
Research Article
Offloading Cost Optimization in Multiserver Mobile Edge
Computing Systems with Energy Harvesting Devices

Zheng Liu ,1 Kun Jiang,1 Xiuqiang Wu ,2 and Xianxiong Zeng3

1School of Computer and Science Engineering, Xi’an University of Technology, Xi’an 710048, China
2China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, China
3Wuhan Zhongyuan Electronics Group Co., Ltd, Wuhan, China

Correspondence should be addressed to Xiuqiang Wu; wuxiuqiang@ceprei.com

Received 8 July 2022; Revised 16 August 2022; Accepted 1 September 2022; Published 26 September 2022

Academic Editor: Lei Liu

Copyright © 2022 Zheng Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In mobile edge computing (MEC) systems with energy harvesting, edge devices are powered by unstable energy harvested from
the environment. To prolong the lifetime of edge devices, some computing tasks should be offloaded to MEC servers.
However, computing services offered by MEC servers may be very costly. In this work, we aim to minimize total costs caused
by computing services and dropping tasks while avoiding the devices running out energy. With the consideration of the
unpredictability of the harvestable energy, we adopt the stochastic Lyapunov optimization framework to jointly manage energy
and make task execution decisions (i.e., local executing, offloading, or dropping tasks) and develop an online algorithm which
could help asymptotically obtain the optimal results for the whole system. The algorithm does not require any knowledge of
the harvestable energy and the statistics of task arriving processes and can be easily implemented in a distributed manner.
Numerical results corroborate that the proposed algorithm can try its best to push battery energy of edge devices to a preset
parameter and effectively reduce the service costs and task drops.

1. Introduction

In mobile edge computing systems, mobile applications such
as face recognition, image identification, and augmented
reality are usually computational-intensive and consume a
large quantity of energy of edge devices [1–3]. Harvesting
energy from the environment provides a promising solution
to address energy scarcity problem in MEC systems. How-
ever, in many circumstances, the harvestable energy is usu-
ally unpredictable and not sufficient to support edge
devices executing all computing tasks locally. Some comput-
ing tasks need to be offloaded to edge servers.

Compared with edge devices, edge servers which are
usually provided by service providers are more powerful
and can assist edge devices to complete computing tasks
nearby [4–6]. When edge devices offload their computing
tasks to edge servers, there will be some service fee since it
consumes bandwidth and computing resources of the
servers [7, 8]. The service fee which is charged by service
providers may be concerned to the types of tasks and can

be time-varying. For example, the prices per bit of image
identification may be different from augmented reality tasks,
and when there are too many computing tasks being exe-
cuted in a server, the service provider may raise the compu-
tation price of this server. For edge devices, more offloading
means less energy consumption but more service costs.
Hence, how to minimize service costs while guaranteeing
edge devices never running out of energy will be a realistic
problem.

Many offloading techniques [9–15] have been proposed
to minimize task execution latency and energy consumption
or achieve the trade-off between them [16, 17]. However, in
terms of energy management, most of those works focus on
saving the energy cost of edge computing systems which
may cause excessive computation offloading. Since the bat-
tery energy of edge devices can be constantly replenished
in energy harvesting MEC systems, making full use of har-
vestable energy for local computation can effectively reduce
data transfer and service overhead. Moreover, they do not
take the cost of computation service into account, and most

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 2279362, 10 pages
https://doi.org/10.1155/2022/2279362

https://orcid.org/0000-0001-7707-1294
https://orcid.org/0000-0002-1069-4718
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2279362


of them considered the problem from the perspective of
static systems and single-user and single-server model.

In this paper, we consider a more general scenario with
multiple energy harvesting mobile edge devices and multiple
MEC servers. The harvestable energy of each edge devices is
different and unpredictable. Time is slotted, and computa-
tion tasks are delay sensitive and with the execution deadline
no greater than the length of a time slot. We aim to find a
task offloading strategy which jointly manage edge device
energy and minimize the total costs resulted by computation
offloading (i.e., service costs) and task dropping. With the
consideration of the energy profile as a stochastic process,
we adopt the Lyapunov optimization framework with weight
perturbation to achieve long-term stability of energy queues
of edge devices. Based on the theory of drift-plus-penalty, an
online algorithm which can obtain the trade-off between
energy performance (i.e., edge devices’ residual energy) and
the total costs is developed. The algorithm makes greedy
decisions in every time slot; hence, the complexity of the
algorithm is low, and it can adapt to resource-constrained
MEC systems very well. To summarize, the key contribu-
tions of this work are listed as follows:

(1) We consider both the heterogeneity and mobility of
edge devices and model a MEC system with multiple
energy harvesting edge devices and multiple MEC
servers

(2) Instead of minimizing energy and delay costs, we
define the total costs resulted by task offloading
and dropping as the optimization object and formu-
late the computation offloading problem as a joint
energy management and cost minimization problem

(3) We propose a low-cost computation offloading algo-
rithm based on Lyapunov optimization framework
to save the problem. This algorithm achieves nearly
optimal costs meanwhile stabilizes the energy queues
of edge devices and can be implemented in a distrib-
uted manner easily

The rest of this article is organized as follows. In Section
2, we conduct literature review. In Section 3, we present the
system model and problem formulation. In Section 4, we
present our algorithm and analysis. In Sections 5 and 6, we
show the numerical results and conclude the article.

2. Related Work

In MEC systems, edge devices are allowed to offload some or
all of the computation tasks to edge servers which releases
the limited resources of mobile edge devices. However, due
to the time-varying nature of wireless channels [18, 19],
the mobility of edge devices, and the heterogeneity of com-
putation intensive application tasks, the computation off-
loading and resource allocation problems remain
challenging.

