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Outsourcing data to cloud services is a good solution for users with limited computing resources. Privacy and confidentiality of
data is jeopardized when data is transferred and shared in the cloud. The development of searchable cryptography offers the
possibility to solve these problems. Symmetric searchable encryption (SSE) is popular among researchers because it is efficient
and secure. SSE often requires the data sender and data receiver to use the same key to generate key ciphertext and trapdoor,
which will obviously cause the problem of key management. Searchable encryption based on public key can simplify the key
management problem. A public key encryption scheme with keyword search (PEKS) allows multiple senders to encrypt
keywords under the receiver’s public key. It is vulnerable to keyword guessing attacks (KGA) due to the small size of the
keywords. The proposal of public key authenticated encryption with keyword search (PAEKS) is mainly to resist inside
keyword guessing attacks. The previous security models do not involve the indistinguishability of the same keywords
(w0 × × =w1), which brings the user’s search pattern easy to leak. The essential reason is that the trapdoor generation
algorithm is deterministic. At the same time, most of the existing schemes use bilinear pair design, which greatly reduces the
efficiency of the scheme. To address these problems, the paper introduces an improved PAEKS model. We design a lightweight
public key authentication encryption scheme based on the Diffie-Hellman protocol. Then, we prove the ciphertext
indistinguishability security and trapdoor indistinguishability security of the scheme in the improved security model. Finally,
the paper demonstrates its comparable security and computational efficiency by comparing it with previous PAEKS schemes.
Meanwhile, we conduct an experimental evaluation based on the cryptographic library. Experimental results show that the
computational overhead of our scheme compared with the ciphertext generation algorithm, trapdoor generation algorithm and
test algorithm of other schemes Our scheme reduces 274, 158 and 60 times, respectively.

1. Introduction

It has become increasingly important and popular to use
cloud storage services due to the rapid development of cloud
computing. Based on the characteristics of high efficiency
and low cost, cloud computing has attracted great attention
from academia and industry. Users are able to upload their

own data such as text, audio, and video. It can not only save
their own local storage costs but also facilitate data access at
any time. In addition, cloud storage services provide the abil-
ity to share data. Since cloud servers are not fully trusted,
they are likely to be bribed by third parties through other
means, which makes the transfer and storage of plaintext
data a privacy breach. The data owner is not in direct
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management and control of the data. How to ensure the
security and privacy of data during data sharing is the first
challenge encountered in cloud server storage.

Encrypting sensitive data before sending it to a cloud
server is the most natural method. In the case where the
ciphertext is saved directly to the cloud server, finding a spe-
cific file from among hundreds or thousands of encrypted
files becomes challenging. Cloud storage is the most conve-
nient way for users to download and decrypt all their files,
and then locate the needed files or data from the plaintext
obtained. Considering the high communication overhead
between users and cloud storage, and the processing costs
to decrypt data from user-owned devices, this solution is
clearly unrealistic. It would be ideal if the cloud server would
search for ciphertext data based on requirements of each
user, then return the matching ciphertext data, and then
the user would decrypt it. To solve the above problems,
searchable encryptions (SE) are proposed.

Symmetric searchable encryption (SSE) and public key
searchable encryption (PEKS) are two types of searchable
encryption. In 2004, Boneh et al. [1] were the first to study
the search problem of data encrypted by the public key sys-
tem. Any data sender (DS) can use the public key of the data
receiver to encrypt keywords. The data receiver (DR) can
generate a trapdoor and send it to the server through a
secure channel to search the encrypted data. They also dis-
cussed the relationship between PEKS and identity based
encryption (IBE) and pointed out that PEKS scheme with
semantic security under adaptive keyword selection attack
contains IBE scheme with IND-ID-CCA security [2].

It was Byun et al. [3] who observed the keyword space
was very small compared to the key space, which discovered
that offline keyword attacks are possible and successfully
thwarted Boneh’s scheme. The adversary could intercept
the trapdoor and could perform unlimited trapdoor tests,
which allowed keyword guessing attacks to succeed. This
enables external attacks to be prevented from being
launched by the adversary by protecting the trapdoor from
being leaked, e.g. a secure method is achieved by establishing
a secure communication channel between the recipient and
the server, where only the server can access the trapdoor.
Thus, its security can be ensured. Another solution idea is
by limiting the testing capability of the adversary. That is,
by specifying the PEKS of the tester. However, both methods
do not work against malicious servers. How to resist mali-
cious servers is another problem solved by PEKS.

Huang and Li [4] introduced authentication techniques
in PEKS, namely Public Key Authentication Encryption with
Keyword Search (PAEKS) to resist malicious server attacks.
In PAEKS, DS encrypted and authenticated keywords, and
trapdoors can only be generated by legitimate recipients, which
prevented adversaries from performing brute force tests. It was
not until Qin et al. [5] that the PAEKS model was brought into
question as [4] was unable to capture a real threat. In this sce-
nario, the outsider choses multiciphertext attacks, i.e. deter-
mining if two encrypted files share some keywords. The
PAEKS scheme Pan and Li [6] proposed follows scheme [5],
achieving multiciphertext indistinguishability (MCI-security)
and multitrapdoor indistinguishability (MTI-security) with

high computational complexity. A security flaw was discovered
soon after Qin et al. [7] spotted the scheme [6]. Their ciphertext
indistinguishability security (CI-security) models all fail to be
resistant to the fully selected keyword attack.

1.1. Motivation and Contributions. This study is motivated
by the algorithm proposed by Qin et al. [7] and their analysis
of the security system of PAEKS. In their analysis of key-
word guessing attacks, [7] pointed out that most schemes
often take into account the indistinguishability of ciphertext,
i.e., the semantic security of the selected keywords. In other
words, if the adversary does not get the trapdoor that chal-
lenges the keywords w0 and w1, it only requires the adver-
sary to distinguish between the keyword w0 encryption or
w1 encryption. In light of the following basic fact, Qin con-
sidered that a document usually contained multiple key-
words, and the same keyword may appear several times.

Therefore, [7] reconsidered the ciphertext indistinguish-
ability security model of PAEKS, which is multiciphertext
indistinguishability. It is worth noting that adversaries can
ask for ciphertext for any keyword, including challenging
keywords. This means if the model can resist an attack that
involves fully selected keywords; it can protect the user’s
access pattern. However, [7] only considers the security of
full ciphertext, not the security of full trapdoor. Trapdoor
generation algorithm is a deterministic encryption algorithm
in [7]. A malicious adversary can accurately record how
often a user searches for different trapdoors, thus providing
insight into his search pattern. In that case, the search pat-
tern of users must be protected. In addition, most of the
existing PAEKS schemes are constructed based on bilinear
mapping. The result is high computing overhead for the cli-
ent side and poor practicability. We need to design a light-
weight PAEKS scheme for lightweight computing devices
in order to better promote the application.

