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There has been an increase in credit card fraud as e-commerce has become more widespread. Financial transactions are essential
to our economy, so detecting bank fraud is essential. Experiments on automated and real-time fraud detection are needed here.
There are numerous machine learning techniques for identifying credit card fraud, and the most prevalent are support vector
machine (SVM), logic regression, and random forest. When models penalise all errors equally during training, the quality of
these detection approaches becomes crucial. This paper uses an innovative sensing method to judge the classification algorithm
by considering the misclassification cost and at the same time by employing SVM hyperparameter optimization using grid
search cross-validation and separating the hyperplane using the theory of reproducing kernels like linear, Gaussian, and
polynomial, and the robustness is maintained. Because of this, credit card fraud has been identified significantly more
successful than in the past.

1. Introduction

Credit card fraud is increasing in popularity as a result
of the prevalence of online purchasing. According to
Robertson’s calculations, credit card fraud losses climbed
dramatically between 2010 and 2015, from $7.6 billion
to $21.81 billion [1]. Credit card fraud loss globally in
2020 is $31.67 billion. Credit card fraud may be perpe-
trated by criminals who get access to your personal data.
When it comes to your credit card, there are a variety

of methods that fraudsters may get their hands on your
personal information, credit card number, CVV, and
one-time password (OTP). Fraudsters and scammers fre-
quently use the following methods to commit credit card
fraud:

(i) Physical access to the credit card

Theft of a credit card is the most typical method of gain-
ing access to your personal information.

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 2439205, 12 pages
https://doi.org/10.1155/2022/2439205

https://orcid.org/0000-0001-7656-2913
https://orcid.org/0000-0002-2829-830X
https://orcid.org/0000-0002-8210-1491
https://orcid.org/0000-0003-1509-214X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2439205


(ii) Skimming your credit card

The little skimming devices linked to the point of scale
equipment might steal our credit card information. The
skimming machine has already scanned and stored your
credit card information when you swipe it through a POS
terminal. While the skimming device obtains your credit
card information, a concealed camera nearby records your
PIN, which criminals may use to complete the transaction.

(iii) Phishing

Phishing is nothing more than pretending to be a
reputable firm and requesting that the victim click on a link
that appears to be a valid one.

(iv) Malware Attack

A malware attack occurs when a hacker or fraudster
infects a victim’s computer without the victim’s knowl-
edge and installs malicious software without the victim’s
knowledge.

(v) Stealing your email details

(vi) Stealing your documents

Today’s fraud detection methods are hopelessly ineffec-
tive, resulting in huge financial losses for both merchants
and card companies. As fraud detection technology improves,
fraudsters are always increasing their capacity to elude detec-
tion. Machine learning is a subfield of artificial intelligence
(AI) and computer science that focuses on using data and
algorithms to mimic how people learn, progressively improv-
ing its accuracy. Supervised learning, unsupervised learning,
and reinforcement learning are the three types of learning
algorithms.

Supervised learning is a machine learning method distin-
guished by the use of labelled datasets. The model may test
its accuracy and learn over time by using labelled inputs
and outputs. Supervised learning may be applied to classifi-
cation and regression problems. Unsupervised learning
problems make use of unlabelled training data to model
the data’s underlying structure. It is employed in the fields
of association, clustering, and dimensionality reduction.
Reinforcement learning is a form of machine learning tech-
nique that enables the agent to determine the optimum
future action based on its current state by learning behav-
iours that maximise the reward. Typically, reinforcement
learning systems learn optimum actions through trial and
error. They are commonly seen in robotics and video games.

Unsupervised and supervised methods of detecting
credit card fraud are the two broad classifications. Super-
vised fraud detection is a technique for identifying fraudu-
lent transactions by analysing a sample of both normal and
suspicious transactions [2]. Unsupervised fraud detection
looks for unusual or out-of-the-ordinary transactions that
might be fraudulent. The likelihood of a transaction being
fraudulent can be predicted using detection techniques such
as SVM [3], logistic regression [4], random forest [5], and

Naïve Bayes [6]. These algorithms are frequently employed
in the detection of credit card fraud. Logistic regression
may be used to estimate the likelihood of a target variable
occurring. In a dichotomous variable, there are only two
potential classes of the target or dependent variable. Depen-
dent variables may only be categorised as either 1 or 0
(success/yes or failure/no); hence, the dependent variable is
binary in nature [4, 7]. On the other hand, random forest
uses a collection of decision trees that have been trained
using the “bagging” approach. The bagging approach is
based on the concept that a mixture of learning models
would yield a better overall outcome [8, 9].