There have been many works [9–15, 19–21] focus on
developing offloading strategies to reduce the energy con-
sumption and computation latency. Chen et al. [10] devel-

oped an offloading strategy based on a self-adaptive
particle swarm optimization algorithm to reduce the system
energy consumption for DNN-based smart IoT systems.
Zhao et al. [12] proposed a task scheduling and partial off-
loading method to minimize the energy consumption of
edge devices under a deadline constraint. Considering that
the wireless channel state and task arrival process are uncer-
tain and dynamic, Chen et al. [13] developed an online and
polynomial-time-complexity algorithm based on Lyapunov
optimization techniques aiming at minimizing average
transmission energy consumption while guaranteeing the
average queueing latency. Yang et al. [15] considered both
the heterogeneity of edge servers and the mobility of mobile
devices and proposed an optimal offloading node selection
strategy based on changes in available network bandwidth
and location of mobile devices to minimize the offloading
time. However, those strategies are mainly presented to
MEC systems without energy harvesting and need to be far-
ther improved to take full use of the energy harvested from
the environment.

Energy harvesting technologies are supposed to be an
efficient solution for MEC systems due to its self-
sustainable nature [22, 23]. However, new challenges arise
in jointly designing the energy management and offloading
strategies since the harvestable energy is usually unpredict-
able in real world. Sun et al. [24] formulated the offloading
problem in energy harvesting MEC systems as a joint mini-
mization problem of energy consumption and delay in the
long term and proposed a novel algorithm based on the rein-
forcement learning approach with noisy neural networks to
solve the problem. Zhang et al. [25] proposed a continuous
control-based deep reinforcement learning approach to
minimize the execution time and energy consumption. Zhou
et al. [26] proposed a Lyapunov optimization-based algo-
rithm to minimize the time average of a weighted sum of
energy consumption and execution delay meanwhile stabi-
lize the battery energy queue. Most of those works simply
use the minimization of energy consumption as one of the
optimization objective and do not consider the costs of edge
servers, which may lead those strategies offloading too much
tasks to servers. At this point, the harvestable energy cannot
be fully utilized, and the running mode of MEC systems is
not fully characterized.

3. System Model and Problem Formulation

In this section, we introduce the system models for a mobile
energy harvesting MEC system. The system containsM edge
devices and N edge servers. We use M ≜ f1, 2,⋯,Mg and
N ≜ f1, 2,⋯,Ng to denote edge devices (i.e., users) and
edge servers, respectively. Time is slotted in this paper, and
τ is the length of each time slot. The time slot index is t
and t ∈T , where T ≜ f 1, 2,⋯g. Edge devices keep traveling
while edge servers are stationary. The distance between edge
device m and edge server n is denoted by dm,nðtÞ.

3.1. Task Model. Computation tasks in this paper are delay-
sensitive, and the execution deadline of those tasks is no
greater than the length of each time slot. All the tasks

2 Wireless Communications and Mobile Computing



generated by edge device m are with fixed length Lm bits.
Each edge devices may have a different Lm. Whether tasks
are generated in time slot t is denoted by the binary variable
ξmðtÞ. When ξmðtÞ = 1, it means that there are tasks arriving
on edge device m in time slot t and device m needs to make
offloading decisions among local computing, task offloading,
and dropping. ξmðtÞ is with an independently identical dis-
tribution (i.i.d.) Bernoulli process with Eðξmð t Þ Þ = λm,
where 0 ≤ λm ≤ 1. Let ξðtÞ = ðξmðtÞ,m ∈MÞ, t = 0, 1, 2,⋯
be the task generation vector in time slot t.

Denote xmlðtÞ, xm,nðtÞ, and xmdðtÞ be the decision vari-
ables of computation offloading. xmlðtÞ = 1 and xmdðtÞ = 1
indicated that the tasks are executed locally and dropped,
respectively. xm,nðtÞ = 1 indicated that edge devicem chooses
edge server n to offload tasks in time slot t. The computation
offloading decision vector in time slot t can be defined as x
ðtÞ = ðxmlðtÞ, xmdðtÞ, xm,nðtÞ,m ∈M&n ∈N Þ. In time slot t,
device m offloads tasks to one server at most, which means
∑N

n=1xm,nðtÞ ≤ 1. In every time slots, tasks must be executed
locally, remotely, or dropped. Hence, when ξmðtÞ = 1, we
have

xml tð Þ + 〠
N

n=1
xm,n tð Þ + xmd tð Þ = 1: ð1Þ

3.2. Local Computation Model. Assume that it takes cm CPU
cycles for edge device m to process 1 bit of computing task;
then, the local computation delay is

Dml tð Þ =
cm · Lm
f m tð Þ , ð2Þ

where f mðtÞ is the CPU frequency in time slot t. Considering
that tasks must be executed before the next time slot, the
local computation delay should satisfy

Dml tð Þ ≤ τ: ð3Þ

Assume that the dynamic voltage and frequency scaling
technologies (DVFS) [27] are adopted in the edge devices,
and the CPU frequencies scheduled for tasks remain the
same in a single time slot. The computation power of local
execution is

pml tð Þ = κf 3m tð Þ, ð4Þ

where κ is a parameter that depends on the chip architec-
ture. According to (2) and (4), if there are tasks to execute
locally, the computation energy is

Eml tð Þ =Dml tð Þ · pml tð Þ = κ · cm · Lm · f 2m tð Þ: ð5Þ

Due to the limited computing power of CPU, the CPU
frequency should satisfy

0 ≤ f m tð Þ ≤ fmax
m : ð6Þ

3.3. Offloading Computation Model. The data associated
with the tasks to be offloaded to servers are transmitted over
wireless links. Since MEC servers are usually equipped with
high performance CPUS, we assume that the task execution
time of MEC server can be ignored for convenience. We also
assume that the output results of those tasks are of small
sizes and the delay for returning the results back is negligible
[26, 28, 29]. Let dm,nðtÞ be the distance between edge device
m and edge server n in time slot t; then, the channel power
gain can be calculated by

gm,n tð Þ = γm,n tð Þ · g0 ·
d0

dm,n tð Þ
� �ψ

, ð7Þ

where γm,nðtÞ is the small-scale fading channel power gain,
g0 is the channel loss coefficient, and d0 and ψ are reference
distance and the channel loss exponent, respectively.

