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The network fault diagnosis algorithm is one of the most important algorithms to solve network transmission problems. In
traditional network fault diagnosis, it mainly analyzes and troubleshoots the fault manually by comparing the alarm
information of the network performance index with the expert experience database. Diagnosis methods based on manpower
analysis will take up much material resources and manpower and increase maintenance costs. Therefore, there is an urgent
need for a more efficient and intelligent fault diagnosis technology. In addition, as the current network is becoming more and
more complex, and based on this consideration, a semi-supervised fault diagnosis algorithm is studied in this paper. It is a
combination of the GAN and CNN models. Meanwhile, the method of combining relief and mutual information is applied to
reducing the dimensionality of network feature parameters, and the optimal feature combination is selected. The fluctuations
in the convergence of the generated confrontation network model are stabilized. Moreover, the simulation software is used to
build the heterogeneous wireless network scenario studied. Meanwhile, an improved fault diagnosis model is constructed to
verify that in the case of both GAN and CNN models, the accuracy of fault diagnosis algorithm can reach 98.6%, which is
significantly higher than other comparative analysis methods. It has contributed to ensuring the user’s service experience and
reducing the cost of network maintenance and operation.

1. Introduction

Nowadays, with the continuous deepening of research on
key technologies such as massive MIMO technology, full-
duplex technology, and network slicing, the 5th generation
(5th Generation Mobile Communication Technology, 5G)
mobile communication is gradually shifting from being
technology-centric to being user-centric [1]. Its higher trans-
mission rate satisfies the transmission of big data such as
high-definition video and VR/AR virtual reality. Besides,
its lower network delay and higher reliability satisfy real-
time applications such as autonomous driving and tele-
medicine [2]. At the same time, its larger system capacity
and low power consumption also provide conditions for
the access of hundreds of billions of devices, and the
Internet has gradually expanded to the Internet of Things
(IoT) [3]. In addition, from the initial communication

between people to the communication between people and
things, and even the communication between machines and
machines, the real interconnection of everything is realized
[4]. Moreover, different applications such as VR/AR, smart
grid, vehicle networking, and autonomous driving also have
different requirements for network functions [5]. To meet
the needs of different types of services under the constraints
of limited spectrum resources, the future development trend
of wireless networks is bound to be a heterogeneous network
integrating multiple wireless access technologies such as
WLAN, LTE, and 5G [6].

The ultra-dense heterogeneous network technology
composed of micro base stations and macro base stations.
It has also been proposed to increase the capacity of the
network system to cope with the exponentially increasing
mobile data traffic [7]. Among them, fault management
is one of the core problems [8]. In a heterogeneous
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network environment, the occurrence and propagation of
faults are inevitable, and it can ensure network stability
and service reliability to timely and accurately detect and
diagnose network faults [9]. Nowadays, academia is con-
ducting in-depth research and discussion on fault diagno-
sis technology in heterogeneous networks, and many
efficient network fault diagnosis schemes have been
proposed.

The dynamic and adaptive network fault diagnosis
method studied in this paper can realize accurate detection
and diagnosis of network faults in a complex network envi-
ronment [10], which effectively alleviates the service inter-
ruption and network paralysis.

The main innovations of this paper are as follows:

(1) A semi-supervised fault diagnosis model is proposed
in order to solve the problem that the complexity of
the discriminator network of the traditional model is
too high

(2) The strategy of network tracking and monitoring is
formulated. The corresponding network data is
collected according to the operation system, and
then the program of screening the optimal feature
combination is compiled to realize the generation
of network data and the diagnosis of the network
faults

(3) The algorithm of combining GAN and CNN is
adopted, and the CNN model is trained by compos-
ite data to complete the diagnosis of network faults

The structure of this paper is as follows: Section 1 briefly
described the research background, research status and main
research work. Section 2 described the relevant working
principles of this paper. Section 3 established the relevant
research models. Section 4 realized the function modules
and algorithm design. Section 5 carried out the simulation
experiments to analyze the performance of the proposed
method. Section 6 summarizes the three research works of
this paper and looks forward to future research work.

2. Related Work

The improvement of computer computing power has also
promoted the development of the field of deep learning, thus
realizing the rapid mining of useful information in massive
data [11]. This section mainly introduces the existing net-
work fault diagnosis technology and the deep learning algo-
rithm used in this paper [12].