When models penalise all misclassifications with the
same penalty during training, the reliability of these detec-
tion techniques becomes more important. Hence, the cost
of misclassification must be taken into account while devel-
oping new approaches for detecting credit card fraud.

SVM is a form of machine learning approach that can be
used to solve problems related to data classification. Image
recognition [10], credit scoring [11], public safety [12], and
classification [13–15] are just a few of the many fields in
which it is used. In recent years, the usage of DNN for credit
card fraud detection has increased [16]. A few of them are
autoencoder-based detection [17], K-means deep network
[18], and LSTM using attention mechanism dependence
concerns are better addressed by RNN architecture. Ability
to learn order dependency in sequence prediction problems
as a behaviour required in complicated issue areas like as
machine translation and speech recognition, among others
[19]. But when dealing greater than 2D, noisy input
data, the support vector machine’s classification perfor-
mance is significantly lower than when dealing with less
than 2D, clean data. The noise can be removed by auto-
encoder [20–22].

This study’s major goal is to evaluate in depth how
effective support vector machines are at sensing credit card
fraud. The SVM is superior to other classifiers in that it is
capable of separating data either by a hyperplane and by
use of kernels. This can be done by either looking for a
straight line that connects the data or moving the data into
a high-dimensional space that makes it clear which data
comes from which support vector. The settings of the kernel
function influence the classification performance of the SVM
[23]. To find parameters, the SVM primarily makes use of
the random and grid search approaches [24]. In random
approach, random combinations are selected but in the grid
search approach, we select the combinations. The smaller
the dataset for random search, the faster but less precise
the optimization. The richer the dataset, the more precise
the optimization, but the closer the optimization is to a grid
search. A key disadvantage of the random search method is
that it does not use earlier trials’ data to choose the next
batch, nor does it employ a technique to forecast the next
trial. Grid search is a time-honoured technique that is used
for all combinations. Cross-validation extracts the majority
of the dataset’s patterns and trains the model for each
combination. During the validation phase, it produces the
combination with the highest performance. The disadvan-
tage is that it frequently takes longer for high dimension
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[25–27]. In grid search, parameters are not perfect because it
is quite easy to get stuck in the optimal solution within the
neighbouring set of data. In this article, the hyperparameters
of the SVM are changed using a grid search cross-validation
search technique while taking into consideration the cost
of misclassification in the SVM. This sensing machine
learning technique helps to avoid stuck in local optimums.
In other words, the proposed approach performs better in
categorisation.

There are three main components to the paper. SVMs
that account for the misclassification costs associated with
credit card fraud detection will be developed in Section 2.
Experiments will be carried out in Section 3, and the
study’s findings and recommendations will be presented
in Section 4.

2. Data Classification using SVM

Support vector machines are supervised learning models
that can be used for both classification and regression.
SVM is a frequently used machine learning algorithm due
to its versatility and ease of usage. With SVM, we can easily
assign new data points to the correct category of hyperplane
by categorising n-dimensional space into classes, as shown
in Figure 1. SVM is part of the field of supervised machine
learning. The support vector classifier (SVC) algorithm is
used if the hyperplane classifies data linearly. A nonlinear
strategy to separate the dataset is used by SVM. Graphical
representations of linear and nonlinear data separation are
shown in Figures 2(a) and 2(b). Two unique datasets are
separated by a line and a squiggle in both of the graphs.

