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In the Internet of Things (IoT), massive interconnected intelligent terminal devices constitute diverse networks. Link prediction
can serve as a powerful inference attack to speculate the sensitive links in the networks, posing a security threat to entity privacy in
IoT. Most antilink prediction methods reduce the prediction ability of link prediction models through link disturbance to hide
sensitive links but fail to consider the impact of node attributes on link prediction. This paper proposes a sensitive link
protection method based on graph embedding (SLPGE) to combat link prediction attacks. This method is aimed at
compressing network topology data into an embedding matrix and lessening private information by combining Variational
Graph Autoencoder (VGAE) and Adversarially Regularized Variational Graph Autoencoder (ARVGA). Based on our
experiment on two datasets, SLPGE reduces the prediction accuracy of two attack models for sensitive links by up to 30.05%
and 15.03% compared to the original data, and the corresponding utility sees a drop of 7.54% and 7.79% at most, which
verifies the feasibility of SLPGE—achieving the tradeoff between privacy protection and data utility effectively.

1. Introduction

To build a highly automated, informative, and intelligent
system, the Internet of Things (IoT) integrates numerous
communication, computing, and sensing devices, ranging
from smartphones to vehicles [1], which is an organic col-
lection of intelligent terminal devices and users. In IoT,
widely distributed terminal devices establish reliable wire-
less links through advanced wireless communication and
network technology, forming distributed multidomain net-
works [2]. Networks are ubiquitous in the real world, such
as communication networks, social networks, biological
networks, and transportation networks, represented by
graphs containing nodes and edges. Similarly, the networks
in IoT can also be regarded as graphs with terminal
devices as nodes and communication links as edges.
Although attractive and convenient, IoT also brings a sig-
nificant challenge, i.e., the concerns on privacy disclosure
[3]. As a new paradigm of big data platform, IoT deploys
smart city applications to timely monitor, analyze, and

respond to volumes of physical data. The data in IoT col-
lected in a distributed manner are strongly correlated with
users’ sensitive status. However, some information plat-
forms disclose private information inadvertently while
trading the data, most likely the graphs in IoT. Further-
more, it does not rule out the possibility that malicious
attackers may spy on entity privacy, analyze network traf-
fic, and track users’ behavior by stealing the complete net-
work graphs, which invade the entity privacy and threaten
the security of the IoT system. At present, the study on
privacy for IoT mainly focuses on the privacy of data,
identity, and location [4], while rarely mentioning graph
privacy, especially the privacy of the communication links
between terminal nodes in graphs, i.e., sensitive links.
Actually, the disclosure of sensitive links will bring many
security threats to the IoT system. For example, some sen-
sitive links usually involve personal privacy, such as the
doctor-patient relationship in smart healthcare, one of the
typical application scenarios of IoT, and the user trajecto-
ries that data requesters may expose when accessing IoT.
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In addition, in the man-in-the-middle (MITM) attack,
hackers will try to intercept private data; control devices
in smart homes, smart industries, and smart healthcare;
or destroy the communication links in the IoT system,
resulting in privacy disclosure, device failure, and even sys-
tem collapse, which seriously threaten personal privacy,
business activities, and industrial operations. Hence, it is
imperative to detach private information from the graphs
in advance. The most straightforward operation to hide
the sensitive links is to delete the sensitive links in the
graphs directly. Unfortunately, sensitive links may be pre-
dicted out of released data through data mining tech-
niques, even if they have been deleted [5]. As an essential
task in data mining, link prediction has been heating up
in recent years. More and more link prediction methods
and their application technologies have been proposed.
Link prediction can predict the relationship between nodes
by mapping the graph information to a continuous vector
space. While being widely applied in network analysis, link
prediction can also be used as an inference attack to spec-
ulate the sensitive links in graphs. Therefore, the data pub-
lisher shall carry out privacy processing for the published
data to defend link prediction attacks while retaining nec-
essary data utility. In recent years, the privacy disclosure
caused by link prediction attacks has attracted researchers’
attention, and many researches on antilink prediction have
emerged. To defend link prediction based on similarity and
deep learning methods, most antilink prediction methods
adopt various link disturbances, e.g., random link distur-
bance, heuristic link disturbance, and evolutionary link dis-
turbance, at the expense of part of data utility [6–13].
Besides, these methods only focus on the graph structure
information and fail to consider the unstructured informa-
tion in graphs, such as node attributes. The node attributes
may include the performance, identity, and type of devices,
deepening the association strength between nodes and
making the attacker’s prediction more accurate. As men-
tioned above, protecting sensitive links against link predic-
tion attacks is an urgent problem to be solved.
Significantly, Li et al. [14] proposed an adversarial privacy
graph embedding (APGE) method to conceal users’ sensi-
tive attributes from inference attacks, which opens up a
novel idea for our work. In this paper, we intend to fill this
blank by developing a graph embedding-based sensitive
link protection method named SLPGE. Our basic idea is
to use the graph embedding model combined with Varia-
tional Graph Autoencoder (VGAE) and Adversarially Reg-
ularized Variational Graph Autoencoder (ARVGA) to
encode graph data into an embedding matrix before pub-
lishing the data. To be concrete, we utilize adversarial
training assisted by two schemes to eliminate private infor-
mation in the embedding matrix. Then, to balance the tra-
deoff between privacy and utility, we design the loss
functions in SLPGE to retain the utility of graph structure
and node labels. The main contributions of this paper are
summarized below:

(i) This article focuses on the privacy protection of sen-
sitive links in IoT and proposes a sensitive link pro-

tection method (SLPGE) to conceal sensitive links
from link prediction attacks

(ii) The results of experiments on two public datasets
with node attributes validate that our SLPGE can
reduce the prediction accuracy of attack models
for sensitive links by 30.05% and 15.03% at most
on the basis of the original data

(iii) Our method achieves a tradeoff between privacy
and utility. Different from the previous method,
our method abandons the idea of directly applying
link disturbance on the original graph to remove
private information, for which we reduce the loss
of utility

The rest of the paper is organized as follows. The related
work and preliminaries are reviewed in Sections 2 and 3,
respectively. The system models and problem formulation
are presented in Section 4. The details of our SLPGE are
described in Section 5. The simulation and results are shown
in Section 6. Moreover, we give the conclusions and future
work in Section 7.

