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Feature extraction and recognition of signals are the bases of a cognitive radio. Traditional manual extraction for signals’ features
becomes difficult in the complex electromagnetic environment. Although convolutional neural networks (CNNs) can extract
signal features automatically, they have low accuracy in recognizing electromagnetic signals at low signal-to-noise ratios
(SNRs) due to the agility of signals. Considering the great potential of spiking neural networks (SNNs) in classification, a
spiking convolution neural network (SCNN) for the recognition of electromagnetic signals is proposed in this paper. The
SCNN effectively integrates the extraction ability of spatial features in CNNs and temporal features in SNNs. Since the SCNN
is difficult to train, the strategy of surrogate gradient is proposed to train it. By taking the 2-dimensional time-frequency
distribution of 6 signals as input, the SCNN can effectively identify different signals at low SNRs. The method proposed in this
paper contributes to promote the research and application of SNNs in the recognition of electromagnetic signals.

1. Introduction

Modern electronic warfare is rapidly developing with the
rise of electronic information technology. Electromagnetic
signal identification becomes a critical part of a cognitive
radio (CR) [1]. However, electromagnetic signal wave-
forms appear to be agile and heavily interfered in a diverse
electromagnetic environment. The agility of signals
reduces the performance of earlier recognition methods
based on the interpulse feature [2]. Therefore, in-pulse fea-
tures such as time-frequency features, wavelet packet fea-
tures, wavelet ridge-frequency features, and higher-order
spectrum are widely used for signal recognition by com-
bining support vector machines (SVM) and deep learning
(DL) [3]. As a type of DL, convolutional neural networks
(CNNs) are widely used in target recognition and image
classification. Due to their powerful capability for feature
extraction and generalization, CNNs are quite effective in
the recognition of radar signals [4, 5] and communication
signals [6, 7].

In recent years, many studies have been done on electro-
magnetic signal recognition with CNNs. Some methods
focus on preprocessing the input signals of CNNs to reduce
noise interference [8–10]. Ye et al. use the time-frequency
distribution preprocessed with binarization as the input of
a 3-layer CNN for signal recognition. The recognition accu-
racy of signals at −6 dB is still above 90% [8]. Yao and Wang
preprocess the time-frequency maps with more methods
including symmetric mapping, primary energy ridge extrac-
tion, binarization, and image reset to reduce noise interfer-
ence. Then, they use a pretrained CNN to identify the
preprocessed time-frequency maps and obtain a higher
accuracy than methods with manual feature extraction [9].
Denoising is also an optional method for preprocessing.
When using a residual neural network (ResNet) to denoise
time-frequency maps of radar signals, the Inception-V4 net-
work which combines the inception structure and residual
connections achieves a recognition accuracy of over 90%
for signals at −10 dB [10]. Meanwhile, different features are
constructed for signal recognition [11, 12]. Pu et al. use
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orthogonal slices of Gaussian-smoothed fuzzy function as a
feature extraction target. By learning the features of the
orthogonal slices, the employed CNN achieves a recognition
accuracy of 88.5% for signals at −6 dB [11]. Xie et al. firstly
use chirp decomposition for preliminary classification of sig-
nals. Then, they take the Zernike matrix extracted from
time-frequency maps as the input feature of a ResNet to
complete further classification of the signals. Their method
finally achieves good robust performance on signals’ param-
eters [12]. Some other methods are committed to improving
the structure of networks for improving the recognition
accuracy [13–15]. Lin et al. propose a deep residual shrink-
age attention network for signal recognition. They use the
attention mechanism in ResNet to reduce the impact of
redundant information. Finally, the deep residual shrinkage
attention network achieves excellent recognition accuracy
and good scalability at the same time [13]. In addition, better
performance than either network alone can be achieved by
combining the long- and short-term memory network
(LSTM) and CNN. The combined network fuses time-
domain features with time-frequency domain features, pro-
viding some improvement in the performance for signal rec-
ognition at low SNRs [14, 15].

Nonetheless, there are still some challenges to be consid-
ered and addressed. (1) Most of the CNN-based methods
have low recognition accuracy for signals with low SNRs.
(2) Recognizing electromagnetic signals with CNNs requires
preprocessing methods or manually constructed features to
reduce noise interference, increasing the complexity of signal
processing. (3) Rare electromagnetic signal data, especially
radar signal data, is difficult to meet the requirement for
training deep CNNs. Furthermore, too large networks can-
not easily be applied to mobile devices.