In general, SVM can be used for condition monitoring
and defect diagnosis [28, 29]. Known as the “kernel trick,”
SVM makes use of this method [23]. Low-dimensional input
spaces can be transformed into higher dimensions by these
functions, i.e., they transform unsolvable problems into
solvable problems, or vice versa. According to [30], in kernel
function Gaussian radial basis function (RBF), the parameter
sigma needs correct adjustment for reliable SVM perfor-
mance. Setting up an SVM is like solving the quadratic
optimization problem to find the thinnest hyperplane across
classes. The number of support vectors has a direct corre-
lation to the number of characteristics that have been
addressed in [31, 32].

The training data consists of a set of points (vectors) xj
and the categories that they fall into yj: For a given dimen-

sion d, the xi∊Rd , and the yj = ±1. The hyperplane is

f xð Þ = x′β + b = 0: ð1Þ

In equation (1), β∊Rd and the best separating hyperplane
is b. kβk can be minimized by taking into account all data
points ðxi, yj Þ and by finding β and b.

yj f xj
� �

≥ 1: ð2Þ

All of the xi on the boundary are support vectors. For
each of them, the support vectors are yj f ðxjÞ = 1. This is a

quadratic programming problem. z can be classed as a
vector defined in equation (3) as a result of the optimal solu-

tion ðbβ , b̂Þ.

Class zð Þ = sign z′ bβ + b̂
� �

= sign f̂ zð Þ
� �

: ð3Þ

In equation (3), f̂ ðzÞ is a classification score, and it indi-
cates the distance between z and decision boundary. When
the data cannot be separated into distinct groups, SVM
employs a soft margin. Soft margins can be created in two
ways: through a penalty parameter C and the use of slack
variable ξj. This implies the existence of a hyperplane that
divides a substantial number of data points but not all of
them.

The L1-norm problem is min
βbξ

ð1/2 bβ, β + C∑jξjÞ, such
that

yjf xjð Þξj ≥ 1 − ξj,

ξj > 0:
ð4Þ

Instead of calculating the squares of L1-norm, it suggests
using them as slack variables. The L1-norm problem is
solved using Sequential Minimal Optimization (SMO). The
constraints that are applied to L1-norm are also applied
to L2-norm.

The slack variables ξj are given more weight in these
formulations, as C increases, i.e., setting a big C results in a
high penalty for misclassification, whereas setting a low C
results in a low penalty for misclassification. Basic hyper-
planes are not always successful in binary classification situ-
ations. For these challenges, a mathematical solution that
leverages the notion of reproducing kernels retains practi-
cally all of the simplicity of an SVM splitting hyperplane is
at hand.

It operates by taking into account S and φ to map to S.

G x1, x2ð Þ = φ x1ð Þ, φ x2ð Þh i: ð5Þ

In most cases, samples that cannot be separated linearly
are the exception rather than the rule. The linear kernel is
shown to be represented as in the following equation:

K x1, x2ð Þ = x1
Tx2: ð6Þ

It is possible to enhance the prediction of SVM when the
classification problem is not linearly separable. By mapping
the data in to high-dimensional space, nonlinear feature
separation is possible [4]. The Gaussian RBF kernel is an
example of a nonlinear kernel. It is defined by

G x1, x2ð Þ = exp – x1 – x2Þk k2
2σ2

 !

, ð7Þ

where σ denotes the kernel’s width. If the parameter is near
0, the SVM is unable to fit new data, indicating that it is too
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close to support vectors. By increasing the value of, all occur-
rences are classified as underfitting.

Polynomial is the frequently used kernel function
defined as

K x1, x2ð Þ = x1
Tx2 + 1

� �p
: ð8Þ

The order of the polynomial kernel is p. The linear
kernel is the polynomial with the lowest degree, and it is
not used when the features have a nonlinear relationship.
The degree of the polynomial kernel determines how flexible
the classifier is, and higher-degree polynomials allow for
more flexible decision limits than linear ones [23].

2.1. Decision Boundary and Ordering of SVM. A key objec-
tive of the SVM method is to find the optimum decision
boundary or line that can divide n-dimensional space into
classes, allowing us to quickly classify fresh data points in
the future. We need to identify the optimal decision bound-
ary to categorise the data points in n-dimensional space,
even if there are several lines/decision boundaries. It is called

the hyperplane of SVM since it is the most optimal
boundary.