2. Related Work

The emergence of various IoT platforms not only facilitates
people’s lives but also generates a huge volume of data-
carrying personal information. These data can be modeled
into graph structure data, and attackers can then easily
expose the privacy information hidden in graphs via link
prediction. In this section, we briefly introduce the relevant
work of graph privacy protection, link prediction, and antil-
ink prediction.

2.1. Graph Privacy Protection. The main methods of graph
privacy protection include anonymization, random distur-
bance, and clustering. Since Sweeney [15] introduced
anonymization into graph structure data, different anonymi-
zation variants for graphs have also been derived. Ying and
Wu [16] disrupted the graph structure by deleting and add-
ing k edges randomly. Li et al. [17] performed spectral clus-
tering according to the distance between nodes firstly and
then anonymized subgraphs. For the graphs with node
labels, Yuan et al. [18] proposed the protection method of
node attribute label K-anonymity to ensure that the labels
of at least k nodes are the same. Chester and Srivastava
[19] proposed an attribute probability distribution anonym-
ity method to make the probability distribution of the label
carried by each node in the attribute sets of its neighbors
as close as possible to the global label probability distribu-
tion. The random graph modification technology proposed
by Hay et al. [20] is the simplest technology to prevent node
reidentification and edge exposure. Mittal et al. [9] proposed
a link perturbation based on the random walk (LPRW),
which improved the privacy and utility of data compared
with Hay’s method. In edge clustering methods, Liu et al.
[21] proposed privacy protection methods for sensitive edge
weights in weighted graphs, adopting Gaussian noise distur-
bance and greedy disturbance. Zheleva and Getoor [22]
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mainly considered the privacy of graphs with multiple types
of edges and one type of node. Its main idea is to divide the
original graph into subgraphs via spectral clustering and
then modify the links in the subgraphs and add new links
between the subgraphs randomly.

Low data availability and high computational complexity
are the common problems of these methods, and their pri-
vacy will continue to decrease as inference attacks intensify.

2.2. Link Prediction. Link prediction is aimed at predicting
missing facts according to existing entities and has found
wide application in social, biological, and communication
networks. Known for its powerful inference attack, link pre-
diction has been maliciously used to spy on the privacy of
entities in the networks. Among plenty of link prediction
methods, classification models such as support vector
machine (SVM) [23], multilayer perceptron (MLP) [24],
and k nearest neighbor (KNN) [25] regard link prediction
as a binary classification problem, in which the connected
node pairs and unconnected node pairs are regarded as pos-
itive samples and negative samples, respectively.

2.3. Antilink Prediction. At present, most antilink prediction
methods for graph structure data disturb the graph structure
by adding some new links and deleting part of nonsensitive
links strategically to reduce the prediction ability of various
link prediction methods and achieve the privacy protection
of sensitive links. Liu and Terzi [6] proposed to achieve k
-degree anonymization through edge addition or deletion
strategies. Rousseau et al. [7] proposed two approaches that
preserve the coreness of a graph while anonymizing it
through various edge modification operations. Fard and
Wang [8] and Mittal et al. [9] proposed two structure-
aware randomization perturbation methods based on local
perturbation and random walk considering the structural
proximity of nodes. Zhou et al. [10] regarded the links
between the end nodes of a sensitive link and their common
nodes as the candidate links to be deleted and expressed the
attack on local similarity as an optimization problem to
determine which links to delete. Chen et al. [11] proposed
an iterative gradient attack (IGA) method based on integral
gradient information in Graph Autoencoder (GAE). The
gradients obtained by maximizing the loss of sensitive links
represent the influence of other links on sensitive links. Dur-
ing k iterations, n links with the largest gradients are modi-
fied. Yu et al. [12] combated resource allocation (RA)
indicator link prediction via random, heuristic, and evolu-
tionary link disturbance. Among these three methods, ran-
dom link disturbance increases and changes links without
any strategy, heuristic link disturbance reduces the link predic-
tion ranking of node pairs in the test set, and evolutionary link
disturbance selects the links to be added and deleted according
to the fitness function. Waniek et al. [13] selected to delete or
add the most influential links to hide sensitive links by reduc-
ing or creating the closed triangles containing sensitive links.

The methods mentioned above can be used in IoT sys-
tems to avoid the leakage of sensitive links in data transac-
tions. However, two shortcomings are present in the above
methods: the first is that the utility of the graph will be lost

due to link disturbance, and the second is that they lack
the consideration of the impact of node attributes on link
prediction.

3. Preliminaries

As a kind of non-Euclidean data, a graph is difficult to be
directly processed by traditional data analysis methods or
deep learning models such as Convolutional Neural Net-
work (CNN) [26] and Recurrent Neural Network (RNN)
[27] due to the high computational and space overhead.
Graph embedding, also called network representation
learning, is aimed at mapping graph data, usually a high-
dimensional dense matrix to low-dimensional dense vec-
tors. Graph embedding has more flexible and rich calcula-
tion methods to apply deep learning models directly for
graph analysis tasks. Graph Neural Network (GNN) repre-
sents the deep learning method of graph embedding. By
modeling the nodes and communication links in the net-
works, GNN can be applied to solve the privacy disclosure
problem in IoT. For the advantages of feature extraction
from non-Euclidean data, our SLPGE is based on some
GNN models. In this section, the GNN models involved in
SLPGE, e.g., Graph Convolutional Network (GCN), VGAE,
and ARVGA, are briefly introduced. For the sake of clarity,
the frequently used notations and their meanings are listed
in Table 1.