(i) Firstly, we discuss different types of adversary capa-
bilities, analyze the security of the PAEKS scheme,
and describe the security model of the hidden
matching relationship

(ii) Secondly, we design a PAEKS scheme without bilin-
ear pairing. Our scheme satisfies both trapdoor
indistinguishability and ciphertext indistinguish-
ability before the cloud server runs the test algo-
rithm. In other words, our base scheme protects
the user’s search pattern and access pattern against
adversaries Type-II

(iii) Finally, we provide an extended keyword approach
that hides the matching relationship between key-
word ciphertexts and trapdoors after the cloud ser-
vice executes the test algorithm against adversaries
Type-III. We analyze the security and efficiency
comparison

1.2. Organization. In section 2, contains a review of related
works. Preliminary cryptographic notations and definitions
are presented in section 3. We analyze previous PAEKS
schemes in section 4. We present the PAEKS scheme and a
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searchable encryption scheme derived from it in section 5. In
section 6, we present the security proof of the scheme. In
section 7, we present our time consumption comparison
with others. Lastly, we present our conclusions in section 8.

2. Related Works

The KGA is a serious concern for public key searchable
encryption. It is shown that one of the main reasons the key-
word will be attacked by an adversary under KGA if the key-
word space is in a polynomial size. In the literature, there
have been some attempts to implement IKGA security. Xu
et al. [8] proposed Public Key Encryption for Fuzzy Key-
word Search (PEFKS), where each keyword corresponds to
an exact keyword search trapdoor and a fuzzy keyword
search trapdoor. The keyword space of PEFKS was very
small, but malicious parties were also unable to learn accu-
rate keywords. Later, Chen et al. [9] pointed out that in [8]
the server cannot accurately guess the keyword. As long as
it knows which small set the basic keyword belongs to, it
cannot protect the keyword privacy very well. [9] analyzed
another main reason for keyword guessing attacks.

The vulnerability is caused by the fact that anyone with
knowledge of an external receiver’s public key can generate
the PEKS ciphertext of any keyword. A malicious server
may select a guess keyword when presented with a trapdoor,
and then use it to generate ciphertext using PEKS. Then the
server can guess whether the keyword hidden under the
trapdoor is the right keyword until the correct keyword is
found. As long as the two servers do not collide, [9] pro-
posed a method for preventing attacks using dual-server
public key encryption with keyword search. Sun et al. [10]
took into account the fact that the server was malicious,
and they explored whether a PEKS scheme against inside
KGA can be built based on different public key cryptosys-
tems, such as PKI based, identity-based, or certificateless
cryptosystem. In order to improve the scheme’s efficiency,
the researchers proposed a construction of PAEKS based
on word-independent smooth projective hash functions
(SPHFs) and PEKS [11–19].

Combining attribute-based encryption (ABE) and
searchable encryption (SE), a fine-grained search scheme is
obtained. This combination leads to the development of SE
schemes suitable for multiuser scenarios. The ciphertext is
linked to the access policy in ciphertext-policy of ABE
(CP-ABE), and the user’s key is associated with a set of attri-
butes. Therefore, searchable scheme based on attribute
encryption can resist IKGA, which mainly depends on the
security of attribute encryption. Zheng et al. [20] developed
the first fine-grained searchable encryption scheme by using
both the variants of CP-ABE. In order to reduce the amount
of calculation, efforts had been made in some schemes
[21–23]. Schemes [24–28] tried to reduce the storage and
calculation cost of keyword ciphertext, key and search token.
In this paper, we mainly improve the computational effi-
ciency and retrieval efficiency of key ciphertext and trapdoor
in the smallest basic unit of searchable encryption structure,
that is, only two parties share data. If we study the most basic
units clearly, it will promote multiuser scenario.

3. Preliminaries

In this section, we introduce some basic concepts of cryptog-
raphy, the definition of schemes, security models, threat
models, and design goals.

3.1. Notations. The notations are described in Table 1.

3.2. Pattern Leakage. The set Q is a q-query set consisting of
pairs ði,wÞ, with i representing the timestamp of a query and
w representing a keyword. The access pattern [29] is as
follows:

(i) Access pattern. Documents containing a given key-
word appear in the search results. The access pattern
is defined as apðwÞ = fIDðwÞg for quering keyword
w, where IDðwÞ denotes the IDs of documents con-
taining w

(ii) Search pattern. It shows the links between particular
keywords and search queries. Its search pattern is
defined as spðwÞ = fijði,wÞ ∈Qg for quering key-
word w,.

3.3. Inverted Index. Database indexes store maps between
content (such as words or numbers) and their location in a
table, or in a file or group of files.

(i) Create inverted index. First, all the raw data are
numbered to form a list of documents. Then, the
document data is extracted to obtain a large number
of keywords, which are indexed by entry. The num-
bering information of the documents containing
these entries is kept. It can also be referred to as an
index matrix. As depicted in Figure 1

(ii) Search process. The user enters any keyword and
brings the keyword to an inverted index list for
matching. By looking up these terms, the numbers
of all documents containing them can be found.
Documents are then found in the document list
based on these numbers

3.4. The Adversary Attack Capability. Here we divide the
adversary capabilities into 3 Types.

(i) Type-I: The adversary collects some the ciphertext
and trapdoor of keywords, and they do not know
the correspondence between ciphertext and plaintext

(ii) Type-II: The adversary collects all the ciphertext and
part of the trapdoor of the keyword submitted by the
data receiver, and only knows part of the matching
relationship between the submitted trapdoor and
the ciphertext. It is worth noting that the adversary
does not know the matching relationship between
the trapdoor being challenged and the ciphertext

(iii) Type-III: The adversary stores all the ciphertexts of
keywords and all the trapdoors submitted by the
data receiver, and knows the matching relationship
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between all the trapdoors and ciphertexts, including
the trapdoors that challenge keywords

3.5. The Computational Diffie-Hellman Assumption (CDH).
Computational Diffie-Hellman assumption (CDH): let G
be a cyclic group, which has a prime order q, and Pi be a
generator of G1. Given the tuple (Pi, aPi, bPi) E Gi, R where
a, b-Z, there is no probabilistic polynomial time (PPT) algo-
rithm to get abP, E Gj. We define the advantage.