To create the hyperplane, the SVM uses the most
extreme points/vectors in the dataset. Support vectors refer
to extreme instances. As a result of a change in misclassifica-
tion cost, we alter the ordering since the orientation of the
hyperplane often shifts. ROC curves do not change when
the separating hyperplane is translated in feature space, but
when it is rotated. As a result, great care must be given when
determining the cost of incorrect categorisation.

2.2. Assigning Data Points to the Hyperplane. Support vec-
tors are the data points closest to the decision border; they
are the most difficult to categorise data points, and they
are critical for SVM to be the ideal decision surface. The
purpose of this hyperplane is to be as far away from the sup-
port vectors as possible. Margin is the distance between
hyperplanes and support vectors. Thus, the optimal hyper-
plane is the one with the largest margin.

However, in real-world applications, the amount of data
that overlaps is so great that soft margin SVMs are incapable
of producing an appropriate classifier. As an alternative,

Margin

Hyperplane

Support vectors

Figure 1: SVM dimensional space.

(a) (b)

Figure 2: (a) Linear data separation. (b) Nonlinear data separation.
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there is a requirement to compute a nonlinear decision
boundary (i.e., not a hyperplane rather hypersurface). It is
worth noting that a linear hyperplane is defined as a linear
equation in terms of the n-dimensional component, whereas
a nonlinear hypersurface is defined as a nonlinear expres-
sion. A hyperplane is defined as follows:c =w1x1 +w2x2 +
w3x3 while a nonlinear hypersurface is defined as w1x 2 1
+w2x 2 2 +w3x1x2 +w4x 2 3 +w5x1x3 + c = 0, and a linear
hypersurface is defined as w1x 2 1 +w2x 2 2 +w3x1x2 +
w4x 2 3 +w5x1x3 + c = 0:

In a word, the technique to obtaining a nonlinear
SVM is to convert nonlinear data to higher-dimensional
linear data as shown in figure. To illustrate how nonlinear
translation of original input data into a higher-dimensional
space works, take a nonlinear second-order polynomial in a
three-dimensional input space.

X x1, x2, x3ð Þ =w1x1 +w2x2 +w3x3 +w4x 2 1
+w5x1x2 +w6x1x3:

ð9Þ

The following mappings may be used to translate the
three-dimensional input vector Xðx1, x2, x3Þ into the six-
dimensional space Zðz1, z2, z3, z4, z5, z6Þ:

z1 = φ1 xð Þ = x1 ; z2 = φ 2 xð Þ = x2 ; z3 = φ3 xð Þ = x3 ;
z4 = φ4 xð Þ = x 2 1 ; z5 = φ5 xð Þ = x1:x2 ; z6 = φ6 xð Þ = x1:x3:

ð10Þ

The modified form of linear data in six-dimensional
space will appear as follows:Z w1z1 +w2z2 +w3z3 +w4z4
+w5z5 +w6x1z6 + c. Thus, if the Z space contains input
data for its characteristics x1, x2, and x3 (and thus for Z
values), we may use linear decision boundaries to categorise
them. The idea of nonlinear mapping and hence of a linear
decision boundary appears to be rather straightforward.
However, there are several possible complications.

It may be afflicted by the curse of dimensionality, which
is frequently linked with large-dimensional data. More pre-
cisely, because the number of input instances and support
vectors is so vast, it is computationally costly. As a result,
the kernel technique is utilised to allocate data points to
the hyperplane which is shown in Figure 3.

2.3. Kernel Trick. Cover’s theorem is the notion of trans-
forming nonlinearly separable data into linearly separable
data. Kernel tactics aid in projecting data points to a
higher-dimensional space, where they become more easily
separable. Kernel tricks are a technique for computing the
dot product of two vectors in order to determine how much
they affect one another.