In contrast, spiking neural networks (SNNs) have great
potential for development due to their biointerpretability
and low power consumption. Li et al. use Gaussian-tuned
coding to convert the time-frequency maps into pulses.
Then, a single-layer SNN composed of tempotron neurons
is used to process the pulses for signal recognition. Their
simulations show that a single-layer SNN performs better
than a 3-layer CNN [16]. Li et al.’s results suggest that a sim-
ple SNN may have better performance than a deeper CNN.
Although deeper SNNs were less used due to difficulties in
building and training in the beginning, some studies have
shown that SNNs can be transformed from CNNs [17–19]
or trained with a surrogate gradient [20, 21]. New methods
for building and training SNNs enable SNNs to have good
performance in classification. SNNs have achieved superior
performance in efficiently processing complex and noisy
spatial-temporal information [22]. SNNs show a higher
potential for robustness in many ways compared to CNNs
[23]. The information is less susceptible to random back-
ground noise in SNNs [24].

Thus, the purpose of this study is twofold. First, we pro-
pose a spiking convolution neural network (SCNN) for sig-
nal recognition in this paper. The SCNN combines the
SNN with the CNN. It integrates the temporal and spatial
information of the feature maps for better feature extraction.
At the same time, the SCNN has a smaller model size com-

pared to CNNs with the same accuracy. Second, the method
of surrogate gradient for training the SCNN is given in this
paper. In addition, two key parameters that affect the perfor-
mance of the SCNN are analyzed and explained in detail.
The remainder of this paper is summarized as follows. Sec-
tion 2 describes the principles of time-frequency transform
and SNNs besides the methods used in this paper. Section
3 determines the optimal values of two key parameters of
the SCNN and compares the SCNN’s performance with
those of other networks. The noise generalization perfor-
mance of the SCNN is analyzed at the end of this section.
Finally, the conclusion is given in Section 4.

2. Theory and Methods

Figure 1 illustrates the process of identifying electromagnetic
signals using the SCNN. The signals are first transformed
into time-frequency maps. Then, the time-frequency maps
are used as the input of the SCNN to complete the classifica-
tion. Therefore, the first two layers of the SCNN are convo-
lutional layers which are each followed by a layer composed
of leaky integrate and fire (LIF) neurons. The feature maps
after LIF neurons are then mapped to a pooling layer to
reduce the dimension. And the two fully connected layers
are each followed by a layer consisting of integrate and fire
(IF) neurons. The number of LIF and IF neurons is the same
as the size of the feature map of the previous layer. So, the
LIF and IF layers do not change the size of the feature map.

2.1. Time-Frequency Distribution of Electromagnetic Signals.
In order to avoid the features of one-dimensional signals
being affected by noise, we use time-frequency distributions
to get the features of signals. Different kernel functions cor-
respond to different time-frequency distributions. A series of
time-frequency distributions have been proposed, mainly
including the Choi-Williams distribution (CWD), the
smoothed pseudo-Wigner-Ville distribution (SPWVD),
and the reduced interference distribution (RID) [25]. The
CWD with minimal cross-terms among all unprocessed
Cohen-like distributions is chosen in this paper. Its kernel
function is shown in equation (1) as follows:

ϕ θ, τð Þ = e−θ
2τ2/σ: ð1Þ

The corresponding CWD is described in equation (2) as
follows:

C t,wð Þ =∭ϕ θ, τð Þs u + τ

2
� �

s∗ u −
τ

2
� �

e−j2πwτej2π θu−θτð Þdudθdτ:

ð2Þ

We use six signals commonly used in communication
and radar, including the binary phase shift keying signal
(2PSK), binary frequency shift keying signal (2FSK), qua-
dratic frequency shift keying signal (4FSK), continuous wave
signal (CW), linear frequency modulated signal (LFM), and
nonlinear frequency modulated signal (NLFM). The Choi-
Williams distributions of the 6 signals at 0 dB are given in
Figure 2.
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2.2. Spiking Neural Network. Various spiking neuron models
have emerged, including the Hodgkin-Huxley (HH) model,
integrate-and-fire (IF) model, leaky-integrate-and-fire (LIF)
model, and Izhikevich model [22]. Although its biological
approximation is favourable, the HH model is computation-
ally complex and inconvenient to use in practice. The sim-