3.1. Graph Convolutional Network. In 2013, Bruna et al.
[28] first proposed the neural network on the graph and
gave two structures based upon a hierarchical clustering
of the domain and the spectrum of the graph Laplacian.
As a typical GNN model, GCN [29] is a scalable approach
for semisupervised learning on graph data, which uses the
spectrum of the graph Laplacian to achieve convolution on
graphs. After each convolution of GCN, the node features
are the weighted sum of the previous features of the nodes
and their neighbor nodes, for which the nodes can aggre-
gate further features with the deepening of layers. Hence,
the superiority of GCN is to incorporate local graph struc-
ture and node features naturally. Suppose the adjacency
matrix A ∈ℝN×N represents the connection relationship
between n nodes, then the layer-wise propagation rule of
GCN is as follows:

Hl+1 = σ ~D
−1/2~A~D

−1/2
HlWl

� �
, ð1Þ

where Hl is the feature matrix of the lth layer, Wl is the train-

able weight matrix, and σð·Þ is an activation function. ~D
−1/2~A

~D
−1/2

is the normalization of ~A where ~A =A + IN , IN ∈ℝN×N

is the identity matrix, ~D is the degree matrix of ~A, and ~Dii =
∑ j

~Aij. The degree of a node is the number of first-order neigh-
bors connected to the node. Equation (1) can be abbreviated as
Hl+1 = f ðHl,AÞ, for A is the input of each layer.
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3.2. Variational Graph Autoencoders. Soon after the pro-
posal of GCN, to expand the capability of GCN, VGAE pro-
posed by Kipf and Welling [30] adopts GCN as an encoder
to generate specific graph embedding for different tasks of
the graph, not limited to node classification. VGAE is an
unsupervised learning framework derived from Variational
Autoencoders (VAE) [31], which obtains graph embedding

through the encoder-decoder structure. VGAE consists of a
two-layer GCN encoder and a simple inner-product
decoder. The two-layer GCN can be defined as follows:

GCN X,Að Þ = f H1,Að Þ = σ �Af H0,Að ÞW1
� �

= �AReLU �AH0W0
� �

W1,
ð2Þ

Table 1: Summary of notations.

Notations Meanings

G The undirected original graph

V The set of nodes in G
Vj j The number of nodes

E The set of edges in G
Ej j The number of edges

vi The ith node

eij The edge between vi and vj

X The node feature matrix of V
F The number of node attributes

A The adjacency matrix of G
Ap The adjacency matrix of privacy graph

At The adjacency matrix of training graph

Â The reconstructed adjacency matrix of G
Âp The reconstructed adjacency matrix of privacy graph

Aij The link state between vi and vj in A

Âij The link state between vi and vj in Â
L The number of categories for node labels

ŷ The node label matrix predicted by softmax classifier with each row includes the predicted values of L categories

Zp The privacy embedding of privacy graph

Zf The link protection graph embedding

Z The higher dimensional graph embedding concatenated by Zf and Zp

m The maximum number of edges added for each sensitive link

Esl The sensitive links in G
Ensl Part of nonsensitive links in G
Eknow The links which are known to the attack models

Llink The reconstruction loss

Llable The node classification loss

Lg The distribution loss of the generator

LG The total loss of the generator

LD The distribution loss of the discriminator

Accsl The classification accuracy of the attack models for sensitive links

Accnsl The classification accuracy of the attack models for nonsensitive links

Accrecon The link reconstruction accuracy of Zf

Re crecon The link reconstruction recall of Zf

Accnode The node classification accuracy of Zf
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where �A = ~D
−1/2~A~D

−1/2
is the symmetrically normalized adja-

cency matrix and ReLUð·Þ =max ð0, ·Þ is the activation func-
tion of the first layer. σð·Þ of the second layer is determined
according to the specific task. The encoder of VGAE is aimed
at learning the mean μ and the standard deviation σ of a multi-
dimensional Gaussian distribution from which the graph
embedding Z is sampled. The process is briefly described below:

μ = GCNμ X,Að Þ,
log σ = GCNσ X,Að Þ,

Z = μ + ε × σ,

ð3Þ

whereX ∈ℝN×F replacesH0 in Equation (2) as the node feature
matrix of the first layer and GCNμðX,AÞ and GCNσðX,AÞ
share first-layer parameters W0. Z ~N ðμ, σ2Þ is the graph
embedding matrix and ε ~N ð0, 1Þ is the noise sampled from
the standard Gaussian distribution. The inner product is used
as a decoder in VGAE, and the formula is as follows:

Â = σ Z · ZT� �
, ð4Þ

where σð·Þ = 1/1 + exp ð−·Þ is the sigmoid function. Â is the
reconstructed adjacency matrix, and Âij can be regarded as

the product of independent event probabilities of the ith node
and the jth node. When Âij is greater than the threshold 0.5, it

means that there is a link between the ith node and the jth node.
VGAE has two optimization objectives: one is to make Â

and A as similar as possible; the other is to make the distribu-
tion of Z as close to the standard Gaussian distribution as pos-
sible. Since binary cross-entropy (BCE) can determine the
proximity between the actual output and the expected output
and Kullback-Leibler (KL) divergence can measure the differ-
ence between two distributions, the loss function of VGAE
composed of BCE and KL divergence can be expressed as

loss = Eq Z∣X,Að Þ log p A ∣ Zð Þ½ � −KL q Z ∣X,Að Þ p Zð Þk½ �: ð5Þ

Here, the former minimizes the reconstruction loss
through the cross-entropy function, and the latter minimizes
the KL divergence. pðA ∣ ZÞ = σðZ · ZTÞ, qðZ ∣X,AÞ =QN

i=1q
ðzi ∣X,AÞ =

QN
i=1N ðzi ∣ μi, diag ðσ2

i ÞÞ is the real distribution
function we get, and pðZÞ =QipðziÞ =

Q
iN ðzi ∣ 0, IÞ is a

Gaussian prior. KL½qð·Þkpð·Þ� is the KL divergence between q
ð·Þ and pð·Þ. We expect qðZ ∣X,AÞ to be as close to pðZÞ as
possible.

