgradient make significant improvements to deblurring perfor-
mance. This confirms that it is feasible to exploit image
structures as the target loss function to optimize network
training.

In addition, the PSNR and SSIM objective evaluations
are employed to assess the outcomes achieved from each
ablated part, and the average results of the above networks
tested on the GOPRO dataset are shown in Table 4. We
observed that (1) when Lcontent is removed, quantitative met-
rics of PSNR and SSIM sharply decrease; (2) when Lgradient is
ablated, the deblurring performance of our model also
decreases. The quantitative evaluation results are compatible
with the subjective visual effects, validating the efficiency of
the image deblurring method based on image gradient
priors.

4.8. Ablation Study on the Effectiveness of Building Blocks. To
validate that the proposed network’s image deblurring per-
formance has a positive correlation with the constructed
building blocks of RGCL, MBRBs, and GradientNet, we con-
duct ablation experiments, which involve the following four
experiments:

(1) Our model without RGCL (w/o RGCL)

(2) Our model without (w/o MBRBs)

(3) Our model without GradientNet (w/o GradientNet)

(4) Our model

The first experiment denotes we replace RGCL with nor-
mal convolution layers in MBRBs. The purpose of the sec-
ond experiment is to replace the multipath reuse module

with a single path. The third experiment is to ablate Gra-
dientNet and validate how important the GradientNet is to
generating salient structures.

We adopt the identical training strategy, parameter
values, loss functions, and training datasets as in Section 4
in these experiments unless otherwise stated. Figure 16 dis-
plays the visual results obtained from the ablation experi-
ments performed on each block of the proposed network.
As exhibited in Figure 16(b), without the proposed RGCL,
the letters that could not be recovered are dense with each
other and difficult to identify. As shown in Figure 16(c),
without the assistance of MBRBs, the visual quality of the
deblurred image has a slight improvement to Figure 16(b).
As illustrated in Figure 16(d), without GradientNet, the
visual quality of the deblurred image significantly declined.
Such finding validates that the performance of the proposed
network has a positive correlation with GradientNet. Finally,
an ablation investigation of proposed building blocks vali-
dates that RGCL, MBRBs, and GradientNet make consider-
able improvements to deblurring performance.

To evaluate the effectiveness of building blocks in our
model, quantitative evaluation indicators of PSNR and SSIM
are also employed. As displayed in Table 5, the average
results of the above building blocks are tested on the
GOPRO dataset. We can indicate that our model achieves
the best quantitative assessment results. When RGCL,
MBRBs, and GradientNet are removed, respectively, the
quantitative metrics of the corresponding networks have dif-
ferent degrees of decrease. The quantitative evaluation
results match the subjective visual effects, indicating that
the image deblurring method based on image gradient priors
is effective.

In conclusion, (1) instead of using plain convolutional
layers, RGCL is developed to investigate and preserve the
majority of image structures in a parallel manner; (2)
MBRBs achieve structural feature correlations in a multipath
reuse manner, then, recalibrated channels of these accumu-
lated and enhanced nonlocal features are highlighted by
implementing SENet module; (3) the structure-preserving
subnetwork named GradientNet reinforces structural feature
correlations by arranging many MBRBs in a cascade

(a) (b) (c) (d)

Figure 15: Visual results for the ablation study of loss functions on the nonuniform dataset GOPRO. (a) Blurry input, (b, c) are the results of
the components of w/o content loss function and w/o gradient loss function, respectively. (d) The result of the proposed method. The
proposed method generates clearer images with fine details and salient structures.

Table 4: Quantitative evaluations on the dataset of GOPRO for the
ablation study of loss functions.

Loss PSNR SSIM

W/o content 26.3751 0.7921

W/o gradient 28.7011 0.8617

Ours 29.2252 0.8714
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manner. It achieves the dynamic scene deblurring task under
the guidance of image gradient features.

5. Conclusions

In this paper, we integrate image gradients in the proposed
GAN-based network to generate images with clean appear-
ances and conspicuous structures dynamically. We permeate
image gradient priors to the design of network structures
and loss functions. We develop a structure-preserving sub-
network named GradientNet, which contains the building
blocks of RGCL and MBRBs. It investigates the relationship
between image gradients and dynamic scene deblurring in a
data-driven way. Subjective and objective comparison exper-
iments on several synthetic datasets and real images are
conducted to demonstrate the efficiency of the developed
GradientNet. However, the proposed method has weak
generalization on blurry images containing fewer structures
and fruitful textures. Recovered images of those inputs are
not smooth and have a strong coarse-grained visual percep-
tion. In the future, we consider extending and upgrading our
model to mitigate the above limitations.
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