plified LIF and IF models have become common and
widely used models, since they reduce the computational
effort of the model while retaining the threshold-based
membrane potential change rules of biological neurons.
Both LIF and IF neurons are integral models. Their mem-
brane potential is influenced not only by the input at the
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Figure 1: The process of identifying electromagnetic signals with the SCNN.
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Figure 2: The Choi-Williams distributions of 6 electromagnetic signals at 0 dB. (a) 2PSK. (b) 2FSK. (c) 4FSK. (d) CW. (e) LFM. (f) NLFM.
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current moment but also by the membrane potential at the
end of the previous moment. When the membrane potential
does not exceed the threshold, the charging process of a
continuous-time neuron can be expressed as equation (3)
as follows:

dV tð Þ
dt

= f V tð Þ, X tð Þð Þ: ð3Þ

Equations (4) and (5) show the charging process of LIF
and IF neurons, respectively.

τn
dV tð Þ
dt

= − V tð Þ −V resetð Þ + X tð Þ, ð4Þ

dV tð Þ
dt

= 1
C
X tð Þ, ð5Þ

where τn is the time constant and V reset is the reset voltage.
An analytical solution to equation (4) cannot be obtained
as the input XðtÞ is a variable. The continuous differential
equation is approximated by the discrete differential equa-
tion (6).

τn V t½ � −V t − 1½ �ð Þ = − V t − 1½ � −V resetð Þ + X t½ �,
V t½ � =V t − 1½ � + X tð Þ:

ð6Þ

For both discrete LIF and IF neurons, their forward
propagation includes two processes, discharge and reset, in
addition to the charging process. The discharge process
can be expressed in equation (7).

S tð Þ =H V tmp −V threshold
� �

, ð7Þ

where V tmp is the voltage of the neuron before releasing the
pulse after charging. V threshold is the threshold voltage at
which the neuron is activated. SðtÞ is the output pulse with
a value of 1 for a released pulse and 0 for an unreleased
pulse. HðxÞ is the step function. For LIF and IF neurons,
the difference lies in the charging process. The membrane
potential of IF neurons remains unchanged in the absence
of input, whereas the membrane potential of LIF neurons
gradually falls below the resting potential in the absence of
input due to leakage and then rises back to the resting
potential.

2.3. Forward Propagation. As shown in Figure 1, the first
convolutional layer is used directly for feature extraction
and has no temporal state. It forms an autocoding layer with
the LIF neurons in the second layer. Since the input of the
first layer does not vary with time, additional computational
effort can be reduced by placing this layer outside the pro-
cess of time steps. In addition, batch normalization is
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Figure 3: Activation of the SCNN based on threshold-based membrane potential change rules.
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performed after each convolution layer to accelerate the con-
vergence of the SCNN.

Figure 3 shows the activation process of the SCNN in
forward propagation. The eigenvalues of the time-
frequency maps are assigned to the LIF neurons and then
start to accumulate at the moment T = 0. When the activa-
tion threshold is reached, the LIF neuron releases a pulse
and sets the membrane potential to V reset = 0. If the neuron
does not activate, the membrane potential is superimposed
directly to the next moment T = 1. At the same time, if there
is no input, the membrane potential will decay at a certain
rate. This process is repeated until the end of the given time
step. The size of the output feature map after the LIF neu-
rons remains the same as the input size. This process com-
pletes the extraction of temporal features and achieves the
fusion of spatial and temporal information.

Unlike the fully connected layers of CNNs which use
probability for classification, the SCNN classifies signals by
the frequency of pulses issued in time T . A higher frequency
indicates a higher probability. The pulse frequency can be

obtained as in equation (8), where j is the class of the signals
and Sjsum denotes the cumulative number of pulses issued by
the jth neuron in time T .

Out j =
Sjsum
T

: ð8Þ

Among all neurons in the last layer, the neuron with the
highest pulse frequency corresponds to the predicted class of
the input signal. Finally, the recognition accuracy of the
SCNN can be determined by equation (9).

Acc =
Npre
N total

, ð9Þ

where Npre is the number of signals correctly predicted and
N total is the total number of signals.

2.4. Backward Propagation. If the SCNN updates the weight
w by backpropagating the error Etotal with gradient descent,
the chain rule in equation (10) gives its gradient transfer.

Table 1: Parameters of 6 signals.