More specifically, EqðZ∣X,AÞ½log pðA ∣ ZÞ� in Equation (5)
can be abbreviated as losslink below:

losslink = −
1
Vj j2 〠i∈V

〠
j∈V

p1Aij log Âij + 1 − Aij

� �
log 1 − Âij

� �� �
,

ð6Þ

where Aij represents the value which is 0 or 1 of an element

in A, Âij represents the probability value of the correspond-

ing element in Â, and p1 is the ratio of the number of 0 to 1
in A, which can be used to solve the problem of imbalance
between positive and negative samples. KL½qðZ ∣X,AÞkpðZ
Þ� in Equation (5) can be abbreviated as lossdist below:

lossdist = −
1
2

1 + log σ2 − μ2 − σ2� �
: ð7Þ

3.3. Adversarially Regularized Variational Graph
Autoencoder. To force the graph embedding learned by
VGAE to fit the prior distribution better, Pan et al. [32] pro-
posed ARVGA by combining VGAE and Generative Adver-
sarial Network (GAN). GAN was first proposed by
Goodfellow et al. [33] to serve as a generative model bridg-
ing supervised learning and unsupervised learning in 2014.
Most recently, exploiting GAN to work out elegant solutions
to severe privacy and security problems has become increas-
ingly popular in both academia and industry due to its game
theoretic optimization strategy [34]. Typically, GAN consists
of a generator G and a discriminator D, the purpose of which
is to mix the spurious with the genuine in a nutshell. During
the iterative training, G is trained to generate the fake sam-
ples to convince D that the fake samples come from a prior
data distribution, while D discriminates whether an input
sample comes from the prior data distribution or G we built.
In ARVGA, we take VGAE as G, a two-layer fully connected
network as D where the output layer only has one dimension
with a sigmoid function. The equation for training the
encoder model with the discriminator can be written as
follows:

min
G

max
D

Ex~pdata xð Þ log D xð Þ½ � + Ez~pz zð Þ log 1 −D G zð Þð Þð Þ½ �
� �

:

ð8Þ

Here, x ~ PdataðxÞ is the real sample, z ~ PzðzÞ is the orig-
inal data, GðzÞ is the fake sample, and Dð·Þ is the probability
that the sample is true. G is aimed at minimizing the equa-
tion while D is aimed at the opposite of G. Through the
game between G and D, ARVGA can enforce the graph
embedding to match the prior distribution and produce a
robust representation.

4. Model and Problem Formulation

In this article, our work is based on the following assump-
tions in the graph of IoT: The connections between devices
are bidirectional. There are L types of devices in the graph,
and each device has its own attribute information such as
internal storage, bandwidth, and hard disk. Sensitive links
are the links that need to be hidden, while nonsensitive links
are those which can be made public. The links whose end
nodes have a larger total degree are defined as sensitive links.
The nodes with larger degrees usually have more influence
in the graph, so the links between these nodes are also more
meaningful. Moreover, we take SVM and MLP as attack
models to test the performance of our method, and part of
nonsensitive links and nonexistent links in the graph are
known to the attack models.
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4.1. Network Model. We express one of the graphs of IoT as
an undirected graph G = ðV, E,XÞ. V = fv1, v2,⋯, vNg is the
set of n terminal nodes and N = jVj. E contains the edges eij
with the communication link between vi and vjð1 ≤ i, j ≤NÞ,
including sensitive links and nonsensitive links. �E is the set
of nonexistent links and E ∪ �E = EN2 , where EN2 contains n
× n edges that can be connected by n nodes. Node attributes
are summarized in a feature matrix X ∈ℝN×F with the ith

row representing the attributes of vi and F is the number of
attributes. A ∈ℝN×N is the adjacency matrix, where Aij = 1 if
eij ∈ E; otherwise, Aij = 0. Esl ⊂ E is the set of sensitive links,
Ensl ⊂ E is the set of nonsensitive links, and Esl ∩ Ensl =∅.

4.2. Attack Model. Both SVM and MLP have strong classifi-
cation abilities for nonlinear problems with different
structures.

SVM is a classification model based on the structural risk
minimization criterion in machine learning. For the nonlin-
ear classification problems, SVM adopts a nonlinear func-
tion ϕðxÞ to map the samples from the input space to a
high-dimensional feature space where the samples are line-
arly separable and construct an optimal classification hyper-
plane to categorize new samples utilizing labeled training
data. Given the training set T = fðx1, y1Þ, ðx2, y2Þ,⋯, ðxk, yk
Þgðxi ∈ℝNÞ, SVM can transform the classification problem
into a convex quadratic optimization problem as follows:

min
α

1
2
〠
k

i=1
〠
k

j=1
αiαjyiyjϕ xið Þϕ xj

� �
− 〠

k

i=1
αi

s:t:〠
k

i=1
αiyi = 0

0 ≤ αi ≤ C, i = 1, 2,⋯, k,

8>>>>>>>><
>>>>>>>>:

ð9Þ

where αi is a Lagrange multiplier and C is the penalty factor.
Since the computation of ϕðxiÞ × ϕðxjÞ increases sharply in
the high-dimensional space, SVM introduces kernel func-
tion Kðxi, xÞ = ϕðxiÞ · ϕðxÞ to avoid the problem. The kernel
function we choose is Gaussian kernel:

K xi, xð Þ = exp −
xi − xk k2
2σ2

� �
, ð10Þ

where σ2 is the variance. In this case, the classification deci-
sion function is as follows:

f xð Þ = sign 〠
k

i=1
αiyi exp −

xi − xk k2
2σ2

� �
+ b

 !
, ð11Þ

where b is the bias constant.
MLP is a fully connected artificial neural network, con-

sisting of an input layer, hidden layer, and output layer.
MLP adjusts the parameters in the hidden layer units
through the supervised back propagation (BP) algorithm
and gradient descent algorithm to reduce the error between

the actual output and the expected output. The forward
propagation mechanism of MLP is expressed as below:

H l+1ð Þ = σ W lð ÞH lð Þ + b lð Þ
� �

, ð12Þ

where HðlÞ is the input matrix, WðlÞ is the weight matrix, bðlÞ
is the bias, and Hðl+1Þ is the output of the hidden layer. Thus,
the decision function of MLP with only one hidden layer can
be expressed as follows:

f xð Þ = σ W 1ð Þ σ W 0ð Þx + b 0ð Þ
� �� �

+ b 1ð Þ
� �

, ð13Þ

where x is the input and σð·Þ is an activation function.