If two input vectors are similar, the dot product can be
used as an indicator of how similar they are. The same holds
true for the tuple Xi:Xj, which serves as an indicator of how
similar Xi is toXj. Since φðXiÞ and φðXjÞ are the converted
features of Xi and Xj in the transformed space, thus,
φðXiÞ:φðXjÞ also should be regarded as the similarity mea-
sure between φðXiÞ and φðXjÞ in the transformed space. This
is indeed an important revelation and is the basic idea behind
the kernel trick

The following conclusions may be drawn from the
discussion above.

Xi:Xj⇒ φ Xið Þ:φ Xjð Þ⇒ K Xi, Xjð Þ: ð11Þ

In the altered space (i.e., the nonlinear similarity mea-
sure), this kernel function KðXi ; XjÞ physically implies the
similarity (i.e., nonlinear similarity). The similarity function,
K , calculates the degree to which two sets of data, whether
originally stored in one set of attributes or after transforma-
tion, are similar.

2.4. RBF Kernel as a Projection into Infinite Dimensions.
Recall a kernel is any function of the form: KðXi, XjÞ =
hφðXiÞ, φðXjÞi where φ is a function that projected vector
X into a new vector space. When two projected vectors
are sent via the kernel function, it returns the inner
product of those two products. Vectors are projected onto
an infinitely large space by the function of an RBF ker-
nel. This space is an infinite dimensional Euclidean space
for Euclidean vectors. That is, φRBF : ℝ

n ⟶ℝ∞:
This decreasing function of distance between the axes is

how the RBF kernel depicts this similarity. The breadth of
the bell-shaped curve is determined by the σ parameter.
The bell will become narrower as the value of σ increases.
In general, small values of σ produce broad bells.

2.5. Bias-Variance Trade-Off. This is a significant machine
learning problem because we want our models to recognise

x2

x1

X in 2D space

z2

z1

Z in 2D spaceX

Figure 3: Hyperplane mapping from nonlinear to linear.
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specific patterns in the data but not to learn about correla-
tions between the training data’s variable x and label y that
do not make sense. The bias-variance trade-off is an impor-
tant issue. An underfitting model does not recognise specific
patterns in the training data. On the other side, an overfit-
ting model learns patterns from the training data that are
not necessary or even present in the real world. The bias is
the difference between the model prediction f ˆðxÞ and the
correct output of the underlying function f ðxÞ which we
are trying to predict. Because of the restricted number of
parameters, simple models often exhibit a large bias when
applied to real-world data. On both training and testing
data, they frequently have similar error rates.

Bias and variance are important because they aid in
finding the best fit for the dataset through hyperparameter
adjustment [33]. Tuning aids the model’s learning from a
given dataset. As a result, the hyperparameter cross-
validation approach eliminates overfitting during tweaking.

The deviation of the model prediction f̂ ðxÞ for different
training sets is referred to as the variance. This type of model
is very sensitive to the training data; hence, it will modify its
prediction if it is trained on a new training dataset. As a
result, models with a lot of variation tend to do well in train-
ing but make a lot of mistakes in testing.

A simple model has a tiny bias, while a more compli-
cated model has a significant variance but little bias. The rea-

son for this is that more advanced models can more closely
approximate the goal function (low bias), but the variability
of the training set is greatly influenced (leading to high var-
iance). For simple models, the opposite is true. An attempt is
made to assess the chance of fraud in a credit card transac-
tion ðy ∣ xÞ by using a credit card fraud detection classifier
by considering y as the target variable and x as the attributes
of transaction. So, we need to be careful and arbitrary when
we choose the value of C for better categorisation.

The flow diagram of the proposed method is shown
in Figure 4.

2.6. Grid Search and Cross-Validation. Using a technique
known as “grid search,” hyperparameters can be found that
are optimal for a given model. Grid search is extensively
used in parameter assortment since it allows us to “brute
force” all possible combinations. On a predefined set of
criteria, it performs an exhaustive search. The parameter
with the greatest score on a criterion is said to be optimum.
In [34], the authors found best value for sigma using grid
search technique. Grid search generates a model for every
possible combination of parameters. It runs through every
possible combination of parameters and creates a model
for each one. The number of grid divisions determines the
number of values that can be stored in each dimension,
and we use grid search for this purpose. Uniform sampling

Input image

Hyper parameter tuning

Apply grid search

Cross validation

Split data to 10 folds

For each fold train the
SVM model

Calculate accuracy

Assign avg. accuracy to the
current hyper parameter set

Misclassification cost

Select hyper parameter in the
best average accuracy

Performance evaluation using linear
polynomial & RBF kernel

Select next hyper parameter until
all combinations are tested

Figure 4: Flow diagram of the proposed method.
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without grid replacement is used to conduct the search in
random order. The basic grid arrangement is shown in
Figure 5.