Let G is a cyclic group, which has a prime order p, and g
be generator of G. We get two elements ga and gb from G.
The gab needs to be calculated. CDH is hard to solve in
the G

3.6. The Hash Diffie-Hellman Assumption (HDH). G is a
cyclic group. Its order is p. The generator is g. Given H
: f0, 1g∗ ⟶ f0, 1ghLen be a security cryptographic hash
function. The advantage of A is negligible for a polynomial
adversary A . The advantage is AdvHDH

A ðλÞ = jPr½Aðg, ga,
gb, RÞ = 1� − Pr½A ½ðg, ga, gb,HðgabÞÞ = 1�j, where a, b ∈ Zp,
R ∈ ½0, 1�hLen

3.7. The Definition of PAEKS. A PAEKS scheme includes five
polynomial algorithms, which are Setup, KeyGen, PAEKS,
Trapdoor, and Test. The specific construction is described
as follows:

(i) pp⟵ SetupðλÞ: it is an algorithm for generating
global parameters. Input a security parameter λ,
and outputs a global public parameter pp

(ii) ðPK , SKÞ⟵KeyGen(pp): providing participants
with a public/private key pair is its responsibility

(a) ðPKS, SKSÞ⟵KeyGenðppÞ: it is sender’s key
generation algorithm. Input pp, and generates
public and private key ðPKS, SKSÞ

(b) ðPKR, SKRÞ⟵KeyGenðppÞ: the receiver gen-
erates keys with this algorithm. Input pp, and
generates public and private key ðPKR, SKRÞ

(c) ðPKCS, SKCSÞ⟵KeyGenðppÞ: this is the algo-
rithm used by the cloud server to generate keys.

Input pp, and generates public and private key
ðPKCS, SKCSÞ.

(iii) Cw ⟵ PAEKS(SKS, PKR, PKS,w): the DS per-
forms the operation. Input SKS, PKR, PKS,w, and
returns corresponding ciphertext Cw

(iv) Tw′ ⟵ Trapdoor(SKR, PKR, PKS, PKCS,w′): The
procedure is performed by DR. Input SKR, PKR, P
KS, PKCS,w′, and returns corresponding trapdoor
Tw′

(v) 0/1⟵ Test(PKR, PKS, SKCS, Cw, Tw): the cloud
server manages the process. Input PKR, PKS, SKCS,
Cw, Tw′. If w′ ∈W , outputs 1; else, outputs 0

Correctness: given Cw and Tw′, and we formulate consis-
tency as follows:

If w =w′, Pr½TestðSKCS, PKR, PKS, Cw, Tw′Þ = 1� = 1

3.8. System Model. The system includes the following parties:
Cloud Server (CS), Data Sender (DS), and Data Receivers
(DR) as depicted in Figure 2.

(i) Data Sender (DS): The DS produces his own public
key and private key upon inputting the security
parameter. Moreover, DS extracts keywords from
files, and generates index matrix, and computes
the searchable keywords ciphertexts. Finally, the
DS stores ciphertexts on the CS

(ii) Data Receiver (DR): Request Users utilize targeted
keywords to generate search trapdoors and send
them to the CS

(iii) Cloud sever (CS): The Cloud Server has almost
unlimited storage and computing power in the
PAEKS system. The CS is in charge of storing
searchable ciphertexts received from DS. Then, the
CS addresses search queries and returns corre-
sponding searching results ciphertexts to DR

3.9. Threat Model. In this paper, it supposes that DS honestly
follow the PAEKS algorithm to produce searchable cipher-
texts for DO. DR honestly follows the Trapdoor algorithm
to produce trapdoor. The CS is supposed to be honest and
curious, who will honestly perform Test algorithm, and is
interested in query results and frequency information of
ciphertext.

3.10. The Security Models of PAEKS. As part of PAEKS
semantic security model, there is fully cipher-keyword indis-
tinguishability (Fully CI-security) and fully trapdoor indis-
tinguishability (Fully TI-security). Our fully CI-security
and fully TI-security model is the same as [4, 5, 7] in set-
tings. In addition, we propose that a PAEKS scheme for
adversary Type-II, which should also meet the security of
hiding its matching relationship. ie the matching relation-
ship security model of Hidden Ciphertext and Trapdoor
(HMR-security).

Table 1: BRIEF SYNTHESIS OF NOTATIONS.

Symbol Description

G1 The cyclic group

g The generator of G1

H1,H2 Hash function

PK , SK Public and private keys of each participants

W The keywords space

ID wð Þ The IDs of documents containing w

ap wð Þ Set of file IDs containing the keyword w

Q Set of q query

i,wð Þ i denotes the timestamp of a-query
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3.11. Fully CI-Security Model

(i) Given adversary A and the security parameter λ

(ii) Initialization. The challenger C firstly runs the algo-
rithm SetupðλÞ to generate the system parameter pp.
C runs KeyGenðppÞ to generate DS’s key pairs ðP
KS, SKSÞ, DR’s key pairs ðPKR, SKRÞ and CS’s key
pairs ðPKCS, PKCSÞ, respectively. C gives pp, PKS,
PKR and PKCS to A

(iii) Phase 1. A asks for polynomial oracle OC and OT

(iv) Challenge. After Phase 1, outputs w∗
0 and w∗

1 . C
picks a coin b ∈ ½0, 1�. Sends Cw∗

b
to A

(v) Phase 2.A can remain to query the oracles as Phase1

(vi) Guess. Finally, A returns a bit b′ ∈ ½0, 1� as the guess
of b

A wins in the above game if he guesses b′ = b. The
advantage of A winning this game is defined as

(i)

AdvIND−CI
A λð Þ = Pr b′ = b

h i
−
1
2

����
����: ð1Þ

Definition 1 (Fully CI-Security). A PAEKS scheme satisfies
cipher-keyword indistinguishable against chosen keywords
attacks if the advantage AdvIND−CI

A ðλÞ of succeeding in the
above game is negligible for any polynomial A .

3.12. Fully TI-Security Model

(i) Given adversary A and security parameter λ

(ii) Initialization. C firstly performs SetupðλÞ to gener-
ate parameter pp. Then, C runs KeyGenðppÞ to gen-
erate DS’s key pairs ðPKS, SKSÞ, data receiver’s key
pairs ðPKR, SKRÞ and cloud sever’s key pairs ðP
KCS, PKCSÞ, respectively. C gives pp and PKS, PKR
and PKCS to A

(iii) Phase 1. A adaptively asks C queries on OC and OT

, and gets ciphertext and trapdoor of query
keywords

(iv) Challenge. After Phase 1, it outputs w∗
0 and w∗

1 with
the restriction that w∗

0 and w∗
1 never be queried on

oracle OC and OT by A in Phase 1. Then, C picks
a coin b ∈ ½0, 1� and sends the trapdoor keyword
Tw∗

b
to A

(v) Phase 2. As Phase 1, A can continue to query the
oracles

(vi) Guess. Finally, A returns a bit b′ ∈ ½0, 1� as the guess
of b and wins the game if b′ = b

The adversary A wins in the above game if he guesses
b′ = b. The advantage of A winning this game is defined as

AdvIND−TI
A λð Þ = Pr b′ = b

h i
−
1
2

����
����: ð2Þ

Definition 2 (Fully TI-Security). A PAEKS scheme satisfies
trapdoor indistinguishability against chosen keywords
attacks if for any PPT adversary A , the advantage Ad
vIND−TI
A ðλÞ of succeeding in the above game is negligible.