4.3. Problem Formulation. Given a graph G, our model will
compress it into a graph embedding Emb where the ith

row represents the vector embi of vi. The vector of eij can be
expressed as embij = ðembi, embjÞ. Suppose a link set Eknow
containing k nonsensitive links (class 1) and k nonexistent
links (class 0) in G have been exposed to attackers. Then, the
embedding matrix of Esl and Eknow are EmbEsl and EmbEknow

where each row represents an edge embedding vector.
During data transactions, attackers will collect or steal

Emb by any means to infer sensitive links through link pre-
diction. Our goal is to achieve the balance between privacy
protection and data utility. To this end, we use “minmax”
strategy to maximize the distance between the predicted
label labelpred of sensitive links and its real label labelreal
and then minimize the distance between labelpred of nonsen-
sitive links and its labelreal. The mathematical description is
as follows:

Training : Clf fit EmbEknow
, labelEknow

� �
,

Prediction : labelpred = Clf predict EmbEslð Þ,

Objective : min
Ensl

max
Esl

labelpred − labelreal
�� ���� ��2,

ð14Þ

where Clf fitðxtrain, ytrainÞ means to fit the classifier model
with the training data and Clf predictðxtestÞmeans to predict
the labels of xtest. labelEknow

is the label set of Eknow where k
ones represent nonsensitive links and k zeros represent non-
existent links. We expect to get a graph embedding which
can work for our purpose.

5. Algorithm

The SLPGE framework consists of two parts. In this section,
we will introduce the framework of SLPGE in Subsections
5.1 and 5.2, and the evaluation indicators are described in
Subsection 5.3.

5.1. Generate the Privacy Embedding Zp. Part 1 is to generate
a privacy embedding Zp. In order to put more privacy
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information into Zp, we first change the structure of the
original graph G to enhance the connection strength of
end nodes of sensitive links. Before inputting the graph data
into the model, we preprocess G through Algorithms 1 and 2
corresponding to Figures 1 and 2. For Algorithm 1, we
believe that two nodes with more common neighbors have
a closer relationship. As shown in Figure 1, e01 is a sensitive
link, fv2, v4g and fv3, v5g are the neighbor sets of v0 and v1,
respectively, and e23 exists; in this case, we link e03 and e12 to
make the relationship between v0 and v1 closer. For Algo-
rithm 2, we believe that the main information in the graph
will focus on sensitive links when other irrelevant nodes
and links are removed. As shown in Figure 2, we only keep
the sensitive links and their adjacent links to retain the infor-
mation about the sensitive links to the greatest extent. The
two privacy graph adjacency matrices Ap’s obtained by
Algorithms 1 and 2 are, respectively, used as the input of
the encoder to output two Zp’s.

For VGAE ismore robust and suitable for small graphs, we
adopt VGAE to obtain Zp in this part as shown in Figure 3. As
discussed in Section 3, the mechanism for the encoder to gen-
erate Zp can refer to Equations (2) and (3). Then, we get the

reconstructed adjacency matrix Âp = sigmoidðZp · Zp
TÞ. The

reconstruction loss Llink is the same as Equation (5), except that
A and Â are replaced by Ap and Âp.

For node classification, a softmax classifier is followed by
the encoder to predict the labels of the nodes. The node clas-
sification loss function Llabel is as follows:

Llabel = −〠
Vj j

i=1
〠
L

l=1
yil ln ŷil, ð15Þ

where yil represents the real label of vi in category l with a
value of 0 or 1, while ŷil is the value we predict in ŷ and ŷil

Input: G = ðV, E,XÞ: the original graph
A: the adjacency matrix of G
Esl: the set of sensitive links
Ni: the neighbor nodes set of vi
m: the maximum number of edges added for each sensitive link

Output: Ap: the adjacency matrix of privacy graph
1:forslij ∈ Esldo
2: find the neighbor nodes sets Ni and Nj

3: forni ∈Ni, nj ∈N jdo
4: ifAninj

= 1 and Anivj
= 0ðAnjvi

= 0Þthen
5: if the number of edges added for slij ≤mthen
6: Anivj

= 1ðAnjvi
= 1Þ

7: end if
8: end if
9: end for
10:end for
11:return take the modified A as Ap

Algorithm 1: Generate privacy graph by adding edges.

Input: G = ðV, E,XÞ: the original graph
A: the adjacency matrix of G
Esl: the set of sensitive links
Vsl: the end nodes set of Esl
Ap: the empty matrix with the same shape as A
N: the neighbor nodes set

Output: Ap: the adjacency matrix of privacy graph
forv ∈Vsldo

2: find the neighbor nodes set N of v
forn ∈Ndo

4: Apvn =1ðApnv = 1Þ
end for

6: end for
returnAp

Algorithm 2: Generate privacy graph by deleting edges.
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Figure 1: Generate the privacy graph with edge added.
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Figure 2: Generate the privacy graph with edge deleted.
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= softmaxððZpÞilÞ = 1/Z exp ððZpÞilÞ with Z =∑L
l=1e

ðZpÞil .
Therefore, the total loss of Part 1 is as follows:

L1 = Llink + Llabel: ð16Þ

Through the BP mechanism of L1, we train the encoder
to generate Zp that contains privacy information and con-
forms to a prior distribution.