According to Shannon theorem, the maximum uplink
transmission rate between m and n can be expressed by

r gm,n tð Þ, pm,n tð ÞÀ Á
=w · log2 1 + gm,n tð Þ · pm,n tð Þ

σ2

� �
, ð8Þ

where σ2 is the noisy power and pm,nðtÞ is the transmission
power of m in time slot t. The transmission delay of the off-
loading tasks between device m and n in time slot t can be
computed by

Dm,n tð Þ = Lm
r gm,n tð Þ, pm,n tð ÞÀ Á : ð9Þ

Considering that the tasks must be finished before the
end of the time slot and the transmission power of edge
devices is limited, hence we have

Dm,n tð Þ ≤ τ, ð10Þ

pmin
m ≤ pm,n tð Þ ≤ pmax

m , ð11Þ
where pmax

m and pmin
m are the maximum and minimum trans-

mission power of edge device m. The energy consumption
for m offloading those tasks to server n in time slot t is

Em,n tð Þ = pm,n tð Þ ·Dm,n tð Þ: ð12Þ

3.4. Energy Model. Since time is slotted in this paper, the
process of energy harvesting is noncontinuous. Let emðtÞ
be the harvestable energy in time slot t. We assume that em
ðtÞ is i.i.d and satisfies

0 ≤ em tð Þ ≤ Emax
mh , ð13Þ

where Emax
mh is the maximum value of harvestable energy at

each time slot. Let eðtÞ = ððemðtÞ,m ∈MÞÞ be the energy
arriving vector at time slot t.

We denote the residual energy of device m’s battery at
the beginning of time slot t as BmðtÞ and BðtÞ = ðBmðtÞ,m
∈MÞ be the residual energy vector at time slot t. Bmð0Þ is

3Wireless Communications and Mobile Computing



set to 0 J, and BmðtÞ satisfies

Bm tð Þ ≤ Bmax
m , ð14Þ

where Bmax
m is the battery capacity of device m. To avoid run-

ning out of energy, the residual energy of edge devices
should be stabilized. In a queueing network (e.g., a network
with back-pressure routing), data queue is stable means that
lim

T⟶∞
sup ð1/TÞ∑T

t=0∑
M
m=1QmðtÞ<∞, where QmðtÞ is the

data queue of node m. However, we say that the energy
queue of device m is stable if the following is met:

lim
T⟶∞

1
T
〠
T

t=0
Bm tð Þ ≥ θm − ε, ð15Þ

where θm is the perturbation parameter of device m and ε is
the gap between θm and the long-term average value of Bm
ðtÞ. θm can be set in the 0th time slot and should no less than
V · α add the maximal energy which can be consumed by m
in one slot [11]. V is the parameter trading off performance
between energy and costs. Constraint (15) can effectively
reduce the probability of running out of energy.

For simplicity, we assume that energy consumption hap-
pens only in local computation and task offloading. Then,
the residual energy of m at time slot t is

Bm t + 1ð Þ =min Bm tð Þ − ξm · xml tð Þ · Eml tð Þ − 〠
N

n=1
xm,n tð Þ · Em,n tð Þ

 !" #+
+ em tð Þ, Bmax

m

" #
,

ð16Þ

where ½x�+ = max ½x, 0�. When ξmðtÞ = 1 and there is not
enough energy to offload or execute the tasks locally, the
tasks will be dropped. Considering that emðtÞ is unpredict-
able, in order to guarantee the computation offloading deci-
sion can be executed, the residual energy should satisfy

Bm tð Þ ≥ ξm · xml tð Þ · Eml tð Þ + 〠
N

n=1
xm,n tð Þ · Em,n tð Þ

 !
: ð17Þ

3.5. Problem Formulation. In our work, the primary goal is
to minimize the total costs resulted by task offloading and
dropping while guaranteeing the energy of the mobile device
not be exhausted. Let cos tn,mðtÞ be the price of server n
computing one bit data for device m in time slot t and α >
0 be the penalty of dropping tasks. Then, the total cost of
the MEC system can be expressed as

cost tð Þ = 〠
M

m=1
costm tð Þ = 〠

M

m=1
ξm · 〠

N

n=1
xm,n tð Þ cos tn,m tð Þ · Lm + α · xmd tð Þ

 !
:

ð18Þ

Define the transmission power vector in time slot t as p
ðtÞ ≜ ðpm,nðtÞ,m ∈M&n ∈N Þ and the local computing fre-
quency vector as f ðtÞ = ð f mðtÞ,m ∈MÞ. The operation vec-
tor of the MEC system in time slot t can be defined as
OpðtÞ = ðxðtÞ, pðtÞ, f ðtÞÞ. Therefore, the computation off-

loading problem can be formulated as follows:

P1 : min
Op tð Þ

lim
T⟶∞

1
T
〠
T−1

t=0
cost tð Þ

s:t: 1ð Þ, 3ð Þ, 6ð Þ, 10ð Þ, 11ð Þ, 13ð Þ, 14ð Þ, 15ð Þ, 17ð Þ:
ð19Þ

Since tasks have clear deadlines in this paper, we do not
use delay or latency as the optimization goal. Most of previ-
ous works [9–15, 30–35] only focus on reducing energy con-
sumption and the computation latency and do not consider
the overheads of the servers. However, task offloading con-
sumes bandwidth resource and computing tasks on the
server which leads to the costs of memory and energy of
the servers. Besides, service providers usually have their
own pricing strategy. The price may be related to task type,
computational complexity, and the usage of bandwidth and
computation resources in every time slot which can be time
varying. Note that as long as cos tn,mðtÞ is i.i.d, then our algo-
rithm proposed in the following section can achieve near-
optimality system performance based on drift-plus-penalty
frameworks.

4. Dynamic Offloading Algorithm Design

In this section, we will propose an online algorithm based on
the framework of Lyapunov optimization to solve the com-
putation offloading problem formulated above. By dynami-
cally making greedy offloading decisions, the algorithm can
obtain near minimum costs while pushing the residual
energy of edge devices towards the configurable parameter
θm. Considering the residual energy of battery is not i.i.d,
we advocate the weighted perturbation method [36] to solve
this issue.