3.13. HMR-Security Model. Let A be an adversary and λ be
the security parameter.

(i) Initialization. C first runs the algorithm SetupðλÞ to
generate the system parameter pp. Then, it runs Ke

ID

1
2
3
4
5

f1
f2
f3
f4
f5

w1, w2, w4, w5
w1, w3

w1, w2, w4
w1, w2, w3, w4, w5

w3, w4

keywordfile

(a) Extract keywords from files

f1 f2 f3 f4 f5

w1

w2

1 1 1 1 0

w3

w4

w5

1 0 1 1 0

0 1 0 1 1

1 0 0 1 1

1 0 0 1 0

(b) Index matrix

Figure 1: Inverted index.

Test (Tw, CW) = 1

Upload encrypt
files and keywords 

Result Cloud sever

Data receiver
(PKR, SKR)

Authorization Data sender
(PKS, SKS)

PKS

PKR

Tw = Trapdoor (SKR, PKS, w)

Cw = PAKES (PKR, SKS, w)

Figure 2: The system model of PAEKS.
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yGenðppÞ to generate DS’s key pairs ðPKS, SKSÞ,
DR’s key pairs ðPKR, SKRÞ and CS’s key pairs ðP
KCS, PKCSÞ, respectively. C gives parameters pp, P
KS, PKR and PKCS to A

(ii) Phase 1. In this approach, A asks PPT queries on the
cipher-keyword, trapdoor, and test oracles, and then
receives cipher and trapdoor responses to the query
keywords and test results, as follows:

(a) C runs PAKESðPKR, SKS,wÞ for any keyword w,
and sends Cw to A

(b) C runs TrapdoorðPKS, SKR, PKCS,w′Þ for any key-
word w′, and sends Tw′ to A

(c) For any the cipher Cw and trapdoor Tw′ of keyword
w and w′, C runs TestðSKCS, PKR, Cw, Tw′Þ, and if
w′ =w, outputs 1; else, outputs 0

(iii) Challenge. After Phase 1, it outputs two challenge
keywords w∗

0 and w∗
1 . Then, C picks a coin b ∈ ½0,

1� and d ∈ ½0, 1�. Sends Cw∗
b
and Tw∗

d
to A

(iv) Phase 2. A can continue to query the oracles as
Phase 1. But cannot query OC and OT with w∗

0
and w∗

1

(v) Guess. Finally, A returns two bit b′, d′ ∈ ½0, 1� as the
guess of b, d

A wins in the above game if he guesses b′ = b and d′ = d.
The advantage of A winning this game is defined as

AdvHMR
A λð Þ = Pr b′ = b

� �
∧ d′ = d
� �h i

−
1
2

����
����: ð3Þ

Definition 3 (HMR-Security). A PAEKS scheme satisfies
matching relationship security model of Hidden Ciphertext
and Trapdoor (HMR-security) if the advantage AdvHMR

A ðλÞ
succeeding in the above game is negligible for any polyno-
mial A .

3.14. Design Goals. Our goal is to design an efficient PAEKS
scheme, which can resist external keyword guessing attack
and internal keyword guessing attack, and prevent the leak-
age of search and access pattern for adversary Type-II.

4. Previous PAEKS Schemes

In this section, we firstly analyze the relationship between
keyword ciphertext indistinguishability and access pattern
and the relationship between trapdoor indistinguishability
and search pattern. Secondly, it analyzes whether the previ-
ous PAEKS really meet the indistinguishability of ciphertext
and trapdoors for external enemies and malicious servers.

Finally, we give suggestions and methods for adversary with
different abilities.

4.1. Why Should we Define the Indistinguishability of Cipher
and Trapdoor of Keywords?

(i) TI-Security and Search Pattern. It is well known that
the disclosure of search pattern will reflect users’
search habits. If the PAEKS scheme does not meet
the indistinguishability of trapdoors, trapdoors for
the same keyword are the same. This allows the
adversary to classify the keywords through the trap-
door, thus revealing the user’s search pattern. It can
be seen that if the trapdoor does not meet the indis-
tinguishable properties, the user’s search pattern will
be divulged. The adversary can accurately guess the
keywords by combining some a priori knowledge

(ii) CI-Security and Access Pattern. Access pattern dis-
closure will reflect the data file information match-
ing keywords, such as the frequency of different
keywords and documents. If the PAEKS scheme
does not meet the indistinguishability of keyword
ciphertext, the ciphertext of the same keyword is
the same. Therefore, the adversary can guess the key-
words through the matched file information and
prior knowledge

Based on the above analysis, we believe that PAEKS
should meet at least the above two points to be considered
secure if we want to achieve the purpose of search and access
pattern without being compromised.

4.2. Security Analysis of Previous PAEKS Schemes. We dis-
cuss the close relationship between indistinguishable cipher-
text and indistinguishable trapdoor from the following three
aspects for different types of adversaries.

(i) CI-Security and Not TI-Security. If the ciphertext of
the keyword in PAEKS meets the indistinguishability,
the trapdoor is discontent the indistinguishability, as
shown in Figure 3(a). Three different ciphertexts of
keyword w1 are represented by ellipsoids of three dif-
ferent colors. We can see that the ciphertext C1, C2,
andC3 are indistinguishable. The trapdoor does not
satisfy indistinguishability. If the adversary obtains
trapdoor T1, after testing the algorithm, he can
understand that C1, C2, and C3 are the ciphertext of
the same keyword, which the indistinguishability of
the ciphertext loses its function. The access pattern
will be compromised. Therefore, this Test algorithm
plays a key role in above process. It is worth noting
that this also provides an idea for us to solve the
problem of access pattern disclosure

(ii) Not CI-Security and TI-Security. As shown in
Figure 3(b), three boxes with different colors indi-
cate that the three trapdoors T1, T2, T3, for the
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keyword w1 are different. So, it meets the indistin-
guishability of trapdoor. C1 does not satisfy the
indistinguishability of ciphertext. If the adversary
obtains ciphertext C1, after testing the algorithm,
he can understand that T1, T2, T3 is the trapdoor
of the same keyword, which makes the user’s search
pattern leak

(iii) CI-Security and TI-Security. As shown in
Figure 3(c), combined with Figures 3(a) and 3(b)
analysis, the adversary can also get relevant infor-
mation. To be specific, if the adversary gets T1, the
matching ciphertext is fC1, C2, C3g. Similarly, for
T2, T3, the matching ciphertext is fC1, C2, C3g.
The adversary can know that T1, T2, andT3 are
trapdoors with the same keyword. The solution is
the same as above

Based on the study above, for adversary Type-I and
Type-II, we can solve the problem of access pattern and
search pattern disclosure by specifying an honest server.
However, if it is the adversary Type-III, the existing schemes
do not protect their privacy from the perspective of access
pattern and search pattern [4–7]. In other words, none of
them can resist leakage abuse attacks [30]. One possible
solution is to store data distributed on servers so that statis-
tics are not completely compromised if there is an honest
server. Next, for the adversary Type-III, we will solve this
problem from another angle.