5.2. Generate the Link Protection Graph Embedding Zf . Part
2 generates a graph embedding Zf that can protect sensitive
links. In order to reduce the most intuitive privacy informa-
tion, we remove the sensitive links in A to obtain At , the
adjacency matrix of the training graph, as shown in
Figure 4. The model in this part is designed based on
ARVGA, as shown in Figure 5. The inputs of the encoder
are At and X. Zf output from the encoder is the input of
the discriminator and the softmax classifier. Unlike Part 1,
Zf and Zp are combined by adding or concatenating to form
a higher dimensional matrix Z as the input of the inner-
product decoder. The node classification loss function Llabel
is the same as Equation (15). In order to distinguish the
two Zp’s obtained in Part 1, in Section 6.2, we will use SLP
GE+ to explain that Algorithm 1 is used for the generation
of Zp and SLPGE− to explain that Algorithm 2 is used.

Since the adversarial training between the encoder and
the discriminator can force Zf to match a prior distribution,
the KL divergence in Equation (5) is omitted. Here, we try to
use Mean Squared Error (MSE) as the reconstruction loss
Llink , and the reconstruction target is changed to A:

Llink = −
1
Vj j〠i∈V

〠
j∈V

Aij − Âij

		 		2: ð17Þ

In the discriminator, we take Zf as the fake samples and
Gaussian distribution samples as the real samples, then
input them into the discriminator, i.e., a two-layer full con-
nection layer network to get two estimated value dfake and
dreal, respectively. Lg and LD are the distribution loss of the
generator and the discriminator, which are both calculated
by BCE:

Lg = − log dfakeð Þ, ð18Þ

LD = − log drealð Þ − log 1 − dfakeð Þ: ð19Þ

Therefore, the total loss of the generator can be written
as follows:

LG = Llink + Llabel + Lg: ð20Þ

Through the adversarial training, the discriminator
learns how to distinguish between the real samples and
the fake samples, while the generator learns to generate a
better Zf to confuse the discriminator. In general, the
training process of obtaining Zf can be summarized as
Algorithm 3.

5.3. Evaluation Indicators. This subsection will introduce the
quantitative indicators of privacy and utility.

5.3.1. Privacy. Our chief target is to reduce the prediction
accuracy of the attack models for sensitive links. Input
an embedding vector of a sensitive or nonsensitive link
to the attack models; if the predicted value is 1, it means
the link exists and vice versa. Privacy is measured by the
prediction accuracy Accsl of the attack models for sensitive
links:

Accsl =
Nsl
Eslj j × 100%, ð21Þ

where Nsl is the number of sensitive links predicted to
exist and jEslj is the total number of sensitive links. When
the security of Zf is stronger, Accsl is lower.

5.3.2. Utility. Utility includes three parts: the prediction
accuracy of the attack models for nonsensitive links, the
accuracy and recall of the reconstructed graph, and the accu-
racy of node classification. Taking the existing links as posi-
tive samples and the nonexistent links as negative samples,
the quantitative expression of utility is as follows:

Accnsl =
Nnsl
Enslj j × 100%, ð22Þ
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Figure 3: Generate the privacy graph embedding Zp.
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Figure 4: Generate the training graph.
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where Accnsl is the prediction accuracy of nonsensitive links,
Nnsl is the number of nonsensitive links predicted to exist,
and jEnslj is the total number of nonsensitive links:

Accrecon =
TP + TN

TP + TN + FP + FN
× 100%, ð23Þ

Re crecon =
TP

TP + FN
× 100%, ð24Þ

where Accrecon is the ratio of existing links and nonexistent
links that are reconstructed correctly and Re crecon represents
how many existing links have been reconstructed. TP and FP
are the numbers of reconstructed positive and negative sam-
ples, and FN and TN are the numbers of nonreconstructed
positive and negative samples:

Accnode =
Nnode
Vj j × 100%, ð25Þ

where Accnode is the ratio of the nodes classified correctly to
the total number of nodes. Nnode is the number of nodes

classified correctly, and jVj is the number of nodes. Our tra-
deoff is protecting privacy while preserving utility, that is,
reducing Accsl and keeping Accnsl, Accrecon, Re crecon, and
Accnode high.

At

X

𝜇

𝜎
Encoder 𝜇+𝜀×𝜎 

Zf

Zf

ZZp Decoder
Add

Concatenate
or

Softmax

Discriminator Real
Fake

Â

ŷ

Gaussian
sample

Figure 5: Generate the link protection graph embedding Zf .

Input: G = ðV, E,XÞ: the original graph
At : the adjacency matrix of training graph
Zp: the privacy embedding

Output: Zf : the link protection graph embedding
for each epoch do

Generate the adjacency matrix At of training graph
3: Input At and X to the encoder to generate Zf

Input Zf to the softmax classifier
Adding or concatenating Zf and Zp to form Z

6: Input Z to the inner-product decoder
Input Zf and the Gaussian samples to the discriminator
Update the generator by minimizing LG

9: Update the discriminator by minimizing LD
end for
returnZf

Algorithm 3: Generate link protection graph embedding.

Table 2: Details of experiment.

Parameters Cora Yale
Vj j 2708 5278

Ej j 5278 405450

F 1433 188

L 7 7

Eslj j 100 200

Enslj j 100 200

Eknowj j 400 400

m 10 15

Zp 8-dim 7-dim

Zf 8-dim 7-dim

Z addð Þ 8-dim 7-dim

Z catð Þ 16-dim 14-dim
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6. Simulation

In this section, we will evaluate the performance of SLPGE
on two public datasets, Cora [35] and Yale [14].

6.1. Experiment Setting

(1) Datasets. Cora is a citation network composed of 7
categories of machine learning papers. Cora includes
2708 papers as V and 5278 citation relationships
between papers as E. 1433 unique words appear in
all papers as the attributes of V. Yale is a social net-
work including 8578 people and 188 attributes. The
class year attribute divides the nodes into 7 catego-
ries. Part of links and labels of the datasets are used
as training sets.

(2) Training. The experimental parameters are shown in
Table 2. The initial features of nodes are 1433 and

188 dimensions. Zf and Zp are both 8-dim in Cora
and 7-dim in Yale. As shown in Figure 5, we have
two splicing modes of Zf and Zp in SLPGE: “concat-
enate (cat)” and “add,” where “cat” means stacking
Zf and Zp in the horizontal direction (i.e., column
order) and “add” means that the elements in Zf

and Zp are added correspondingly. Z is 16-dim and
14-dim when using “cat” and 8-dim and 7-dim when
using “add.” The embeddings of two nodes in Zf are
concatenated together as an edge embedding, so the
dimension of edge embedding is twice as large as
node embedding.