To stabilize the energy queue (i.e., the residual energy of
battery), we define a virtual energy queue ~BmðtÞ ≜ BmðtÞ −
θm. It is worth to note that when the virtual queue is stable,
the energy queue is also stable. Let LðtÞ denote the Lyapunov
function, which is

L tð Þ ≜ 1
2 〠

M

m=1
~B
2
m tð Þ: ð20Þ

Then, the conditional Lyapunov drift can be defined as
follows:

Δ tð Þ ≜ E L t + 1ð Þ − L tð Þ ~Bm tð Þ��Â Ã
= 1
2 〠

M

m=1
~B
2
m t + 1ð Þ − ~B

2
m tð Þ

� �

= 〠
M

m=1
~Bm tð Þ · Z tð Þ + 1

2Z
2 tð Þ

� �
,

ð21Þ

where ZðtÞ = emðtÞ − ξðtÞm · ðxmlðtÞ · EmlðtÞ −∑N
n=1xm,nðtÞ ·

Em,nðtÞÞ. Considering that emðtÞ, EmlðtÞ, ξmðtÞ, and Em,nðtÞ
are all equal or greater than 0 and xmlðtÞ and xm,nðtÞ can

not both be 1, Z2ðtÞ ≤max ðe2mðtÞ, E2
mlðtÞ, E2

m,nðtÞÞ.

4 Wireless Communications and Mobile Computing



Offloading tasks to server leads additional costs; hence,
∑N

n=1xm,nðtÞ · Em,nðtÞ = 0 holds when device m needs more
energy to offload tasks than execute those tasks locally.
Therefore, the inequation Z2ðtÞ ≤max ðe2mðtÞ, E2

mlðtÞ, E2
m,nðt

ÞÞ holds. Then, the following inequality also holds:

Δ tð Þ ≤ C + 〠
M

m=1
~Bm tð Þ · em tð Þ − ξm · xml tð Þ · Eml tð Þ − 〠

N

n=1
xm,n tð Þ · Em,n tð Þ

 ! !
,

ð22Þ

where C = ðM/2Þ max ððEmax
mh Þ2, κ · cm · Lm · ð fmax

m Þ2Þ.
Define the virtual energy queue vector of time slot ~BðtÞ

≜ ð~BmðtÞ,m ∈MÞ, and then, the drift-plus-penalty function
can be express as

Δv tð Þ ≜ Δ tð Þ +V · E cost tð Þ ~B tð Þ��Â Ã
, ð23Þ

where E½x ∣ y� is the expectation of x under the condition of y
. Combine (22) and (23), we have

Δv tð Þ ≤ 〠
M

m=1
~Bm tð Þ · em tð Þ − ξm · xml tð Þ · Eml tð Þ − 〠

N

n=1
xm,n tð Þ · Em,n tð Þ

 ! !

Á +V · E cost tð Þ ~B tð Þ��Â Ã
+ C:

ð24Þ

Then, P1 can be converted to P2 which approximately
minimize the right-hand side of (24) subject to every con-
straints of P1.

4.1. Calculations of Decision Parameters. In each time slots,
all the edge devices m with ξm = 1 should firstly compute
decision-related parameters and then make greedy decisions
from offloading, locally computing, and dropping tasks
based on those parameters. For locally executing, the device
m should determine the CPU frequency of locally comput-
ing and the minimum energy cost of finishing the tasks.
For offloading, the device m needs to calculate the minimum
energy cost of communication associated with task offload-
ing for every server n and correspondent transmission
power.

4.1.1. Calculations for Locally Executing. According to equa-
tion (5), EmlðtÞ is monotone increasing with f mðtÞ when
f mðtÞ ≥ 0. Combine (2) and (3), we have f mðtÞ ≥ ðcm · Lm/τ
Þ. Therefore, EmlðtÞ ≥ κ · ðc3m · L3m/τ2Þ holds according to (5).
Denote the minimum energy cost for locally executing and
the correspondent frequency as Eml′ ðtÞ and f m′ ðtÞ; then, we
have Eml′ ðtÞ = κ · ðc3m · L3m/τ2Þ and f m′ ðtÞ = ðcm · Lm/τÞ.
4.1.2. Calculations for Offloading. For every server n in m’s
communication range, m solves Em,n′ ðtÞ =min fEm,nðtÞg,
s.t. (10) and (11). Note that the function Em,nðtÞ = f ðpm,nðtÞ
Þ has no obvious monotonicity; the minimum energy cost
of offloading from m to n can be obtained by following tra-
versal method. For pm,nðtÞ from pmin

m to pmax
m , use Δ p as the

step length, calculate all Em,nðtÞ which satisfies the condition
(10) according to (9) and (12), and obtain the minimum

energy cost Em,n′ ðtÞ and the correspondent transmission

power pm,n′ ðtÞ.

4.2. Computation Offloading Algorithm. According to P2,
items I1, I2, I3, and I4 are related to energy harvesting, task
offloading, task dropping, and locally executing, respectively,
and only an item of I2, I3, and I4 can be active in one time
slot. Considering all those items are irrelevant, P2 can be
converted into minimizing I1, I2, I3, and I4, respectively.
To find the minimum values of those items, it needs to be
discussed in the three cases which are ~BmðtÞ = 0, ~BmðtÞ < 0,
and ~BmðtÞ > 0.

When ~BmðtÞ = 0, I1 and I4 equals to 0. Assume that the
edge devicem decides to offload tasks to one of those servers,
then ∑N

n=1xm,nðtÞ = 1 and I2 > 0 holds. Assume that the edge
device m decides to drop tasks, then xmdðtÞ = 1 and I2 > 0
holds. Hence, executing tasks locally leads I2 + I3 + I4 to
be minimum (equals to 0). Note that there will be enough
energy to execute the tasks locally when ~BmðtÞ = 0; therefore,
the strategy under the condition ~BmðtÞ = 0 can be described
as follows: use the optimal frequency f m′ ðtÞ to execute the
tasks locally, store all or part of the harvestable energy in
the battery, and update the residual energyBmðt + 1Þ accord-
ing to (16).