Grid search uses the cross-validation (CV) method to
optimise the SVM parameters C and σ evaluate perfor-
mance. Grid search cross-validation is a strategy for selecting
the best machine learning model from a set of hyper-
parameters. Grid search CV searches all grid parameter
combinations for a model and delivers the optimal set of
parameters with the best performance score. Hyperpara-
meter combinations that can consistently forecast unknown
data are what we are looking for. According to [35], cross-
validation technique helps to avoid overfitting. We divide
the provided data into k sections in order to select C and σ
using k-fold CV. Here, we apply five folds; one subset is used
for testing, and the other k-1 training subsets are examined as
indicated in Figure 4. The predictive model’s performance is
tested using a number of alternative hyperparameter settings,
and the model with the highest cross-validation value is
chosen.

2.7. Misclassification Cost. If a bank incorrectly classifies a
fraudulent transaction as a nonfraudulent transaction, the
bank suffers financial loss. However, if a transaction that is
not fraudulent is incorrectly labelled as fraudulent, the bank
is just required to provide the customer with a verification
notice.

A larger penalty for misclassifications of the minority
class can be employed to make up for the imbalance.
Therefore, “misclassifying a fraudulent transaction as non-
fraudulent is thus more expensive than misclassifying a
non-fraudulent transaction as fraudulent.”

The SVM tuning approach now includes a new free
parameter Costði, jÞ, which expresses a cost of categorising
a point into class j if its true class is 1 in the form of a
numeric square matrix. Accordingly, we penalised those
who categorised a sample from class 0 as class 1, while pena-
lising those who classified a sample from class 1 (the minor-
ity) as class 0 (the majority). As a result, Cost (0, 1) should
be little, whereas Cost (1, 0) should be substantial.

The SVM’s decision boundary and ordering are both
affected by the misclassification cost, as the hyperplane’s
orientation varies when the cost function is tweaked. In
this way, we can improve the performance of the AUC
score.

The essential notion behind the misclassification con-
cept is that if classes are sufficiently represented in the
training data, they are treated asymmetrically, with the
misclassification cost used to differentiate between non-
fraudulent and fraudulent classes. Failure to detect a
fraudulent (false negative) has significantly more serious
repercussions than misidentifying a nonfraud as fraudulent
(false positive). As a result, the cost of misidentifying
fraudulent as nonfraudulent will be high, but the cost of
misidentifying nonfraudulent as fraudulent will be low.
As a result, misclassification costs are used to alter the
model’s prior class probabilities in order to anticipate
fraudulent detection.

3. Experimental Results and Discussions

An online data science site called http://Kaggle.com pro-
vided the dataset used in this paper. For the execution,
MATLAB 2020b was used, and the processor is an Intel Core
i5-3470 CPU @ 5.32GHz, 8GB RAM, 500GB HDD and a
64-bit Windows 10 operating system. The time stamp is
the first field, and the monetized card transaction amount
is the final field. Each data entry has 30 fields. Only 492 or
0.17 percent of the 284,807 credit card transactions in the
database are fraudulent. Most transactions were less than
100 INR, but some might go up to 10,000 INR.

This is how we are going to approach the classification
problem:

(i) The first process is to apply SVM to the data and to
use the results as benchmark

(ii) The optimized SVM using grid search cross-
validation and misclassification cost is applied to
the data

Important parameters

N
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-im
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rt
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t p
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et

er
s

(a)

Full dataset

Testing dataset Training dataset

(b)

Figure 5: (a) Grid layout. (b) Grid arrangement.
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(iii) SVM outcomes will be analysed utilising linear,
polynomial, and RBF kernel functions

It is common practise to utilise the confusion matrix to
show how a machine learning classifier’s prediction does
not match the dataset’s ground truth. The following are
listed in the matrix of confusion:

(i) True positive (TP)

It is the proportion of positive labels predicted accurately by
trainedmodels. This is the number of samples classified as class
1 that were accurately anticipated to be class 1 (fraudulent).