Besides, we take the original graph G and the training
graph Gt with sensitive links deleted as the input of VGAE
to compare with SLPGE. At the same time, we use TSNE
to visualize Zf in 2-dim to observe the node classification
result, and the nodes belonging to the same label are

VGAE VGAEt

SLPGE–(cat) SLPGE–(add)

SLPGE+(cat) SLPGE+(add)

Figure 6: Visualization of node classification on Cora.
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represented by the same color. In essence, TSNE uses PCA
to reduce the dimension of the feature and then maps it to
a 2-dimensional or 3-dimensional space for visualization to
observe each layer’s feature distribution.

(3) Attack. 100 and 200 edges with larger node degrees
in the training sets are selected as the sensitive
links of Cora and Yale, respectively, and m is 10
and 15 in Algorithm 1. We randomly select 200
nonsensitive links and 200 nonexistent links to
form Eknow which has been exposed to the
attackers. Moreover, the edge embeddings of Eknow
will be used as the training set to train the attack
models. The edge embeddings of the same number
of sensitive and nonsensitive links are the input of
the attack models. We train each model four times,
and the attack models make 10 predictions after
each training. Finally, the averages of the 40 predic-

tion results are taken as the prediction accuracy of
sensitive and nonsensitive links.

6.2. Result Analysis. We carried out our experiments under
four models: VGAE, VGAEt, SLPGE+, and SLPGE−. VGA
E means the input is the original graph without any modifi-
cation. VGAEt means the input is the training graph in
which the sensitive links are deleted. Our SLPGE is divided
into two types: SLPGE+ and SLPGE− where Zp comes from
Algorithms 1 and 2, respectively.

Figures 6 and 7 show node classification of SVM under
different models for Cora and Yale in a visualization method,
respectively. In each subgraph, the points in the same color
constitute a cluster, representing different classes. A larger dis-
tance between different clusters means higher accuracy. Cor-
responding numerical results are listed in Tables 3 and 4.
The decline degree of five indicators of VGAEt, SLPGE+,

VGAE VGAEt

SLPGE–(cat) SLPGE–(add)

SLPGE+(cat) SLPGE+(add)

Figure 7: Visualization of node classification on Yale.
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and SLPGE− compared with VGAE is shown in Tables 5 and
6, and the decline degree are calculated by jA − Bj/B%, where
B represents VGAE and A represents the others.

6.2.1. Privacy. There is a comparison of Accsl of the four
models in Tables 3 and 4 that Accsl of VGAEt, SLPGE+, and
SLPGE− decrease in varying degrees, but Accsl of SLPGE+

and SLPGE− decrease more. Especially for Cora, SLPGE+

reduces Accsl by 30.05% at most and 22.28% at least on the

basis ofVGAEwhileVGAEt reducesAccsl by 14.05% at most.
For Yale, SLPGE+ reduces Accsl by 15.03% at most and 9.46%
at least on the basis of VGAE while VGAEt reduces Accsl by
4.14% at most. The privacy of SLPGE has significant improve-
ment compared with VGAEt.

Although the privacy of SLPGE is 1.3 ~ 3.6 times higher
than that of VGAEt on Yale, the protection effect of sensitive
links on Yale is not as good as that onCora, which results from
the fact that the node attributes ofYale aremore closely related

Table 4: The results on Yale.

SVM MLP Reconstruction
Model Splicing mode Accsl Accnsl Accsl Accnsl Accrecon Re crecon Accnode
VGAE — 84:5 84:5 76:5 77:0 72:1 84:5 81:0
VGAEt — 81:0 83:0 74:0 73:5 73:1 85:7 77:6

SLPGE−
cat 75:0 81:2 65:0 71:0 67:3 79:7 80:1

add 74:5 84:5 65:2 71:7 65:6 71:4 76:5

SLPGE+
cat 76:5 83:6 65:8 68:1 68:9 75:8 75:6

add 73:7 82:0 67:5 71:5 68:8 75:1 75:5

Table 5: The decline degree of five indicators compared with VGAE on Cora.

SVM MLP Reconstruction
Model Splicing mode Accsl Accnsl Accsl Accnsl Accrecon Re crecon Accnode
VGAEt — 14:05 2:35 4:40 1:76 4:40 1:10 4:31

SLPGE− cat 24:00 5:76 21:76 6:94 3:39 4:30 8:50

add 29:60 0:47 27:11 5:29 5:76 5:84 11:26

SLPGE+
cat 22:28 3:52 26:52 6:12 2:26 3:75 10:78

add 30:05 3:17 27:94 0:71 4:74 3:86 7:54

Table 6: The decline degree of five indicators compared with VGAE on Yale.

SVM MLP Reconstruction
Model Splicing mode Accsl Accnsl Accsl Accnsl Accrecon Re crecon Accnode
VGAEt — 4.14 1.78 3.27 4.55 -1.39 -1.42 4.20

SLPGE− cat 11.24 3.91 15.03 7.79 6.66 5.68 1.11

add 11.83 0.00 14.77 6.88 9.02 15.50 5.56

SLPGE+ cat 9.47 1.07 13.99 11.56 4.44 10.30 6.67

add 12.78 2.96 11.76 7.14 4.58 11.12 6.79

Table 3: The results on Cora.