When ~BmðtÞ < 0, obtain Eml′ ðtÞ, f m′ ðtÞ, Em,n′ ðtÞ, and pm,n′ ð
tÞ using the method mentioned above. Compute costs for
every server n using costn,m′ ðtÞ =V · Lm · costn,mðtÞ − ~BmðtÞ ·

P2 : min
Op tð Þ

ξm 〠
M

m=1
~Bm tð Þ · em tð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

I1

+ V · α · xmd tð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
I3

− ~Bm tð Þ · xml tð Þ · Eml tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4

+〠N

n=1xm,n tð Þ V · Lm · cos tn,m tð Þ − ~Bm tð Þ · Em,n tð ÞÀ Á
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

0
BBB@

1
CCCA:

ð25Þ

5Wireless Communications and Mobile Computing



Em,n′ ðtÞ. Find the minimum item under the constraint (17) in

the set fcostn,m′ ðtÞ,V · β,−~BmðtÞ · Eml′ ðtÞ, n ∈N g. If the result
is costn∗ ,m′ ðtÞ, then choose server n∗ to offload tasks with the

power pm,n∗′ ðtÞ. Else if the results goes to −~BmðtÞ · Eml′ ðtÞ, then
use the frequency f m′ ðtÞ to locally executing tasks. Otherwise,
drop the tasks. Store all the harvestable energy in the battery
and update the residual energy Bmðt + 1Þ accordingly.

When ~BmðtÞ > 0, I3 ≥ 0, I4 ≤ 0, and the sign of I2 is not
guaranteed. Hence, the computation offloading decision
only can be locally executing or offloading. Solve Em,n′ ′ðtÞ =
arg min V · Lm · cos tn,mðtÞ − ~BmðtÞ · Em,n′ ′ðtÞ and obtain Em,n′
′ for all the server n. Em,n′ ′ can be obtained by using iterative
calculation method mentioned above similarly. After that,
solve Em,n∗′ ′ðtÞ = arg min V · Lm · cos tn∗ ,mðtÞ − ~BmðtÞ · Em,n∗′ ′
ðtÞ and obtain pm,n∗′ ′ðtÞ, Em,n∗′ ′ðtÞ, and n∗. According to (5),
using fmax

m to execute tasks locally leads the highest energy
consumption. Hence, if V · Lm · cos tn∗ ,mðtÞ − ~BmðtÞ · Em,n∗′ ′ð
tÞ < Eml′ ′ðtÞ, choose server n∗ and use the transmission
power pm,n∗′ ′ðtÞ to offloading tasks. Otherwise, use frequency
fmax
m to execute tasks locally. In terms of energy harvesting,
abandon all the harvestable energy.

Based on the Lyapunov optimization framework, the com-
putation offloading strategy above can obtain nearly the mini-
mum long time average costs and achieve the minimum costs
when V ⟶ +∞. However, the strategy always tries to push
the energy queue to θm which may lead edge devices to try their

best to consume energy when ~BmðtÞ > 0. For example, edge
devices will choose the server with the longest distance to off-
load tasks when the charges of servers (cos tn,mðtÞ, n ∈N ) are
the same and use the largest frequency to execute tasks locally.
The harvestable energy also will be discarded to increase energy
consumption. In fact, executing tasks locally with f m′ ðtÞ is not
only beneficial to save energy but also reduce the service fee of
the servers when ~BmðtÞ ≥ 0. Besides, harvesting all the harvest-
able energy can efficiently increase the residual energy of edge
devices and ability to cope with energy scarcity (e.g., harvesting
little energy for a long time). To summarize and improve the
computation offloading above, we propose Lyapunov-based
computation offloading algorithm (i.e., Algorithm 1) as follows.

The complexity of Algorithm 1 is Oðm ∗ nÞ in each time
slot t. It is very lightweight and can be easily implemented in
a distributed manner where each device only needs to know
the distance and costs of its neighbor servers and can make off-
loading decisions locally. In this paper, we do not consider the
interface between links. Note that Algorithm 1 will try its best
to reduce offloading to achieve a lower service cost; hence, the
transmission collision will also be reduced. Moreover, maximal
matching-based algorithms [37, 38] can be adapted to our algo-
rithm in the cases when the links interfere with each other.

5. Performance Evaluation

To validate the effectiveness of our proposed approach, we
conduct simulations in this section. We consider a MEC

Lyapunov-based computation offloading algorithm.
Input: ðξðtÞ, eðtÞ, t ∈T Þ, G = ðM,N Þ, ðcostn,mðtÞ, dm,nðtÞ, γm,nðtÞ,m ∈M, n ∈N , t ∈T Þ, σ, κ,G = ðM,N Þ,g0, ðBmð0Þ, Bmax

m , fmax
m ,

pmax
m , Lm, cm,m ∈MÞ.
Output: The offloading strategy of different edge devices.
for each time slot tdo

for each device m with ξm = 0, harvest all the energy and update Bmðt + 1Þ.
end for
for each device m with ξm = 1do
obtain BmðtÞ and f m′ ðtÞ, then compute ~BmðtÞ.
if~BmðtÞ ≥ 0, use f m′ ðtÞ for local computing.

harvest all the energy emðtÞ, store it in battery, and update Bmðt + 1Þ.
else compute Eml′ ðtÞ according to (2),(3),(5) and (6).

for all the n, device mdo
solve Em,n′ ðtÞ =min fEm,nðtÞg s:t:ð10Þ, ð11Þ,
obtain Em,n′ ðtÞ and pm,n′ ðtÞ accordingly,
compute costn,m′ ðtÞ = V · Lm · cos tn,mðtÞ − ~BmðtÞ · Em,n′ ðtÞ.

end for
find minimum element in fcostn,m′ ðtÞ, V · α,−~BmðtÞEml′ ðtÞ, n ∈N g, s.t.(13).
if the element is costn∗ ,m′ ðtÞ, choose sever n∗and use pm,n∗′ ðtÞ to offloading tasks.