2.1. Network Fault Diagnosis Technology. Mobile data traffic
is showing a trend of rapid growth. Insufficient network
capacity and high requirements for new business service
quality need to be solved in future networks [13]. A new type
of heterogeneous network is one of the solutions [14]. How-
ever, in the complex and changeable heterogeneous network
environment, how to effectively maintain and manage the
network and ensure the normal operation of the network
has become the primary problem for operators [15]. Mean-

while, fault diagnosis is the core content of network manage-
ment. Since the occurrence of faults is inevitable and
spreading, their rapid detection and diagnosis are particu-
larly important to the robustness and reliability of the net
[16]. In a big and complex communication network, the
intelligence and automation of fault diagnosis have also
attracted more attention and research [17]. The process of
fault diagnosis can generally be divided into three steps:

(1) Fault detection: It refers to the process of judging
whether there is a fault- based on the observed net-
work symptoms

(2) Fault location: It refers to the process of inferring the
location of the fault based on the collected network
parameters

(3) Test: According to the located fault category, analyze
the cause of the fault, and then perform a recovery
test

2.2. Deep Learning. Deep learning model is actually a neural
network with more hidden layers [18], usually more than
eight or nine hidden layers. The simplest M-P neuron model
is shown in Figure 1.

The neuron multiplies the received input signal by the
corresponding connection weight [19], which will be com-
pared with the neuron’s bias and output after processing.
The output is as follows:

y = f 〠
i=1

∞
wixi − θ

 !
: ð1Þ

Among them, xi is the input from the ith neuron, wi
refers to the connection weight of the i-th neuron, and θ is
the current neuron bias. f ð⋅Þ is the activation function [20].

A neural network is constructed by neurons, containing
three layers, namely, input, output, and hidden layer, which
is shown in Figure 2.

The learning process of a neural network is to adjust
the connection weight between neurons and the bias of
neurons according to the training data [21]. The most
commonly used algorithm for updating model parameters
in neural networks is the error backpropagation (BP) algo-
rithm, also known as the backpropagation algorithm [22].
Given the training data set D = fðx1, y1, y2, y2Þ,⋯ðxn, ynÞg,
x1, ERd , y1, the connection weight who from the last hidden
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Figure 1: The M-P neuron model.
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layer to the output layer is used as an example to derive. For
the training sample yk = ðyk1, yk2⋯,ykt Þ, suppose the neural
network output is

ykn = f 〠
n=1

9
wn0cn − θn

 !
: ð2Þ

And the mean square error of the network in ðxk, ykÞ is

Ek =
1
2〠
n=1

l

ykn − ykn
� �2

: ð3Þ

The parameter value is adjusted according to the negative
gradient direction of the target [23]. For the error of Formula
(3), given the learning rate μ, the connection weight who is
updated as follows:

Δwho′ = −μ
∂Ek

∂vloo
= n 1 − yk0
� �

yk0 − yk0
� �

ch: ð4Þ

Among them, ∂Ek =∑i=1
q whocib, namely, the input of

the n-th neuron in the output layer. The updated deriva-
tion of neuron bias θ is similar to it [24]. However, deep
learning cannot directly use the BP algorithm for training
and updating, since when the errors are propagated back
in multiple hidden layers, they tend to diverge and cause
instability to converge [25].

3. Network Fault Diagnosis Model
Based on GAN

Figure 3 shows the dense heterogeneous wireless network
scenario including high-power macro base stations and
low-power micro base stations with a multilevel network
structure. In addition [26], the heterogeneous network index

parameters for macro base stations and low-power micro
base stations are shown in Table 1.

4. Fault Diagnosis Algorithm Based on
Improved Generative
Countermeasure Network

4.1. Semi-Supervised GAN Structure. Figure 4 shows the net-
work structure.

Due to the change of the discriminator structure [27],
the loss function of the semi-supervised generative adversar-
ial network (SGAN) has also changed. The loss function of
generator G is

LG = Εx̂~p x̂ð Þ log Pd y = K + 1 x̂jð Þ½ �: ð5Þ

Among them, x̂ =GðzÞ is the generator-generated data,
and Pdðy = K + 1jx̂Þ represents the probability of which the
generated data x̂ is discriminated into the K + 1 category
by the discriminator D [28].

The model structure is shown in Figure 5.
Increase the discriminator D, and take false data as the

probability of true data, which can easily lead to the result
that the generator G is overtrained on the current
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Figure 2: The neural network model.
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Figure 3: Two-layer heterogeneous wireless network model.
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discriminator D, that is, when the parameters of the discrim-
inators D change, the generator G will also be greatly
affected. The algorithm flow of the improved SGAN is
shown in Figure 6.

