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In order to realize the online monitoring of automotive engine lubricating oil, a method based on Internet of Things technology is
proposed. This method uses the self-organizing neural network of the Internet of Things to fuse the original multidimensional
feature data to obtain the fusion value. The Parzen window method is used to formulate the limit value of fusion value, and
the samples are divided into three states: normal, warning, and abnormal. Weka software is used to extract rules from oil data.
This method can identify different wear state information from oil spectral data, extract knowledge rules, and use them to
build the knowledge base of automobile engine wear diagnosis system, so as to realize the automation and intelligence of
automobile engine fault diagnosis based on lubricating oil spectral wear data. The measurement method of the lubricating oil
sensor is mainly to comprehensively reflect the relationship between oil quality and electrical signal, so as to effectively provide
users with reliable information. After many studies, it is concluded that the conductivity of lubricating oil has a good linear
relationship with its acid value, metal particles, moisture content, and the change of additive content. Measuring the change of
conductivity is an effective means to detect the change of lubricating oil quality. The experimental results show that using the
extracted knowledge rules to verify the state of samples, the recognition rate is 97.47%. In order to more fully explain the
difference between important element fusion and all feature fusion, all features are extracted. At the same time, the fault
diagnosis and recognition rate of all features is not high, only 62.39%. It is proved that the Internet of Things technology can
effectively realize online monitoring of the automotive engine lubricating oil.

1. Introduction

The oilfield has main production equipment such as water
injection pump, oil transfer pump, natural gas compressor,
and generator set, which has the characteristics of contin-
uous operation, large impact load, high working tempera-
ture, and fast movement speed. Once these major key
equipment fails, it will cause huge economic losses to the
oilfield and even endanger personal safety. Therefore, there
are strict requirements for the safety performance and
operation reliability of the equipment. At present, relying
on the lubrication station and laboratory, the oilfield has
carried out offline physical and chemical analyses and ele-
ment analysis of the lubricating oil for generator sets,
water injection pumps, natural gas compressors, and other

equipment, which has played a positive role in finding the
inducement of equipment failure in time, the development
of early failure and ensuring the safe and reliable opera-
tion of equipment. However, this detection method is
not intelligent and cannot be interconnected. It can only
give isolated detection results, and the effect of guiding
equipment maintenance is not obvious. Especially in the
environment where the oilfield vigorously develops the
Internet of Things technology and establishes a digital oil-
field, this oil monitoring system is separated from the
whole oilfield digital system and becomes an information
island. It is a short board for building an intelligent digital
oilfield system. Therefore, the construction of lubricating
oil online monitoring to monitor and evaluate the lubrica-
tion and wear status of oilfield equipment in real time is
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an effective means to realize predictive maintenance and
active maintenance, which is of great significance to
ensure the safe, economic, and efficient operation of
equipment [1].

Lubricating oil online monitoring technology is to contin-
uously detect the physical and chemical parameters and wear
particles of lubricating oil by installing various sensors on
the equipment. Generally, the technical method of trend anal-
ysis is used to determine the service status of lubricating oil
and equipment. It has the characteristics of real-time, continu-
ity, synchronization, rapid analysis, high degree of automa-
tion, and informatization. The moisture in lubricating oil
will make the oil emulsified and oxidized and reduce the vis-
cosity and oil film strength, and the formation of lubricating
oil oxides and polluting impurities will reduce the fluidity of
lubricating oil and lead to the increase of viscosity. Moisture
and viscosity are an important basis for measuring the lubri-
cating ability of oil. Ferromagnetic and nonferromagnetic
wear elements in lubricating oil exist in the form of particles.
Monitoring their quantity is of great significance to judge the
equipment wear of nonferrous and metal parts. When the oil
is aged or polluted, the content of polar molecules and parti-
cles in the oil changes, and the dielectric constant of the oil also
changes. At the same time, due to friction and wear, worn
metal particles and other highly conductive compounds will
also change the dielectric constant of the lubricating oil [2].
By monitoring the dielectric constant and AC impedance of
lubricating oil, the information of oil quality and wear fault
can be reflected. For the main drive gear oil, the main moni-
toring indicators are temperature, viscosity, moisture, dielec-
tric constant, ferromagnetic particles, and pollution degree.
Therefore, the high viscosity sensor, moisture sensor, ferro-
magnetic sensor, and laser particle sensor are designed in the
main bearing gear oil online monitoring module to collect
the above indicators in real time. The sensor arrangement is
shown in Figure 1.