else if the element is −~BmðtÞEml′ ðtÞ, use f m′ ðtÞ for local computing.
else drop the tasks.
end if
harvest all the energy, and update Bmðt + 1Þ.

end if
end for

end for

Algorithm 1

6 Wireless Communications and Mobile Computing



system with 5 mobile edge devices and 3 edge servers. For
simplicity, all the harvestable energy of edge devices is i.i.d
and obeys the same distribution. The harvestable energy em
ðtÞ in every time slot t is λðtÞ ∗ 4 ∗ 10−7 J, where λðtÞ is sub-
ject to the Poisson distribution with E½λðtÞ� = 5. The task
arriving process of each edge devices is assumed to be a Ber-
noulli process. The task arriving probabilities of device 1 to
device 5 are f0:1, 0:3, 0:5, 0:7, 0:9g. The maximum CPU fre-
quencies of all the edge devices are 2GHz. Lm = 1000 bit for
all devices m ∈M. The time slot length τ is 4ms, and Bmð0Þ
is 0 J for all m ∈M. We also assume κ = 10−28 and cm = 1000.

To embody the mobility sufficiently, we assume that the
distance between any edge device and any server takes a ran-
dom value from ½10, 70� metres in every time slots. We
assume that d0 = 5 meters, σ2 = 10−13W, cos tn,mðtÞ = 10−6
per bit and γm,nðtÞ = 1 for m ∈M and n ∈N , w = 1MHz,
pmin
m = 1mw and pmax

m = 50mw for m ∈M, and ψ = 4. θm is
set to 2 ∗ 10−4 J.

Figures 1 and 2 show the residual energy processes of all
5 edge devices under the condition V = 10−8 and V = 10−6,
respectively. α is set to 2 ∗ 10−3, and simulations are run
for 500 time slots. From Figure 1, we can see that the resid-
ual energy of devices 3, 4, and 5 increases at first and then
stabilizes around the perturbation parameters θm, respec-
tively, which exactly keeps the advantages of our algorithm.
The reason why the residual energy of devices 1 and 2 is with
growing tendencies is that the harvestable energy is enough
to sustain all the tasks being executed locally. Figure 2 shows
that as V grows to 10−6, the residual energy of devices 3, 4,
and 5 can still reach a steady state with values which are
much lower than that of V = 10−8. Note that the average
residual energy of edge devices decreases as V increases;
we will show that the value of V also influences the total
costs of the MEC system and can trade-off energy perfor-
mances and costs later.

Figure 3 demonstrates computation offloading processes
of devices 2 (D2) and 4 (D4) under V = 10−8. At the begin-
ning, both devices keep harvesting energy and dropping
tasks to push their residual energy to θm (the residual energy
processes are shown in Figure 1). When their residual energy
increases to a certain value, both devices stop dropping tasks
and begin to offload tasks to servers for remote execution. As
time goes on, both devices will begin to execute tasks locally
when their residual energy goes to some value (e.g., near by
θm when V = 10−8). Since the harvestable energy of device 2
is enough to execute all tasks locally, device 2 executes nearly
all tasks some time slots later (nearly the 100th time slot). To

0 100 200 300 400 500
0

1

2

3
×10–4

Number of time slots

Re
sid

ua
l e

ne
rg

y 
(J

)

 

Device 1
Device 2
Device 3

Device 4
Device 5

Figure 1: Residual energy of edge devices vs. time as V = 10−8.

0 100 200 300 400 500
0

1

2

3
×10–4

Number of time slots

Re
sid

ua
l e

ne
rg

y 
(J

)

 

Device 1
Device 2
Device 3

Device 4
Device 5

Figure 2: Residual energy of edge devices vs. time as V = 10−6.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Number of time slots

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

D2 Offload
D2 Drop
D2 Local

D4 Offload
D4 Drop
D4 Local

Figure 3: Computation offloading processes of devices 2 and 4.

7Wireless Communications and Mobile Computing



stabilize the energy queue, part of the tasks of device 4 is exe-
cuted locally while others are offloaded to servers some time
later.

According to our energy queue stability definition
(showed in equation (15)), the convergence time should be
Oðθm − εÞ, where ε is a positive number. Hence, the conver-
gence time is no larger than OðθmÞ which is approximately
equal to θm/EðemðtÞÞ. In our simulation, the harvestable
energy emðtÞ in every slot t is λðtÞ ∗ 4 ∗ 10−7 J, where λðtÞ
is subject to the Poisson distribution with E½λðtÞ� = 5 and
θm is set to 2∗10-4 J; hence, the convergence time is about
100 time slots. Although the residual energy of device 1
and device 2 seems never converging to a fixed value in
Figure 1, the offloading decision processes have reached a

stable state at about the 100th time slot. As can be seen from
Figure 3, D2 stops dropping and offloading and executes
nearly all tasks after the 100th time slot.

Figure 4 shows the total costs of all the edge devices with
different parameter V . We can see that the total costs
decrease with the increasement of V . As shown in
Figure 1, the long-time average residual energy of edge
devices decreases as the parameter V increases. Therefore,
parameter V does trade-off energy performances and the
total costs.

To evaluate the performance of our algorithm in terms
of reducing the total system costs, we compare our proposed
algorithm against three other strategies: strategy where all
tasks are executed locally with the optimal frequency f ml′
(local only), strategy where all tasks are offloaded to the
serve with the minimum service costs (offloading only),
and the strategy where edge devices randomly make choice
from locally executing and offloading and choose random
server to offloading when they have decided to execute tasks
remotely (random). Figure 5 demonstrates the total costs of
all the edge devices vs. time under the condition V = 10−7.
The results show that our algorithm performs significantly
better in comparison to other three comparison algorithms.

Figure 6 shows the residual energy dynamic of device 4
by using different strategies which are the proposed algo-
rithm, local only, offloading only, and random strategy.
The parameter V is set to 10−7. Since the harvestable energy
of devices 1 and 2 is sufficient to execute all computing tasks
locally, the residual energy will keep growing until it reaches
Bmax
m . Devices 3 and 5 have a similar energy process as that of

device 4; hence, we only show the results of device 4.
Figure 6 demonstrates that our algorithm can use the har-
vestable energy more effectively and stabilize the residual
energy to a preset value.