The specific parameters of the generated antagonistic
neural network are shown in Table 2.

The data labels of 0 and 1 in the model are also
smoothed to enhance the anti-interference ability of the
network. And only the label of 1 is changed to 0.9, that is,
the one-sided label is smoothed [29].

The process is shown in Figure 7.

4.2. Generating a Fault Diagnosis Model Combining a
Confrontation Network and a Convolutional Neural
Network. The fault diagnosis model of the combination of

generative confrontation network and convolutional neural
network proposed in this paper can be divided into fault
diagnosis and data generation, which is shown in Figure 8.

(a) GAN generates network data

The data during this period time is summed and
averaged to obtain the data at time t:

Xt =

KPIt−T+11 KPIt−T1 ⋯ KPIt1

KPIt−T+12 KPIt−T2 ⋯ KPIt2

⋮ ⋮ ⋱  
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Figure 4: Semi-supervised generative adversarial network structure.

Table 1: Corresponding indicators and standards for heterogeneous networks.

First-level index Secondary indicators Three-level indicators

Interference
Uplink interference

Downlink interference

Coverage
Coverage boundary

Blind spots in coverage

Hardware

Baseband control unit BBU LMPT, LBBP

Radio remote unit RRU TRX, CPRI module, and synthesizer

Antenna

RF transmission chain PA, antenna feeder, and connector

RF receiving chain LNA, duplexer, and preselector

Other hardware Power supply and GPS clock module

Transmission
Interface

Link

Other
Fading

Configuration parameter
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Figure 6: Algorithm flow chart of improved SGAN.

Table 2: Improved generative adversarial network model parameters.

Neural network name Layer (operation) Input format Output format

Generator network

Fully connected layer [None,128] [None,256]

Batch normalization (batch_norm) [None,256] [None,256]

Nonlinear activation (ReLU) [None,256] [None,256]

Deconvolution layer 1 (conv2d_transpose) [None,2,2,64] [None,4,4,16]

Batch normalization (batch_norm) [None,4,4,16] [None,4,4,16]

Nonlinear activation (ReLU) [None,4,4,16] [None,4,4,16]

Deconvolution layer 2 (conv2d_transpose) [None,4,4,16] [None,8,8,1]

Nonlinear activation (tanh) [None,8,8,1] [None,8,8,1]

Discriminator network

Convolutional layer 1 (conv2d) [None,8,8,1] [None,4,4,32]

Batch normalization (batch_norm) [None,4,4,32] [None,4,4,32]

Nonlinear activation (LeakyReLU) [None,4,4,32] [None,4,4,32]

Convolutional layer 2 (conv2d) [None,4,4,32] [None,2,2,64]

Batch normalization (batch_norm) [None,2,2,64] [None,2,2,64]

Nonlinear activation (LeakyReLU) [None,2,2,64] [None,2,2,64]

Fully connected layer [None,256] [None,7]

Softmax [None,7] [None,7]

Discriminator network Generator network 

Noise 
Convolution Output 

Convolution 

Convolution Deconvolution 

Deconvolution 

Deconvolution 

Feature matching,
calculation of closeness 

Figure 5: Fault diagnosis model based on the improved generative confrontation network.
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Among them, KPI is used to refer to the abovemen-
tioned eight network key performance indicators.

(b) Network fault diagnosis model based on CNN

After completing the generation of various types of fault
data, manually add corresponding fault labels for them, and
then merge them with the real data as the training data set
parameters of the convolutional neural network [30].

4.3. Construction of Fault Diagnosis Model Based on
Improved SGAN. The constructed heterogeneous wireless
network system collects the data and manually adds tags to
the data according to the preset failure time. The improved
SGAN diagnosis model diagnosis process is shown in
Figure 9.

(1) Data preprocessing

For the NULL value data xi in the collected data, fill in
according to Formula 16, where xi−1, xi+1 are the previous
sample value and the next sample value of xi :

xi =
xi−1 + xi−1

2 ð7Þ

For the optimal feature selection, an algorithm that com-
bines ReliefF and mutual information is used to select the
optimal feature subset.