5. Construction

In this section, we first introduce a PAEKS scheme without
bilinear pairs. Secondly, based on this scheme, we padding
the keywords to achieve one cipher at a time from the
ciphertext perspective. In addition, appropriate processing
of the documents containing the key makes it possible to
protect the access patterns.

5.1. Basic Construction. Our algorithm is consisted of five
PPT algorithms, namely, Setup, KeyGen PAEKS, Trapdoor,
and Test. The formal constructions are as follows:

(i) SetupðλÞ: G1 is cyclic groups. The order of G is
prime p. Select two hash functions H1 : f0, 1g∗
⟶ Z∗

p and H2 : G1 ⟶ f0, 1g∗. Choose a ran-
dom generator g of G1. Output the public param-
eters pp = fG1, p, g,H1,H2g.

(ii) ðPK , SKÞ⟵ KeyGen(pp): It is responsible for the
public/private key pair of participants

(iii) The DS chooses a random element y ∈ Z∗
p , and sets

PKS = gy mod p, SKS = y

(iv) The DR selects randomly x ∈ Z∗
p , and sets PKR =

gx mod p, SKR = x

(v) The CS selects randomly z ∈ Z∗
p , and sets be PKCS

= gz mod p, SKCS = z

(vi) PAEKSðSKS, PKR, PKS,wÞ: Choose a random r ∈
Z∗
p , compute C1 = gxr mod p, C2 =H2ðgxr · gt

mod pÞ, where t = gH1ðwklkPKSkPKRÞ, l = PKy
R = gxy .

The ciphertext is Cw = ðC1, C2Þ.
(vii) TrapdoorðSKR, PKR, PKS, PKCS,wÞ: Compute l =

PKx
S = gyx, for keyword w, t = gH1ðwklkPKSkPKRÞ.

Then, choose a random kð1 ≤ k ≤ p − 1Þ, gcd ðk, p
− 1Þ = 1, compute u = gk mod p, T1 = gkz , T2 = ð
t − x · uÞk−1 mod ðp − 1Þ. The trapdoor is Tw = ð
T1, T2Þ.

(viii) TestðPKR, PKS, SKCS, Cw, TwÞ: Compute u′ = T1/z
1

mod p, H2ðPKu′
R · u′T2 · C1 mod pÞ= ?C2. If so, it

outputs 1; otherwise, it outputs 0

5.2. Derived Construction. In basic construction, we can
understand that if the PAEKS scheme itself can not hide
the matching relationship between ciphertext and trapdoor
for the adversary Type-III, which it always gets the relation-
ship between ciphertext and trapdoor through Test algo-
rithm. We consider that if we only achieve the hidden
matching relationship in the simple PAEKS scheme, the
solution is to fill in the keyword or attach some state
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Figure 3: Matching relationship.
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information, so that the keyword can achieve the security of
one time pad.

To be specific, in order to prevent the malicious server
from classifying ciphertext and trapdoor through the
tested algorithm this leads to the disclosure of access and
search pattern. We have to expand the external form of
keywords to achieve that the same keyword has different
ciphertext and trapdoor forms Figure 3(d). Meanwhile, if
we want to essentially solve the problem of search pattern
and access pattern leakage, we have to operate on the orig-
inal index matrix. The purpose of this operation is to
achieve the uniqueness of keywords from the external
form.

According to the keywords of the diagram and the fre-
quency information of the document and you can also
make a choice according to your actual situation on how
to construct different expressions of a keyword, here we
give an example Figure 1. Provide the uniqueness of key-
words as follows: Solve the uniqueness of keywords as
follows:

(i) Maximum Number of Searches I. Before uploading
the ciphertext, the DS stipulates that the same key-
word can be searched for several times at most with-
out disclosing the search pattern, and broadcast on
the public channel. If users search more than this
number of times, there is a risk of revealing the
search pattern

(ii) Divided into Several Parts J. To solve the problem
that different keywords return different numbers
of documents, we suggest dividing the returned
documents so that the number of documents
returned each time is not much different. Here,
the data DS needs to determine the maximum
number of parts of a document and broadcast it
to the Data Receiver

(iii) Keyword Form. A keyword w is set to wkikj, where i
stands for the i-th search and j represents the j-th
part of the search. For example Figure 2, we make
the following settings. Note the following facts that
is apðw1Þ = f f1, f2, f3, f4g, apðw2Þ = f f1, f3, f4g, apð
w3Þ = f f2, f4, f5g, apðw4Þ = f f1, f4, f5g, apðw5Þ = f
f1, f4g, let I = 3, J = 2. Thus, the keyword w1,w2,
w3,w4,w5 extension to Table 2

Next, we apply the scheme proposed in Section VII
to encrypt the filled keywords to achieve our purpose,
which is to solve the problem that malicious servers
can resist keyword guessing, search, and access pattern
disclosure.

Remark. Once the data receiver searches for a keyword more
than the predetermined number of times, it is possible to
disclose the search behavior and access pattern. Another
flaw is that the storage cost has doubled. Fortunately, the
peace point of security and efficiency is left to the user to
decide.

6. Security Proof

In this section, we demonstrate that our basic scheme
matches the design goals in the sense that it is capable of
providing soundness and confidentiality. It can resist IKGA
and reduce the possibility of access pattern and search pat-
tern disclosure for adversary Type-II

6.1. Correctness. The ciphertext and trapdoor of keyword w
and w′ are Cw = ðC1, C2Þ and Tw′, respectively. That is C1
= gxr mod p, C2 =H2ðgxr · gt mod pÞ. let Tw′ be the trap-
door of keyword w′ generated by the receiver. u = gk mod
p, T1 = gkz , T2 = ðt ′ − x · uÞk−1 mod ðp − 1Þ, where l = PKx

S

= gyx, t ′ = gH1ðw′klkPKSkPKRÞ. It follows that

(i) u = T1/z
1 = ðgkzÞ1/z = gk

(ii) H2ðPKu
R · uT2 · C1 mod pÞ =H2ðgxu ·

ðgkÞðt ′−x·uÞk
−1 mod ðp−1Þ · gxr mod pÞ =H2ðgxu ·

gðt ′−xuÞ mod ðp−1Þ · gxr mod pÞ =H2ðgt ′ · gxr mod pÞ

If w =w′, t = t ′, then H2ðgt′ · gxr mod pÞ = C2 with
probability 1; otherwise, t ≠ t ′,H2ðgt′ · gxr mod p ≠ C2 with
overwhelmig probability.