–9 –8.5 –8 –7.5 –7 –6.5 –6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Log10V

To
ta

l c
os

ts

Device 1
Device 2
Device 3

Device 4
Device 5

Figure 4: Total costs of edge devices vs. V .

0

0.2

0.4

0.6

0.8

1

1.2

1.4

To
ta

l c
os

ts

Proposed
Local only

Offloading only
Random

0 100 200 300 400 500
Number of time slots

Figure 5: Total costs by different algorithms.

0

1

2

3

4

5

6

Re
sid

ua
l e

ne
rg

y 
of

 d
ev

ic
e 4

 (J
)

Proposed
Local only

Offloading only
Random

0 100 200 300 400 500
Number of time slots

×10–4

Figure 6: Residual energy processes of different algorithms over
device 4.

8 Wireless Communications and Mobile Computing



Figure 7 shows the effects of the parameter α on compu-
tation offloading decisions under the condition V = 10−7. Y
axis is the total number of execution times of all the edge
devices. As α goes larger, the number of task dropping will
decrease, and the number of offloading will increase. When
the tasks have high intertask dependencies, we can set α to
a large value to avoid task dropping.

6. Conclusions

In this paper, an online and lightweight algorithm has been
proposed for solving the computation offloading problems
in energy harvesting MEC systems with multiuser and mul-
tiserver. Based on stochastic Lyapunov optimization frame-
work, the proposed algorithm can minimize the total
system costs and guarantee the devices’ residual energy sta-
bilized to a preset value. It needs no prior knowledge of
the harvestable energy and the task arrival rates and can
make trade-off between system costs and the residual energy
by a parameter V . The algorithm is also light-weighted and
can be easily implemented in a distributed manner since
each device can make offloading decisions locally only based
on the distance and service costs of its neighbor servers. Our
evaluation data shows that the proposed algorithm can take
fully use of the harvestable energy and effectively reduce the
total system costs caused by computing services and task
droppings.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This paper is supported by the Natural Science Foundation
of Shaanxi Province of China (Project No. 2020JQ-647).

References

[1] M. Li, X. Zhou, T. Qiu, Q. Zhao, and K. Li, “Multi-relay
assisted computation offloading for multi-access edge comput-
ing systems with energy harvesting,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 10, pp. 10941–10956, 2021.

[2] J. Lu, Q. Li, B. Guo et al., “Amulti-task oriented framework for
mobile computation offloading,” IEEE Transactions on Cloud
Computing, vol. 10, no. 1, pp. 187–201, 2022.

[3] A. Boukerche, S. Guan, and R. E. De Grande, “A task-centric
mobile cloud-based system to enable energy-aware efficient
offloading,” IEEE Transactions on Sustainable Computing,
vol. 3, no. 4, pp. 248–261, 2018.

[4] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. Richard Yu, and T. Huang,
“When serverless computing meets edge computing: architec-
ture, challenges, and open issues,” IEEE Wireless Communica-
tions, vol. 28, no. 5, pp. 126–133, 2021.

[5] J. Li, R. Wang, and K. Wang, “Service function chaining in
industrial Internet of Things with edge intelligence: a natural
actor-critic approach,” IEEE Transactions on Industrial Infor-
matics, vol. 1, no. 1, pp. 1–10, 2022.

[6] X. Li, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Advancing
software-defined service-centric networking toward in-
network intelligence,” IEEE Network, vol. 35, no. 5, pp. 210–
218, 2021.

[7] E. El Haber, T. M. Nguyen, and C. Assi, “Joint optimization of
computational cost and devices energy for task offloading in
multi-tier edge-clouds,” IEEE Transactions on Communica-
tions, vol. 67, no. 5, pp. 3407–3421, 2019.

[8] H. Tout, A. Mourad, N. Kara, and C. Talhi, “Multi-persona
mobility: joint cost-effective and resource-aware mobile-edge
computation offloading,” IEEE/ACM Transactions on Net-
working, vol. 29, no. 3, pp. 1408–1421, 2021.

[9] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous
driving in vehicular edge computing and networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 1,
no. 1, pp. 1–14, 2022.

[10] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min,
“Energy-efficient offloading for DNN-based smart IoT systems
in cloud-edge environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 3, pp. 683–697, 2022.

[11] H. Zhao, W. Du, W. Liu, T. Lei, and Q. Lei, “QoE aware and
cell capacity enhanced computation offloading for multi-
server mobile edge computing systems with energy harvesting
devices,” in IEEE SmartWorld, Ubiquitous Intelligence & Com-
puting, Advanced & Trusted Computing, Scalable Computing
& Communications, Cloud & Big Data Computing, Internet
of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), pp. 671–678, Guang-
zhou, China, 2018.

[12] J. Zhao, L. Deng, Y. Liu, and J. Sun, “Energy-efficient partial
offloading in mobile edge computing under a deadline con-
straint,” in International Conference on Intelligent Technology
and Embedded Systems (ICITES, pp. 14–21, Chengdu, China,
2021.

0.9 1 1.1 1.2 1.3 1.4 1.5
×10–3

0

100

200

300

400

500

600

700

800

a

N
um

be
r o

f e
xe

cu
tio

ns

Dropped
Local computing
Offloading

Figure 7: The influence of α on offloading decisions.

9Wireless Communications and Mobile Computing



[13] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. Shen,
“Energy efficient dynamic offloading in mobile edge comput-
ing for Internet of Things,” IEEE Transactions on Cloud Com-
puting, vol. 9, no. 3, pp. 1050–1060, 2021.

[14] S. Mao, L. Liu, N. Zhang et al., “Reconfigurable intelligent
surface-assisted secure mobile edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 6,
pp. 6647–6660, 2022.

[15] G. Yang, L. Hou, X. He, D. He, S. Chan, and M. Guizani, “Off-
loading time optimization via Markov decision process in
mobile-edge computing,” IEEE Internet of Things Journal,
vol. 8, no. 4, pp. 2483–2493, 2021.