According to the actual working conditions of the equip-
ment, the three-dimensional six index system of lubricating
oil online monitoring is determined, namely, physical and
chemical indexes, wear index, and comprehensive quality
index. Physical and chemical indexes include moisture and
viscosity. Wear indicators include ferromagnetic particles
and nonferromagnetic particles. The comprehensive quality
indexes include dielectric constant and AC impedance. The
three indexes compensate each other, which can scientifi-
cally and reasonably determine the working state of lubricat-
ing oil and the wear state of equipment [3].

2. Literature Review

According to relevant statistics, more than 50% of the malig-
nant faults of mechanical equipment are caused by lubrication
failure and excessive wear. Therefore, the research and appli-
cation of oil online monitoring and diagnosis technology has
important practical significance. At present, many scholars
have done more research on the application of oil monitoring
technology. Singh et al. mainly studied oil detection technol-
ogy [4]. Fan et al. mainly introduced the application of oil
detection technology in equipment fault diagnosis [5]. Wang
et al. introduced the application of offline detection technology
in shield. However, with the continuous improvement of auto-
mation and integration of shield and the increasing number of
shield, the detection technology based on offline detection can
not meet the needs of long-term continuous monitoring of
modern equipment [6]. Yi et al.’s analysis of the transport fleet
(6.4L, 6.7L engines) using conventional mineral oil (15W-40)
and fully synthetic oil (5W-40) shows that the current 5000
mile oil change interval can be extended. Moreover, there are
significant differences in oil performance and chemical degra-
dation between 6.4L and 6.7L engines. The approximate life
of 6.4 l engine oil is 8000miles (about 12800km), while the
approximate life of 6.7L engine oil is 12500miles (about
20000km) [7]. Bo andQin studied the oil change cycle of vehi-
cle lubricating oil. Sg15W-40 general internal combustion
engine oil is selected to conduct tracking test on five civil cars.
The collected oil samples are analyzed for physical and chem-
ical properties. Combined with statistical analysis method, it is
obtained that the failure mileage of lubricating oil is 7600km
at 90% confidence level [8]. Zhao et al. conducted several
groups of driving tests on sf5W-30 engine oil, studied the oil
change cycle of sf5W-30 engine oil by using pressure differen-
tial scanning calorimeter (PDSC) and infrared spectrometer,
and took the vulcanization value in the lubricating oil as the
oil change index.When the vulcanization value in the lubricat-
ing oil reaches the set threshold (25A/cm), the running mile-
age of the driving test vehicle is 9000-9400 km, and this is the
engine oil failure time [9]. For Ashwini et al., according to the
differences of vehicle operating conditions, different vehicle
models are selected for driving test, and the viscosity, flash
point, fuel dilution, and other indexes of engine oil (sm5w-
30) with different operating mileages are tested. The test
results show that after the five test vehicles run for
10000km, the vehicle runs without abnormality, and the oil
still has good oxidation stability, cleaning dispersion capacity,
and lubrication performance [10].Wang et al. based on Jiefang