6.2. Confidentiality. The following theorems illustrate that
our scheme is IND-CKA and IND-KGA security.

(i) SetupðλÞ: C runs SetupðλÞ and KeyGenðppÞ to gen-
erate the public parameter pp and public/private key
pair of participants ðPKS, SKSÞ = ðgy mod p, yÞ of
Data Sender, ðPKR, SKRÞ = ðgx mod p, xÞ of DR, of
ðPKCS, SKCSÞ = ðgz mod p, z of CS. Then, C sends
ðpp, PKS, PKR, PKCSÞ to A . Based on our

Table 2: Keyword Extension.

Keyword Tag(time I) Tag(part J)

w1

w1 1k k1 w1 1k k2
w1 2k k1 w1 2k k2
w1 3k k1 w1 3k k2

w2

w2 1k k1 w2 1k k2
w2 2k k1 w2 2k k2
w2 3k k1 w2 3k k2

w3 w3 1k k1 w3 1k k2
w3 2k k1 w3 2k k2
w3 3k k1 w3 3k k2

w4

w4 1k k1 w4 1k k2
w4 2k k1 w4 2k k2
w4 3k k1 w4 3k k2

w5

w5 1k k1
w5 2k k1
w5 3k k1
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assumptions, we assume that hash function H1 and
H2 are secure and resistant to collisions

(ii) Phase 1: A sends queries to OC and OT , and C is
simulated as follows:

(a) OC : choose a random r ∈ Z∗
p , compute C1 = gxr

mod p, C2 =H2ðgxr · gt mod pÞ, where t =
gH1ðwklkPKSkPKRÞ, l = PKy

R = gxy. The ciphertext
is Cw = ðC1, C2Þ.

(b) OT : compute l = PKx
S = gyx, for keyword w, t =

gH1ðwklkPKSkPKRÞ. Then, choose a random kð1 ≤
k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, compute u = gk

mod p, T1 = gkz , T2 = ðt − x · uÞk−1 mod ðp −
1Þ. The trapdoor is Tw = ðT1, T2Þ

(iii) Challenge: A selects ðw∗
0 ,w∗

1 Þ. Sends them to C . C
picks a random bit b ∈ f0, 1g. Encrypts w∗

b as
follows:

(a) Choose a random r∗ ∈ Z∗
p , compute C∗

1 = gxr∗

mod p, C2 =H2ðgxr∗ · gt∗ mod pÞ, where t∗ =
gH1ðw∗

bklkPKSkPKRÞ, l = PKy
R = gxy. The ciphertext

is C∗
w∗
b
= ðC∗

1 , C∗
2 Þ

(iv) Phase 2: Oracles continue to be consulted as Phase1

(v) Guess: C outputs a guess b′ ∈ f0, 1g. If b′ = b then,
C wins the game. A has the advantage that is

AdvGame0
A λð Þ = AdvKGAA λð Þ: ð4Þ

Theorem 5. Our scheme PAEKS implements IND-CKA secu-
rity if the HDH assumption holds.

Lemma 6. The advantage AdvCKAA is negligible for any poly-
nomial adversary A .

Proof. Suppose the adversary guesses the key words in the
game, and the correct event is recorded as (b′ = b). We
define games as follows:

Game0. It is the original IND-CKA game.

Game1. Let Game1 be the same game as Game0. Assum-
ing that Game1 is the same game as Game0, except that C
chooses R ∈ G instead of computing t∗ = gH1ðw∗

bklkPKSkPKRÞ.
C sends C∗

w∗
b
= ðC∗

1 , C∗
2 Þ = ðgxr∗ mod p,H2ðgxr

∗ · gR mod pÞ
. We have jAdvGame0

A − AdvGame1
A j < AdvHDH

A ðλÞ, where Ad
vHDH
A ðλÞ is negligible if the HDH assumption holds.

Game2. Let Game2 be the same game as Game1, except
that C random selects C1, C2 ∈G instead of C∗

w∗
b
= ðC∗

1 , C∗
2 Þ

= ðgxr∗ mod p,H2ðgxr∗ · gR mod pÞ. Given that r and R

are random values, the Cw∗
b
of Game1 and Game2 are of

the same distribution as shown by C ′ perspective
We have

AdvGame2
A λð Þ = AdvGame1

A λð Þ: ð5Þ

A can only win Game2 with probability since Cw∗
b
is

independent of b. Thus, the advantage is

AdvGame2
A λð Þ = 1

2
−
1
2

����
���� = 0: ð6Þ

Finally, according to the Game0, Game1, and Game2 we
have

AdvGame2
A λð Þ − AdvKGAA λð Þ

���
��� ≤ AdvHDH

A λð Þ, ð7Þ

where AdvHDH
A ðλÞ are negligible. Therefore, the advantage of

A wins in the IND-CKA game is negligible.

(i) SetupðλÞ: C runs SetupðλÞ and KeyGenðppÞ to
generate the public parameter pp and public/pri-
vate key pair of participants ðPKS, SKSÞ = ðgy
mod p, yÞ of DS, ðPKR, SKRÞ = ðgx mod p, xÞ of
DR, of ðPKCS, SKCSÞ = ðgz mod p, zÞ of CS. Then,
C sends ðpp, PKS, PKR, PKCSÞ to A . Based on
what we know so far about hash functions, we
assume H1 and H2 are secure and collision-
resistant

(ii) Phase 1: A adaptively issues queries to OC and OT ,
and C is simulated as follows:

(a) OC : choose a random r ∈ Z∗
p , compute C1 = gxr

mod p, C2 =H2ðgxr · gt mod pÞ, where t =
gH1ðwklkPKSkPKRÞ, l = PKy

R = gxy . The ciphertext
is Cw = ðC1, C2Þ

(b) OT : compute l = PKx
S = gyx, for keyword w, t =

gH1ðwklkPKSkPKRÞ. Then, choose a random kð1 ≤
k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, compute u = gk

mod p, T1 = gkz , T2 = ðt − x · uÞk−1 mod ðp −
1Þ. The trapdoor is Tw = ðT1, T2Þ

(iii) Challenge: A chooses two keywords ðw∗
0 ,w∗

1 Þ and
sends them to C . C chooses a random bit b ∈ f0, 1
g, and then the trapdoor of the challenge keyword
w∗

b as follows:

(a) Compute l = PKx
S = gyx, for keyword w∗

b , t =
gH1ðw∗

b klkPKSkPKRÞ. Then, choose a random kð1
≤ k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, compute u = gk
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mod p, T1 = gkz , T2 = ðt − x · uÞk−1 mod ðp −
1Þ. The trapdoor is Tw∗

b
= ðT1, T2Þ.

(iv) Phase 2: Oracles continue to be consulted as Phase1

(v) Guess: C outputs a guess b′ ∈ f0, 1g. If b′ = b then
C wins the game. A has the advantage that is

AdvGame0
A λð Þ = AdvKGAA λð Þ ð8Þ

Theorem 7. Our PAEKS scheme implements IND-KGA secu-
rity if the HDH assumption holds.

Lemma 8. The advantage of AdvKGAA is negligible for any
polynomial adversary A .