SVM MLP Reconstruction
Model Splicing mode Accsl Accnsl Accsl Accnsl Accrecon Re crecon Accnode
VGAE — 87:5 85:0 84:1 85:0 88:6 90:7 83:5
VGAEt — 75:2 83:0 80:4 83:5 84:7 89:7 79:9

SLPGE−
cat 66:5 80:1 65:8 79:1 85:6 86:8 76:4

add 61:6 84:6 61:3 80:5 83:5 85:4 74:1

SLPGE+
cat 68:0 82:0 61:8 79:8 86:6 87:3 74:5

add 61:2 82:3 60:6 84:4 84:4 87:2 77:2

12 Wireless Communications and Mobile Computing



to the links. This also signifies that similar attributes will make
the privacy information between nodes more difficult to
remove. In general, these comparisons can confirm that our
SLPGE has better performance on sensitive link protection.

6.2.2. Utility. The loss of partial utility is the necessary cost of
privacy protection. Taking VGAE as a comparison, we can
see that the classification accuracy of four variant models
has decreased, reflecting a partial sacrifice of data utility.
Accnsl, Acclink , Re crecon, and Accnode of SLPGE and VGAEt
all decrease simultaneously, but the decline ranges are gener-
ally lower than that of Accsl. From Tables 5 and 6, it can be
seen that Accnsl of SLPGE decrease by 6.94% and 11.56% at
most on the basis of VGAE for Cora and Yale, but the two
Accsl decrease more, reaching 21.76% and 13.99%. Acclink
of SLPGE decrease by 5.75% and 9.07% at most for Cora
and Yale. The maximum decline ranges of Acclink, Re crecon,
and Accnode of SLPGE on two datasets are 5.76% and 9.02%,
5.84% and 15.50%, and 11.26% and 6.79%, which are basically
lower than the decline ranges of Accsl. Tables 5 and 6 reflect
the tradeoff between privacy and utility.

6.2.3. Models. The data in four tables show that SLPGE+ and
SLPGE− are very close in performance on privacy and util-
ity, which also proves that both Algorithms 1 and 2 are fea-
sible. For the two splicing modes, the privacy and utility of
mode “add” are better than those of mode “cat.” The analysis
of this result is as follows.

The distributions of Zf and Zp both approach N ð0, 1Þ
(standard normal distribution), and the weight of privacy
information in Zp is large and fixed. When Z obtained by
adding Zf and Zp is to fit the link labels of the original graph
after decoding, the MSE loss function will force Zf to reduce
the weight of privacy information, so that we can squeeze
more privacy information. Therefore, the combination of
MSE and mode “add” is better.

Overall, our SLPGE reduces the prediction accuracy of
sensitive links to varying degrees, from which we can con-
clude that our model is effective. While protecting the pri-
vacy of sensitive links, some utility will be sacrificed, which
may be structure information or attribute information. From
the result analysis, it can be confirmed that SLPGE can
retain most of the utility. In practical application, part of
the structure of the model can be adjusted to meet different
task requirements.

7. Conclusion

The problems of individual privacy under the interconnec-
tion of all things are ubiquitous. The research on link protec-
tion against link prediction in IoT is of great significance for
entity privacy. Through the simulation of the datasets, the
feasibility of our SLPGE is preliminarily verified. However,
multifaceted challenges remain in the research on link pro-
tection. Our datasets are just static graphs, in which the
nodes belong to different categories at the same level, and
the edges only represent reference and social relationships.
In heterogeneous scenarios, nodes can be of different levels,
edges between the nodes may have diverse meanings, and

the weight of the edges are no longer all equal to one. The
weight of edges reflects the difference in the degree of com-
munication between nodes.

Furthermore, in dynamic graphs, the entry and exit of
nodes will affect the graph structure and the privacy infor-
mation of sensitive links in real time. The attackers can col-
lect more information for inference attacks. The greatest
challenge is that the researches on resisting graph distur-
bance and enhancing the robustness of link prediction con-
tinue to emerge, which increases the difficulty of sensitive
link protection. Therefore, we will emphasize the sensitive
link protection in weighted graphs and dynamic graphs in
our follow-up research.

Appendix

In Section 5.2, we use the two modes of “concatenate (cat)”
and “add” to combine Zf andZp. The following is an expla-
nation of these two operations. “cat” and “add” are two
splicing modes of Zf andZp in SLPGE. “cat” means stacking
Zf andZp in the horizontal direction, and “add” means that
the elements in Zf andZp are added correspondingly. Here,
we will intuitively show how to get ZðcatÞ and ZðaddÞ and
explain their meanings. We assume that both Zf andZp are
3 times 2 matrices,

Zf =

a1 a2

b1 b2

c1 c3

2
664

3
775,

Zp =

a3 a4

b3 b4

c3 c4

2
664

3
775,

ðA:1Þ

then

Z catð Þ = ZfZp


 �
=

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

2
664

3
775,

Z addð Þ = Zf + Zp =

a1 + a3 a2 + a4

b1 + b3 b2 + b4

c1 + c3 c2 + c4

2
664

3
775:

ðA:2Þ

In Part II, the reconstructed adjacency matrix Â is
obtained by the inner product of ZðZðcatÞ orZðaddÞÞ, i.
e.,ÂðcatÞ = ZðcatÞZðcatÞT and AðaddÞ = ZðaddÞZðaddÞT
whose detailed calculations are shown in the bottom.

We can see that ÂðaddÞ = ÂðcatÞ + B, and B is a cross-
multiplying term matrix. Since Zp is fixed, ða3, a4, b3, b4, c3
, and c4 is fixedÞ, the loss function will force Zf to constantly
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adjust so that Â is close to A. Because ÂðaddÞ has more
cross-multiplying terms, ÂðaddÞ may exert greater pressure

Zf ða1, a2, b1, b2, c1, and c2Þ. Based on the above analysis, we
chose these two modes to get Z:

Data Availability

Cora [35] is a citation network composed of 7 categories of
machine learning papers. Cora includes 2708 papers and
5278 citation relationships between papers. 1433 unique
words appear in all papers as the attributes. Yale is a social
network including 8578 people and 188 attributes. The class
year attribute divides the nodes into 7 categories. Part of
links and labels of the datasets are used as training sets. K.
Li, “The data about the facebook friendships of yale univer-
sity.” [Online]. Available: https://github.com/KaiyangLi1992/
Privacy-Preserving-Social-Network-Embedding.
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