Y type filter Pump Ferromagnetic sensor

Moisture sensorHigh viscosity sensorLaser particle sensor

Oil outlet

Oil inlet

Figure 1: Sensor layout diagram of gear oil online monitoring module.
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J6 heavy tractor carried out the technology development and
research on 1 × 105 km long oil change cycle of e410w-40
engine oil. Combined with bench test, driving test, and engine
disassembly test, it shows that all indexes of lubricating oil are
within the range specified in the national standard, and the
wear of engine parts is also within the normal range, and in
August 2015, China First Automobile Co., Ltd. took the lead
in applying this long oil change cycle technology in China
[11]. Yuldashev et al. believe that developing a sensor that
can facilitate the real-time online monitoring of lubricating
oil installed on the vehicle should not only monitor the deteri-
oration degree and pollution of lubricating oil but also accu-
rately remind the best time to replace new oil. When the
lubricating oil deteriorates to the extent that it will harm the
engine or exceed the predetermined threshold of parameter
indicators, it will send an alarm to the user in time to remind
the user to replace the lubricating oil. At present, it is a very
urgent work for people. The development of this sensor
should have the following characteristics: fast analysis speed,
low cost, real-time monitoring, accurate judgment, simple
operation, etc., so that each user can easily master its operation
method [12]. Zhang et al. believe that at present, oil detection
technology is mainly applied in engineering technology, large
mining enterprises, petroleum oil detection, and other fields.

The main method is to extract a certain amount of samples
from its equipment and send them to the oil detection center,
and then, professionals will detect and analyze the oil products
of the oil samples to determine their pollution degree and
deterioration status, so as to provide reference for its equip-
ment to replace oil and diagnose faults [13].

Based on the current research, this paper proposes a
method based on Internet of Things technology. This
method uses the self-organizing neural network of the Inter-
net of Things to fuse the original multidimensional feature
data to obtain the fusion value. The Parzen window method
is used to formulate the limit value of fusion value, and the
samples are divided into three states: normal, warning, and
abnormal. Weka software is used to extract rules from oil
data. This method can identify different wear state informa-
tion from oil spectral data, extract knowledge rules, and use
them to build the knowledge base of automobile engine wear
diagnosis system, so as to realize the automation and intelli-
gence of automobile engine fault diagnosis based on lubri-
cating oil spectral wear data. The measurement method of
the lubricating oil sensor is mainly to comprehensively
reflect the relationship between oil quality and electrical sig-
nal, so as to effectively provide users with reliable informa-
tion. After many studies, it is concluded that the
conductivity of lubricating oil has a good linear relationship
with its acid value, metal particles, moisture content, and the
change of additive content. Measuring the change of con-
ductivity is an effective means to detect the change of lubri-
cating oil quality.

3. Wear Fault Diagnosis Knowledge Acquisition
Method Based on Oil Spectrum Data Fusion

3.1. Method and Process. Figure 2 shows the flow chart of
knowledge acquisition method for automobile engine wear
fault diagnosis based on oil spectrum data fusion, mainly
including feature fusion based on SOM, boundary value for-
mulation based on the Parzen window method and knowl-
edge rule extraction based on Weka platform. The flow
chart of knowledge acquisition method is shown in Figure 2.

3.2. Self-Organizing Neural Network Learning Algorithm.
Self-organizing neural network, also known as self-
organizing feature mapping and Koho Nen network, is a
neural network with self-organizing ability trained by unsu-
pervised learning. It can conduct self-organizing training
and judgment on the input mode and finally divide it into
different types. With its low-dimensional organization abil-
ity of high-dimensional data, SOM has many successful
applications in data mining fields such as classification, clus-
tering, fusion, and prediction [14]. Figure 3 shows the struc-
ture of the self-organizing neural network.

SOM’s competitive learning algorithm process:

(1) Set the variable and parameter X½n� =
½x1ðnÞ, x2ðnÞ,⋯, xNðnÞ�T as the input vector, or
training sample. Wi½n� =

Oil spectral data

SOM feature fusion

Parzen window method limit value
formulation

Weka platform rule extraction

Automobile engine wear fault
diagnosis and condition evaluation

Figure 2: Flow chart of knowledge acquisition method.