[16] Q. Luo, S. Hu, C. Li, G. Li, andW. Shi, “Resource scheduling in
edge computing: a survey,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2131–2165, 2021.

[17] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O.
Wu, “Edge computing in industrial internet of things: archi-
tecture, advances and challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.

[18] H. Han, L. Fang, W. Lu,W. Zhai, Y. Li, and J. Zhao, “AGCICA
grant-free random access scheme for M2M communications
in crowded massive MIMO systems,” IEEE Internet of Things
Journal, vol. 9, no. 8, pp. 6032–6046, 2022.

[19] D. Zhai, C. Wang, R. Zhang, H. Cao, and F. R. Yu, “Energy-
saving deployment optimization and resource management
for UAV-assisted wireless sensor networks with NOMA,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 6,
pp. 6609–6623, 2022.

[20] X. Guo, L. Liu, Z. Chang, and T. Ristaniemi, “Data offloading
and task allocation for cloudlet-assisted ad hoc mobile clouds,”
Wireless Networks, vol. 24, no. 1, pp. 79–88, 2018.

[21] H. Zhu, Q. Wu, X. Wu, Q. Fan, P. Fan, and J. Wang, “Decen-
tralized power allocation for MIMO-NOMA vehicular edge
computing based on deep reinforcement learning,” IEEE Inter-
net of Things Journal, vol. 9, no. 14, pp. 12770–12782, 2022.

[22] A. Bozorgchenani, S. Disabato, D. Tarchi, and M. Roveri, “An
energy harvesting solution for computation offloading in fog
computing networks,” Computer Communications, vol. 160,
no. 1, pp. 577–587, 2020.

[23] X. He, Y. Chen, and K. K. Chai, “Delay-aware energy efficient
computation offloading for energy harvesting enabled fog
radio access networks,” in IEEE 87th Vehicular Technology
Conference (VTC Spring), pp. 1–6, Porto, Portuga, 2018.

[24] Z. Sun, M. Zhao, and M. R. Nakhai, “Computation offloading
in energy harvesting poweredMEC network,” in IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6, Mon-
treal, QC, Canada, 2021.

[25] J. Zhang, J. Du, C. Jiang, Y. Shen, and J. Wang, “Computation
offloading in energy harvesting systems via continuous deep
reinforcement learning,” in IEEE International Conference on
Communications (ICC), pp. 1–6, Dublin, Ireland, 2020.

[26] W. Zhou, L. Xing, J. Xia, L. Fan, and A. Nallanathan,
“Dynamic computation offloading for MIMO mobile edge
computing systems with energy harvesting,” IEEE Transac-
tions on Vehicular Technology, vol. 70, no. 5, pp. 5172–5177,
2021.

[27] Y. Mao, C. S. You, J. Zhang, K. B. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communication Surveys & Tutorials, vol. 70,
no. 2017, pp. 2322–2358, 2017.

[28] Y. Zuo, S. Jin, S. Zhang, Y. Han, and K.-K. Wong, “Delay-lim-
ited computation offloading for MEC-assisted mobile block-
chain networks,” IEEE Transactions on Communications,
vol. 69, no. 12, pp. 8569–8584, 2021.

[29] W. Zhang, G. Zhang, and S. Mao, “Joint parallel offloading and
load balancing for cooperative-MEC systems with delay con-
straints,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 4, pp. 4249–4263, 2022.

[30] M. Wu, W. Qi, J. Park, P. Lin, L. Guo, and I. Lee, “Residual
energy maximization for wireless powered mobile edge com-
puting systems with mixed-offloading,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 4, pp. 4223–4228, 2022.

[31] S. Nath and J. Wu, “Deep reinforcement learning for dynamic
computation offloading and resource allocation in cache-
assisted mobile edge computing systems,” Intelligent and Con-
verged Networks, vol. 1, no. 2, pp. 181–198, 2020.

[32] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan,
“Mobility-aware multi-user offloading optimization for mobile
edge computing,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 3341–3356, 2020.

[33] S. Guan, A. Boukerche, and A. Loureiro, “Novel sustainable
and heterogeneous offloading management techniques in pro-
active cloudlets,” IEEE Transactions on Sustainable Comput-
ing, vol. 6, no. 2, pp. 334–346, 2021.

[34] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization
for efficient hierarchical federated learning in wireless edge
networks,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 33, no. 11, pp. 2687–2700, 2022.

[35] J. Feng, W. Zhang, Q. Pei, J. Wu, and X. Lin, “Heterogeneous
computation and resource allocation for wireless powered fed-
erated edge learning systems,” IEEE Transactions on Commu-
nications, vol. 70, no. 5, pp. 3220–3233, 2022.

[36] M. J. Neely and L. Huang, “Dynamic product assembly and
inventory control for maximum profit,” in IEEE Conference
on Decision and Control (CDC), pp. 2805–2812, Atlanta,
USA, 2010.

[37] X. Lin and N. B. Shroff, “The impact of imperfect scheduling
on cross-layer congestion control in wireless networks,”
IEEE/ACM Transactions on Networking, vol. 14, no. 2,
pp. 302–315, 2006.

[38] J. G. Dai and B. Prabhakar, “The throughput of data switches
with and without speedup,” in IEEE International Conference
on Computer Communications (INFOCOM), pp. 556–564,
Tel Aviv, Israel, 2000.

10 Wireless Communications and Mobile Computing


	Offloading Cost Optimization in Multiserver Mobile Edge Computing Systems with Energy Harvesting Devices
	1. Introduction
	2. Related Work
	3. System Model and Problem Formulation
	3.1. Task Model
	3.2. Local Computation Model
	3.3. Offloading Computation Model
	3.4. Energy Model
	3.5. Problem Formulation

	4. Dynamic Offloading Algorithm Design
	4.1. Calculations of Decision Parameters
	4.1.1. Calculations for Locally Executing
	4.1.2. Calculations for Offloading

	4.2. Computation Offloading Algorithm

	5. Performance Evaluation
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