Proof. Suppose the adversary guesses the key words in the
game, and the correct event is recorded as (b′ = b). We
define games as follows:

Game0. Game0 is the original IND-KGA.

Game1. Let Game1 be the same game as Game0, except
that C chooses R ∈G instead of computing t∗ =
gH1ðw∗

bklkPKSkPKRÞ. C sends the trapdoor is Tw∗
b
= ðT1, T2Þ,

where T1 = gkz , T2 = ðR − x · uÞk−1 mod ðp − 1Þ, kð1 ≤ k ≤ p
− 1Þ, gcd ðk, p − 1Þ = 1, u = gk mod p

We have

AdvGame0
A λð Þ − AdvGame1

A λð Þ
���

��� < AdvHDH
A λð Þ, ð9Þ

where AdvHDH
A ðλÞ is negligible if the HDH assumption

holds.
Game2. Let Game2 be the same game as Game1, except

that the C random chooses T1, T2 ∈G instead of Tw∗
b
= ðT1

, T2Þ, where T1 = gkz , T2 = ðR − x · uÞk−1 mod ðp − 1Þ
,kð1 ≤ k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, u = gk mod p. Due to k
and R are random, which Tw∗

b
of Game1 and Game2 are

the same distribution from adversary’s view.
We have

AdvGame1
A λð Þ = AdvGame2

A λð Þ: ð10Þ

We know that A can only win with probabilityin Game2
because Tw∗

b
is independent of b. Thus, the advantage is

AdvGame2
A λð Þ = 1

2
−
1
2

����
���� = 0: ð11Þ

Finally, according to the Game0, Game1, Game2 we have

AdvGame2
A − AdvKGAA

���
��� ≤ AdvHDH

A λð Þ: ð12Þ

where AdvHDH
A ðλÞ are negligible. Therefore, the advantage of

A wins in the IND-KGA game is negligible.

(i) SetupðλÞ: The challenger C runs SetupðλÞ and Key
GenðppÞ to generate pp and ðPKS, SKSÞ = ðgy mod
p, yÞ, ðPKR, SKRÞ = ðgx mod p, xÞ, and ðPKCS, SKCS
Þ = ðgz mod p, zÞ . Then, C sends ðpp, PKS, PKR, P
KCSÞ to A . Based on our assumptions, we assume
that hash function H1 and H2 are secure and resis-
tant to collisions

(ii) Phase1: A adaptively sends queries to OC , OT and
OTest , and C is simulated as follows:

(a) OC : Choose a random r ∈ Z∗
p , compute C1 =

gxr mod p, C2 =H2ðgxr · gt mod pÞ, where t =
gH1ðwklkPKSkPKRÞ, l = PKy

R = gxy . The ciphertext
is Cw = ðC1, C2Þ.

(b) OT : Compute l = PKx
S = gyx, for keyword w, t

= gH1ðwklkPKSkPKRÞ. Then, choose a random kð1
≤ k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, compute u = gk

mod p, T1 = gkz , T2 = ðt − x · uÞk−1 mod ðp −
1Þ. The trapdoor is Tw = ðT1, T2Þ.

(c) OTest : For any the cipher Cw and trapdoor Tw′
of keyword w and w′, C runs TestðSKCS, PKR

, Cw, Tw′Þ, and outputs 1 if w′ =w; otherwise,
it outputs 0

(iii) Challenge: A selects ðw∗
0 ,w∗

1 Þ. Sends them to C . C
selects a random bit b ∈ f0, 1g, and encrypts w∗

b . C
picks a random bit d ∈ f0, 1g, and the trapdoor of
the challenge keyword w∗

d as follows:

(a) Choose a random r∗ ∈ Z∗
p , compute C∗

1 = gxr
∗

mod p, C2 =H2ðgxr
∗ · gt∗ mod pÞ, where t∗ =

gH1ðw∗
b klkPKSkPKRÞ, l = PKy

R = gxy. The ciphertext
is C∗

w∗
b
= ðC∗

1 , C∗
2 Þ.

(b) Compute l = PKx
S = gyx, for keyword w∗

d , t =
gH1ðw∗

dklkPKSkPKRÞ. Then, choose a random kð1
≤ k ≤ p − 1Þ, gcd ðk, p − 1Þ = 1, compute u = gk

mod p, T1 = gkz , T2 = ðt − x · uÞk−1 mod ðp −
1Þ. The trapdoor is Tw∗

d
= ðT1, T2Þ.

Theorem 9. Our scheme PAEKS implements HMR-Security if
the DL assumption holds.

Lemma 10. The advantage AdvHMR
A is negligible for any poly-

nomial adversary A .

Proof. We define games as follows:
Game0. The Game0 is the original version of this game.

Finally, C sends C∗
w∗
b
and Tw∗

d
to adversary.
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Figure 4: Computation cost of ciphertext generation.

Table 3: Security Comparison.

Schemes Fully CI-security Fully TI-security Search pattern Assumption

HL17 [4] × × × mDLLN and DBDH

QC+20[5] × × BDH

QC+21 [7] × × BDH and CODH

PL21 [6] × × × BDHI

Ours HDH and DL

√: The schemes supporting corresponding features are supported. × : The scheme cannot support the corresponding feature.

Table 4: Operations comparison of PAEKS schemes.

Schemes KeyGen PAEKS Trapdoor Test

HL17 [4] 2EG 3EG +H1 3EG + P +H1 2P

QC+20[5] 2EG 3EG + P +H1 2EG +H1 P

QC+21 [7] 2EG 3EG + P +H1 2EG +H1 P

PL21 [6] 2EG 3EG +H1 3EG + P +H1 P

Ours 3EG 4EG +H1 4EG +H1 3EG

H1: denoting a hash-to-point operation. P: denoting a bilinear pairing operation. EG: denoting a modular exponentiation.
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(iv) Phase 2: Phase 1 continues to be issued by A as
queries to Oracles. There is only one restriction is
that neither C∗

w∗
b
or Tw∗

d
to OTest

(v) Guess. Finally, A returns b′, d′ ∈ ½0, 1� as the guess
of b, d and wins the game if b′ = b and d′ = d

According to the definition of the HMR game, the
advantage of adversary A is

AdvGame0
A λð Þ = AdvHMR

A λð Þ: ð13Þ

According to Theorem 5 and Theorem 7, we know that
the distribution of ciphertext and trapdoor of keywords is
the same as that of random tuples from adversary view. So,
A has to test algorithm to verify whether the ciphertext
matches the trapdoor. Given gz and gkz , which calculating
the value of k is DL problem.

Finally, we have

AdvGame0
A − AdvHMR

A

���
��� ≤ AdvDLA λð Þ, ð14Þ

where AdvDLA ðλÞ are negligible. Therefore, the advantage of
A wins in the HMR game is negligible.