�e competitive layer

�e input layer

Figure 3: Structure of the self-organizing neural network.
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½wi1ðnÞ,wi2ðnÞ,⋯,wiNðnÞ�T is the weight loss, i = 1
, 2, ::,M. The number of iterations is K

(2) Initialization: initialize the weight vector Wi with a
small random value. Set the initial learning rate ηð0
Þ. Normalize all input vectors X and initial values
Wið0Þ of weight vectors:

X ′ = X
Xk k , ð1Þ

Wi′ 0ð Þ = Wi 0ð Þ
Wi 0ð Þk k , ð2Þ

where

Wi 0ð Þk k = 〠
N

j=i
wij 0ð Þ� �2, ð3Þ

Xk k = 〠
N

i=1
xið Þ2: ð4Þ

They are the European norm of weight vector and input
vector, respectively

(3) Sampling, approximate matching: select the training
sample X ′ from the space and pass the standard of
minimum Euclidean distance

X ′ −Wc′
�� �� =min

i
X ′ −Wi′

�� ��, i = 1, 2,⋯,M, ð5Þ

to select the winning neuron C, so as to realize the com-
petition process of neurons

(4) Update: Hebb learning rules are used for excited
neurons in the topological neighborhood NcðnÞ of
winning neurons:

Wi′ n + 1ð Þ =Wi′ nð Þ + η nð Þ X ′ −Wi′ nð Þ
� �

: ð6Þ

Update the weight vector of neurons, so as to realize the
cooperation and update process of neurons

(5) Update the learning rate ηðnÞ and topological neigh-
borhood and renormalize the learned weights:

Nc nð Þ = INT Nc 0ð Þ 1 −
n
N

� �h i
, ð7Þ

Wi′ n + 1ð Þ = Wi′ n + 1ð Þ
Wi′ n + 1ð Þ�� �� ð8Þ

(6) Judge whether the number of iterations n exceeds K .
If n ≤ K , increase the value of N by 1 and go to step
3. Otherwise, end the iteration process

3.3. Feature Fusion Based on SOM. The steps of feature
fusion based on SOM are as follows.

3.3.1. Extract Normal Samples. Because the weights of the
training samples are normal, we need to extract the features
of the SOM network through the normal samples. The steps
of extracting normal samples are as follows.

(i) Step 1: create a self-organizing neural network. Set
the parameters of network training and carry out
SOM training for all samples X. Among them, the
number of output neurons is m1 × n1 and the num-
ber of training K1. m1 and n1 represent the number
of rows and columns of output neurons,
respectively
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Figure 4: Comparison of probability density function between
estimation and statistics.

0 2 4 6 8 10
1.0000

1.0002

1.0004

1.0006

1.0008

1.0010

1.0012

1.0014

Electrical conductivity of lubricating oil ×10−8

Sp
re

ad
in

g 
fa

ct
or

Figure 5: Relationship between the propagation factor and change
of lubricating oil conductivity (frequency 10MHz).
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(ii) Step 2: identification of clustering samples. After
training, a certain number of samples will be gath-
ered on each output neuron. Therefore, sample
identification is carried out with the help of SOM
toolbox function in MATLAB [15]

(iii) Step 3: screening of normal samples. Because the
topological structure on the neural network struc-
ture diagram shows the number of samples corre-
sponding to neuron clustering. The color
distribution on the nearest neighbor neuron map
reflects the proximity between adjacent neurons.
The lighter the color, the closer the distance
between two neurons, and the darker the color,
the farther the distance between two neurons; At
the same time, according to the sample value size
on each neuron, the normal sample is extracted
and recorded as y

3.3.2. Normal Sample Training. Carry out SOM network
training for normal samples, reset the number of output
neurons m2 × n2 and the number of network iterations K1,
and obtain the weight vector w of normal sample training.
Where m2 and n2, respectively, represent the number of
rows and columns of output neurons, the number of col-
umns of weight vector w is equal to the sample dimension,
and the number of rows is equal to the number of output
neurons, i.e., m2 × n2.