(ii) True negative (TN)

It is the number of incorrectly predicted negative labels
by trained models. This is the number of samples classified
as class 0 that were accurately predicted to be class 0.

(iii) False positive (FP)

It is the number of mistakenly predicted positive labels
by trained models. The number of class 1 samples was fore-
casted wrongly as class 0.

(iv) False negative (FN)

It is the number of mistakenly predicted negative labels
by trained models. This is the number of class 0 samples that
were forecasted as class 1 wrongly.

To have a perfect model, all of the cases would be pro-
jected as being positive and none as being negative, resulting
in the null values of FN and FP. Classifier performance can
be assessed using a variety of measures derived from the
confusion matrix.

(i) Recall

Recall is a measure that indicates how accurately our
model recognises true positives.

Recall = true positives
true positives + false negativesð Þ : ð12Þ

(ii) Precision

It is defined as the ratio of true positives to all positives.

Precision =
true positives

true positives + false positivesð Þ : ð13Þ

(iii) F1-score

This score represents the harmonic mean of precision
(P) and recall (R).

F1 − score =
2 ∗ P ∗ R
P + Rð Þ : ð14Þ

(iv) Error rate
It is considered by the no. of predictions that were wrong

is divided by the total number of observations. When it
comes to error rates, 0.0 is perfect, whereas 1 is optimal.

ERR =
false positives + false negatives

true positives + true negatives + false negatives + false positives

=
false positives + false negatives

P +N
:

ð15Þ

(v) Accuracy
When determining the accuracy of a prediction, divide

the total no. of correct predictions by entire no. of observa-
tions contained in a dataset (ACC). At the most precise level,
1.0, and at the least precise level, 0.0. Additionally, it can be
written as 1–ERR.

ACC =
true positives + true negative

true positives + true negative + false negatives + false positives

=
true Positives + true negative

P +N
:

ð16Þ

Table 1 shows that a variety of kernels have been used to
study the detection of credit card fraud. The cost of misclas-
sification must also be calculated along with these kernel
parameters. In order to compensate for the imbalance, the
misclassification cost is utilised to impose a greater penalty
on misclassifications of minorities. For all kernel functions,
a grid search is used to determine the best parameter values.

Table 1 lists all of the confusion matrix measurements, as
well as the overall cost of misclassification, which is com-
puted by adding the cost matrix by the confusion matrix
established by the indicated technique. When the total cost
of misclassifying is low, it makes sense to penalise people
who change their prior probabilities during hyperparameter
tweaking for better fraud detection.

Hence, the reported sensing technique shows that
SVM optimised with RBF and misclassification cost per-
forms well in fraudulent credit card detection better than
other approaches.

To determine the method’s false discovery rates, the
positive predictive values are plotted against the false
discovery rates (FDRs). PPV describes the likelihood that a
favorable outcome is correct. The false discovery rate in sta-
tistics is defined as the ratio of mistakenly positive outcomes
to all positive results. For identifying credit card fraud, the
percentage values of the elements below the diagonal of the
confusion matrix are insignificant. These data illustrate
examples of how a customer’s credit rating is computed
following the proposed technique. In fact, the rate of false
positives is dropping. Model 3 (SVM optimised with RBF
and misclassification cost) surpasses the others in terms of
credit card fraud prediction, as shown in Figure 6.

It is prudent to begin by analysing classifier performance
using a confusion matrix-based score. It is possible that
some consumers want to know more about how the
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classifiers perform over the entire testing set. Metric assess-
ment is used in order to get a clearer picture of the classifier’s
behaviour. Receiving operating characteristic (ROC) curves
are used a lot in parametric evaluation to see how well a
new method works.