Diagnostic result

Fault diagnosis model

Start

Input data

N

Y

More than 1/3 of the
training data

Store in the database

End

Retrain the model
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Y

GAN generative model 
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CNN diagnostic model 
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Figure 7: Model modification flow chart.
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Figure 8: A fault diagnosis model combining generative adversarial network and convolutional neural network.
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(2) Improved SGAN fault diagnosis model

To build the SGAN model in Pycharm based on the
Python language and TensorFlow framework, the three
modules of TensorFlow, numpy, and time are first imported.
The TensorFlow module mainly completes the neural net-
work construction and provides functions such as reverse
update, the numpy module mainly provides functions such
as calculation and format conversion between data matrices,
and the time module mainly provides the timing function.
Then read the data, and perform one-hot encoding on the
label to build a generator network. The parameter format
of the discriminator network is as follows. The size of the
convolution kernel is 3 × 3, and dis vars is the connection
weight and bias number in the discriminator network.

5. Experimental Test

A heterogeneous wireless network scenario is built through
simulation software to set up various faults and run the sys-
tem to collect data. Moreover, the collected data is cleaned
and feature engineering process, and the preprocessed data
is input into the training model. After the model is trained,
the network operation data will be input to the model for
fault diagnosis.

5.1. Experiment Platform. The parameters are shown in
Table 3.

In the network simulation, this paper mainly sets five
different types of faults, namely, uplink interference F1,
downlink interference F2, coverage failure F3, base station

OPNET data

Data preprocessing

ReliefF and algorithm
screening features

Training data 
(10% with label)

Diagnosis result test
data (all with label)

A�er training

Diagnostic result Diagnostic result

SGAN-based
diagnosis model

SGAN-based
diagnosis model

Figure 9: Diagnosis process based on improved SGAN model.

Table 3: Two-layer heterogeneous wireless network simulation parameters.

Simulation parameters Macro base station Micro base station

Number of base stations 3 15

Number of users 20/base station 10/base station

Transmission power 46 dBm 30 dBm

Shadow fading standard deviation 8 dB 10 dB

Transmission loss model Suburban macrocell (3GPP)/free space
Indoor office environment (ITU-R M. 1225)/outdoor

to indoor and pedestrian environment

Antenna gain 15dBi 8 dBi

Operating mode LTE 5MHz FDD LTE 10MHz FDD

Receiving sensitivity -110 dBm -107 dBm

Base station selection strategy Best suitable eNodeB

User distribution Random distribution
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failure F4 and link failure F5, and fault-free state F0. Before
the simulation starts, the occurrence and recovery time of
these faults will be set in advance to manually add fault
labels to the data generated by the simulation. The time set
for the simulation is 24 hours, and the total duration of each
fault is 2 hours [31]. Each fault lasts for 30 minutes and then
recovers. Finally, 29160 pieces of data are generated in the
network simulation, and 1620 pieces of data are obtained
after normalization and neighbor base station preprocessing,
which are divided into training data and test data in a propor-
tion of 7 : 3, and the proportion of various types of faults in
each data set is ensured to be consistent. Then, the fault labels
of about 1/10 of the training data are retained, and the fault
labels of the rest of the training data are deleted. Finally, three
data sets are formed, namely, 120 training data sets with fault
labels, 1014 training data sets without fault labels, and 486 test
data sets. The proportion of various types of faults in each data
set is consistent. Finally, these data are input into the improved
generative antagonistic network diagnosis model proposed in
this paper for training and testing.

5.2. Analysis of Experimental Results. The change of the fault
diagnosis accuracy rate of the generative confrontation net-
work model based on different improved methods is shown
in Figure 10.

Compared with SDGAN, due to the addition of the fea-
ture matching constraint function, SDGAN-F stabilizes the
convergence fluctuation in the training process. However,
the accuracy of its fault diagnosis still needs to be improved
compared with the SDGAN-FM proposed in this paper. In
addition, the accuracy rate of final fault diagnosis of
SDGAN-FM algorithm can reach 92.2% comparing with
69% of SDGAN-F.

6. Conclusion

Compared with some traditional fault diagnosis methods, the
algorithm proposed in this paper simplifies the difficulty of
mapping between network symptoms and network faults.
Moreover, through the deep neural network, the useful infor-
mation in the data is fully excavated, and the diagnosis accuracy
and diagnosis delay are improved. However, there are still some
problems that need to be improved and solved. When the
network structure changes, the diagnostic accuracy of the previ-
ously trained model may be affected. Therefore, the generaliza-
tion ability of the model needs to be strengthened.
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