Signals Frequency (MHz) Other parameters Sampling rate (GHz)

2PSK 100 13-bit barker code encoding 2

2FSK 200/400 / 2

4FSK 100/300/500/700 / 2

CW 100 / 2

LFM 100 Time width: 0.4 μs, bandwidth 60MHz 2

NLFM 100 Time width: 0.4 μs, bandwidth 60MHz 2

Table 2: Simulation environment.

Environment CPU GPU Coding language Framework

Version Intel i7-8700K@3.7GHz RTX2080 Python3.8.5 Pytorch1.8.1
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∂Etotal
∂w

= ∂Etotal
∂S

∂S
∂U

∂U
∂w

, ð10Þ

where S denotes the output pulse and U denotes the mem-
brane potential. As we know from equation (7), ∂S/∂U in
equation (10) cannot be derived since SðtÞ is a step function.
The weights cannot be updated directly by gradient descent.
Therefore, the method of surrogate gradient is proposed to
train the SCNN. The commonly used surrogate functions
are the sigmoid function and the Atan function. The approx-
imation effects of the two functions are similar. The Atan
function can be expressed as in equation (11).

f A xð Þ = 1
π
arctan π

2 αx
� �

+ 1
2 : ð11Þ

The approximation effect of the Atan function on the
step function under different α is shown in Figure 4. α can
be regarded as the gradient factor. The larger its value, the
larger the gradient is and the closer it is to the step function.
However, too large α tends to gradient explosion at the
threshold x = 0 and the gradient disappears far from the
threshold, which finally leads to the weights not being
updated in training. In this paper, the Atan function is used

as the surrogate function. We analyze the effect of α to get its
best value for optimal network performance.

3. Results and Discussion

In order to verify the advantages of the proposed SCNN in
recognizing signals at low SNRs, 800 time-frequency maps
of electromagnetic signals are generated for every 3 dB inter-
val in the SNR range from 0dB to −15dB. 600 time-
frequency maps are used for training, and 200 time-
frequency maps are used for testing. To reduce computa-
tional effort, we used grayed-out time-frequency maps for
training and testing. The time-frequency maps are scaled
to a size of 32 × 32 using bicubic interpolation. Tables 1
and 2 show the signals’ parameters and simulation environ-
ment, respectively. 64 time-frequency maps are taken as a
batch. The learning rate is 0.1 at first and then changes by
cosine annealing. Finally, the SCNN is optimized with the
SGD optimizer.

3.1. Impact of the Time Step. As the SCNN accumulates
pulses over time, its performance is affected by the length
of the accumulation time. If the accumulation time is too
short, the spiking neurons cannot be activated to fuse tem-
poral and spatial information. If the accumulation time is
too long, the network becomes very deep in time. The com-
putational effort and inference delay of the SCNN are too
much to meet the real-time requirement for signal recogni-
tion. In this paper, we should first determine an optimal
time step T for accumulating pulses. Theoretically, T only
affects the depth of the SCNN in time. And the gradient fac-
tor α only affects the backpropagation of inaccuracies. Actu-
ally, numerous experiments also show that T and α
independently affect the performance of the SCNN. As a
result, the optimal values of T and α can be obtained by con-
trolling the variables T and α. First, α is kept unchanged. T is
changed from 2 to 14. When recognizing 6 signals from 0dB
to −15 dB, the accuracy trends with iterations are consistent
for the same T at different SNRs. Only the results of α = 2 at
−12 dB are shown in Figure 5 for limited pages. The accuracy
of the SCNN can reach the maximum value and remains rel-
atively stable after 40 iterations when T = 10 and T = 12.
Since an increase in T will lead the increasing of delay, T
= 10 is chosen as the optimal time step.

3.2. Impact of the Gradient Factor. Since T and α indepen-
dently affect the performance of the SCNN, we can keep
the time step T = 10 as we have gotten. The gradient factor
α is changed from 2 to 8. When recognizing 6 signals from
0dB to −15dB, the trends of accuracy with iterations are
consistent for the same α at different SNRs. Only the results
at −12 dB are shown in Figure 6 for limited pages. As shown
in Figure 6, the convergence of the SCNN worsens with
increasing α. It can be seen that the recognition accuracy is
the highest and most stable when α = 2. And α = 2 is finally
adopted.