One measure to gauge the accuracy of a test is the num-
ber of false positive results. The true positive rate vs. the false
positive rate is shown in Figure 5. A positive genuine posi-
tive rate is shown, while a negative false positive rate is
shown on the x- and y-axes, respectively. It is advantageous

Table 1: Confusion matrix measures and the overall misclassification cost.

Approach Recall Precision F1-score Error rate Accuracy Misclassification cost

SVM 0.9492 0.9878 0.9681 0.0325 0.9674 NA

Linear optimized SVM 0.9603 0.9837 0.9718 0.0284 0.9715 52.0

RBF optimized SVM 0.9739 0.9878 0.9808 0.0193 0.9836 34.6

Quadratic optimized SVM 0.9603 0.9837 0.9718 0.0284 0.9715 52.0

Cubic optimized SVM 0.9660 0.9837 0.9747 0.0254 0.9745 45.5
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to use a ROC curve to evaluate a classifier rather than mis-
classification error since ROC plots may be generated for
all possible thresholds between 0 and 1. It shows the receiver
operating characteristic curves of models 1, 3, 4, and 5.
Model 3 outperforms all others when the x- and y-axes are
set to a value of 0.03 and 0.99, respectively.

There are some of additional options available as well.
The following is a list of the most often encountered:

False negative rate: it is the possibility that a test will miss
a real positive, known as the false negative rate, or miss rate.
As a result, we have FN/FN + TP, where FN is the number of
false negatives and TP is the number of true positives.

The probability of fraudulent is known as the positive
predictive value. The formula is TP/TP + FP = TP/TP + FP.

To measure a classifier’s performance, the ROC curve
might offer a higher score to the classifier, known as the
area under the curve (AUC). It is feasible to set the
threshold that corresponds to the spot on the ROC curve
that best depicts the trade-off between sensitivity and spec-
ificity. To evaluate the model without regard to the setting
of a threshold, ROC curves can be used. Models with a
high AUC are referred to as having a high level of exper-
tise. AUC values for models 3–5 are shown in Figure 7. It
is still close to one, though, with a true positive rate of
99.9% for model 3. As a result, when compared to other
models, ours has a high AUC score.

The proposed approach is compared with some of the
machine learning algorithm, and it is shown in Table 2.
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Figure 7: AUC-ROC of our models.
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Table 2 shows that SVM with RBF gives better performance
than other methods.

Weighted support vector machines [36] and cuckoo
search SVM (CS-SVM) [3] are used to compare the results
of the proposed sensing machine learning experiments. CS-
SVM is excellent for continuous issues, but it also offers
flexibility and appropriate search restrictions for discrete
problems. If the appropriate weight is not assigned to each
individual data point in weighted SVM, accuracy suffers.
However, our suggested method addresses these two difficul-
ties by combining grid search cross-validation with misclas-
sification cost. According to the results shown in the table,
the RBF-based approach is more precise and accurate than
other approaches as shown in Table 3.

4. Conclusion

Categorisation algorithms are evaluated using a new sensing
machine learning method that takes the cost of incorrect
classification into account. Grid search cross-validation
optimization of the SVM’s hyperparameters and the theory
of replicating kernels such as linear, Gaussian, and polyno-
mial simultaneously increase the model’s robustness. The
findings show that this method significantly improves the
finding of credit card fraud.

The quality of detection can be still improved. If the
following characteristics are taken into account, ample data,
high-quality data, and elements that are data should all be
well-structured and free of bias.

However, the suggested technique has a significant
downside in terms of quick convergence and complexity.
Grid search’s complexity is projected to develop exponen-
tially at a rate of OðnkÞ if k parameters with n different values
are examined. This may be overcome by examining a larger
dataset and doing a random search.

Although SVMs are not ideal for managing huge data-
sets, they perform poorly when noise is present in the data
(e.g., overlapping classes). Future studies might look at the

sequence of fraud and genuine transactions before credit
cards are revoked. Future studies may also look at the
distinctions between other forms of fraud, such as the
differences in behaviour between stolen and counterfeit
cards. It might also include noise which can be removed by
autoencoder.
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