6.3. Security Analysis

(i) Resisting attack IKGA. As far as PAEKS is con-
cerned, only the DS has the ability to generate a legal
ciphertext. The adversary executes the PAEKS algo-
rithm, it cannot generate k. Similarly, the adversary
can not generate the trapdoor of keyword. Test algo-
rithm cannot provide any information to the adver-
sary. Thus, our scheme can resist IKGA

(ii) Access pattern and Search pattern. For adversary
Type-I, we can know that the ciphertext and trap-
door of keywords meet the indistinguishability
according to Theorem 5 and Theorem 7. Therefore,
the access pattern and search pattern are not com-
promised. However, the adversary Type-III can run
the test algorithm, which will reveal some search
information of the user. Then, the adversary can
carry out leakage abuse attacks by combining some
prior knowledge. In addition, we cannot hide the
matching relationship between the ciphertexts and
trapdoors from this type of powerful adversary

7. Comparison and Analysis

We compare our scheme with the authentication based
searchable schemes (HL17 [4], QC+20 [5], QC+21 [7], and
PL21 [6]), which are mainly focused on security comparison.
Then, we count the number of different operations of other
schemes and conduct an empirical performance evaluation
using the Relic and GMP libraries.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50 100 150 200 250 300 350 400 450 500

Tr
ap

do
or

 g
en

er
at

io
n 

tim
e (

s)

Number of keywords

23.48005

23.07834

18.43454

18.34613

0.115528

HL17
QC + 20
QC + 21

PL 21
Ours

Figure 5: Computation cost of trapdoor generation.
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7.1. Comparative Analysis of Security. The Table 3 indicates
the comparison results among the proposed PAEKS.
Again, we emphasize that since the server can perform test
operations, the inseparability of ciphertext and the indis-
tinguishability of trapdoor for the same keyword have no
practical significance unless the keyword is filled in like
the extended version of the scheme. Therefore, we only
compare the indistinguishability of external adversaries or
curious servers before a retrieval token is given. We
adopted the security description of [7]. In the table, we
are only comparing the security of adversary Type-II.
Qin et al. [7] introduced the definition of fully CI-
security and fully TI-security. The mDLIN, DBDH, and
BDHI stand for modified Decision Linear (mDLIN)
assumption, Decisional Bilinear Diffie-Hellman (DBDH)
assumption, and Bilinear Diffie-Hellman Inversion (BDHI)
assumption, respectively. The BDH and CODH stand for
Bilinear DiffieHellman and Computational Oracle Diffie-
Hellman. HL17 [4], QC+20 [5], QC+21 [7], and PL21
[6] have a common feature that they use the DR’s public
key in ciphertext generation and the DR’s private key in
trapdoor generation, which can naturally resist IKGA.
Table 3 shows that only our scheme achieves the fully
CI-security and fully TI-security. Meanwhile, it can protect
the user’s search pattern.

7.2. Time Complexity. The Table 4 shows the number of
operations of each algorithm. EG is a symbol for exponenti-
ation in group G. P is a symbol for the pairing operation. H1
is a symbol for a group element that maps any string to G. In
Table 4, other schemes employ bilinear pair operation,
which greatly reduces the efficiency. The computational
costs of Setup and KeyGen of various schemes are both sim-
ilar and have the same algorithm. Therefore, we just con-
sider Encrypt, Trapdoor, and Test algorithms. Qin et al.’s
[5, 7] schemes need to compute 3 exponentiation operations,
one hash-to-point operation and one pair operation in the
ciphertext phase. Their scheme needs to compute 2 power
operations and one hash-to-point operation in the trapdoor
phase. Huang et al.’s [4] and Pan et al.’s [6] operate the same
number of times in the cipher phase and the trapdoor phase.
Notice that their schemes all use bilinear bilinear operations,
which leads to a large computational overhead. We can see
that our scheme is the fastest in the ciphertext, trapdoor,
and test phases. This is because our algorithm uses power
operations which are computationally less expensive. It can
be seen that our scheme is more suitable for lightweight
devices.

7.3. Evaluation. We can evaluate the effectiveness of the var-
ious schemes (HL17, QC+20, QC+21, and PL21) by
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incorporating Relic and GMP. Platforms used in this exper-
iment include Ubuntu 18.04.5 LTS with Intel(R) Xeon(R)
CPU E5-2620 v4@2.10GHz and 16.00GB of RAM. The
pseudo random permutation was computed using the AES
algorithm (CBC model, 128bit key). The hash functions
were computed using the SHA256 algorithm. We choose
the real Encron Email Dataset (Version 20150307, about
423MB) to demonstrate the practical performance of our
proposed scheme, which contains the data from about 150
users [31]. We choose about 2000 keywords whose lengths
are not less than 5 characters and the total number of occur-
rences is higher than 20.

This paper compares the proposed scheme and the
schemes in HL17, QC+20, QC+21, and PL21 in terms of
PAEKS, Trapdoor, and Test. The keywords were also chosen
randomly for this experiment. As shown in Figures 4–6, we
have the lowest computation cost among the five schemes
for generating ciphertexts, trapdoors, and test. A key point
of the high computational efficiency of our scheme is that
it does not require some bilinear pairing operations, which
can save a lot of computing overhead. In the ciphertexts gen-
eration algorithm, Pan and Li [6] computational overhead is
about 274 times that of ours. Compared to our trapdoor
generation algorithm, Qin et al.’s [5] computation overhead
is about 158 times higher. It is estimated that Qin et al.’s [7]
computational overhead is about 60 times ours in the test
algorithm.

To evaluate the efficiency of the PAEKS algorithm, we
give the time consumption of each algorithm for testing
2000 keywords, as shown in Figure 7. Communication and
network effects were removed in the experimental results.
Note that to generate 2000 keyword ciphertexts in our
scheme, the trapdoor and test take 315.004ms, 452.788ms,
and 204.079ms, respectively. The time cost of generating a
cipher text is 0.1575ms. The time cost to generate a trapdoor
is 0.2264ms. The search algorithm is efficient, with an aver-
age time cost of about 0.102ms for matching. Therefore, our
scheme is more suitable for some lightweight or computa-
tionally constrained devices.

8. Conclusion

In this paper, we have defined different types of adversary
capabilities and firstly, analyze the relationship between
ciphertext indistinguishability, trapdoor indistinguishability,
access pattern, and search pattern. Then, we discuss the
security of existing PAEKS schemes. Based on [7], we add
the full TI-security model so that we can resist the leakage
of search pattern. For adversary Type-II, we design a PAEKS
scheme without bilinear pairs, which greatly improves effi-
ciency compared with the previous project. Because the
scheme does not use bilinear pairs as a whole, it is more suit-
able for edge servers and clients with limited computing
power. In addition, we also put forward a solution on how
to protect access pattern disclosure against adversary Type-
III. Unfortunately, the memory expansion is too large. The
future work is possible to construct a PAEKS scheme that
can protect the search pattern and access pattern and has
less memory overhead.
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