3.3. Result Comparison of Different Networks. Six electro-
magnetic signals at SNRs from 0dB to −15 dB are identified
with the SCNN when T = 10 and α = 2. Other simulation
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Table 3: Comparison of the composition of different networks.

Model Layers Model size (MB)

SNN1 [16] 1 0.376

CNN3 [8] 3 0.0094

LeNet5 [26] 5 0.239

Improved AlexNet8 [27] 8 99.4

VGG16 [28] 16 512

ResNet18 [29] 18 42.7

The proposed SCNN 8 4.58
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settings are shown at the beginning of Section 3. Table 3
shows the composition and size of different networks.
SNN1 is a single-layer SNN consisting of the temptron neu-
rons [16]. CNN3 is a 3-layer CNN proposed by Ye et al. [8].
5-layer LeNet5 is used by Guo et al. [26]. The improved
AlexNet8 is proposed by Yang et al. [27]. VGG16 is used
by Li and Zhu [28]. Furthermore, as the residual structure
gives better performance of deep CNNs, we make a further
comparison with an 18-layer ResNet18 with a residual struc-
ture [29].

As the recognition accuracy of different networks shown
in Figure 7, it is found that the proposed SCNN and
ResNet18 own better recognition accuracy among all the
models at different SNRs. The reason that ResNet18 per-

forms well is because of the inclusion of the residual struc-
ture [29]. Although the performance of ResNet18 is
comparable to that of the SCNN, the ResNet18’s model size
is about 9 times of the proposed SCNN, which has been
shown in Table 3. In Figure 7, we can also find out that
the recognition accuracy of CNN3 is relatively low due to
its simple structure. With the increasing of depth, the fit
ability of CNN-based models is enhanced, resulting in the
increasing of recognition accuracy for the six signals at dif-
ferent SNRs. Even so, the recognition accuracy of CNN-
based models with a large number of layers, such as
VGG16, is still lower than that of the proposed SCNN. The
outstanding performance of the SCNN compared to CNNs
is attributed to its accumulated information in time which
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Figure 8: Confusion matrices of VGG16 and SCNN for 6 electromagnetic signals at −9 dB/−12 dB/−15 dB. (a) VGG16 tested at −9 dB. (b)
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compensates for its lack of spatial depth. The fusion of tem-
poral and spatial information allows the SCNN to have good
antinoise ability.

Based on the previous analysis, we know that VGG16
has the best performance for all CNNs without a residual
structure. To further illustrate the advantages of the SCNN
over ordinary CNNs without a residual structure, the confu-
sion matrices of VGG16 and the SCNN are given in Figure 8.
As the SNR decreases, the energy of noise covers the energy
of signals. The energy distribution of different signals
becomes blurred in the time-frequency maps, leading to a
decrease in the recognition accuracy of both the VGG16
and SCNN for various signals. But in all, the overall recogni-
tion accuracy of the SCNN is still higher than that of the
VGG16.

Figure 9 shows the recognition accuracy of the SCNN for
each signal at different SNRs, in which we can see that the
recognition of 2PSK is most susceptible to noise. This is
because the energy of frequency components of 2PSK is rel-
atively dispersed compared with other signals, which has
been shown in Figure 2.

3.4. Analysis of Generalization Performance for Noise. In
order to verify the generalization performance of the SCNN
for noise, 6 electromagnetic signals at 0 dB, −3 dB, −6 dB,
and −9 dB are used for training and testing. As shown in
Table 4, the recognition accuracy is very high when the

SNRs of trained signals are lower than or comparable with
those of tested signals. Only when the SNRs of tested signals
are much lower than those of trained signals will the recog-
nition accuracy decline. So, it indicates that the SCNN has
good generalization performance for noise in a certain
SNR range.

4. Conclusions

The SCNN proposed in this paper utilizes the convolutional
layer as visual perception. The LIF neurons and IF neurons
are used to construct the convolutional layers and fully con-
nected layers of the SCNN, respectively. The feature maps
are converted into pulses to obtain temporal information,
which enables the SCNN to perform well in the recognition
of electromagnetic signals. And the outstanding recognition
performance of the SCNN for electromagnetic signals at low
SNRs is verified through the recognition of 6 signals at dif-
ferent SNRs. As a third-generation neural network, informa-
tion transmission in the form of pulses in SNNs has stronger
biological interpretability. The low power consumption of
SNNs can get greater benefits in signal recognition.
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