3.3.3. Feature Fusion. Calculate the minimum matching dis-
tance d from all samples x to the weight vector w of normal
samples, and then fuse a curve to achieve the purpose of fea-
ture fusion [16].

d =min
j

X −Wj

�� ��, ð9Þ

where j is the number of output neurons.

3.4. Formulation of Limit Value Based on Parzen Window
Method. The traditional limit value formulation methods
assume that the oil monitoring data obey the normal distri-
bution, but the distribution law of the actual data is not nec-
essarily normal, and its probability distribution is often
unknown. At this time, it is necessary to estimate the prob-
ability density function of the data from a large number of
data and obtain the probability distribution of the sample
according to the probability density function; then, the limit
value of wear diagnosis is obtained according to the esti-
mated probability distribution.

To estimate the probability density function,

F xð Þ = P X ≤ xð Þ =
ðx
−∞

p tð Þdt: ð10Þ

It is necessary to find the solution of linear operator

ð∞
−∞

θ x − tð Þp tð Þdt = F xð Þ, ð11Þ

where

θ xð Þ =
1, x > 0,

0, x ≤ 0:

(
ð12Þ

And the solution must also meet the following two con-
ditions:

p xð Þ ≥ 0,
ð∞
−∞

p xð Þdx = 1 ð13Þ

In equation (9), the expression of the distribution func-
tion FðxÞ is unknown, but a set of samples x1,⋯, xl are
given. According to the probability theory, this group of
samples is independent and identically distributed. Now,
use sample x1,⋯, xl to construct the empirical distribution
function, where l is the number of samples [17].

Fl xð Þ = 1
l
〠
l

i=1
θ x − xið Þ: ð14Þ

The Parzen window estimation method is a nonpara-
metric estimation method that uses known sample points
to estimate the overall probability density distribution, that
is, it uses the average value of the density of each point in
a certain range to estimate the overall probability density.
Due to its solid theoretical foundation and excellent perfor-
mance, Parzen window technology has become a widely
used the nonparametric density estimation method.

Generally, let x be a point in d-dimensional space, the
total number of samples selected is n, in order to estimate
the distribution probability density PðxÞ at x, make a hyper-
cube VN centered on X, and its side length is hN ; then, the
expression of volume is VN = hdN . To calculate the number
of samples kn falling into hypercube VN , it is necessary to
construct a function so that

ϕ uð Þ = 1, when uj

�� �� ≤ 1
2
, j = 1, 2,⋯, d,

0, other:

8<
: ð15Þ

If ϕðuÞ satisfies the condition of equation (13), the num-
ber of samples falling into the hypercube is

kN = 〠
N

i=1
ϕ

x − xi
hN

� 	
: ð16Þ

Substitute equation (14) into:

P̂N xð Þ = kN /N
V

, ð17Þ

P̂N xð Þ = 1
N
〠
N

i=1

1
VN

ϕ
x − xi
hN

� 	
: ð18Þ

3.5. Conductivity Is the Main Basis for Evaluating the Quality
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of Lubricating Oil. If its composition changes, or there is
invasion of external substances, or its own oxidation, etc.,
they will change the conductivity of lubricating oil. There-
fore, as long as we know the change of the conductivity value
of the lubricating oil, we can easily judge the quality of the
lubricating oil.

As early as 1994, Ford Motor Company had passed the
laboratory evaluation and driving test. Finally, it was con-
cluded that the online monitoring of lubricating oil can be
done by measuring the conductivity of the lubricating oil.
The measurement method of the lubricating oil sensor is
mainly to comprehensively reflect the relationship between
oil quality and electrical signal, so as to effectively provide
users with reliable information. After many studies, it is con-
cluded that the conductivity of lubricating oil has a good lin-
ear relationship with its acid value, metal particles, moisture
content, and the change of additive content. Measuring the
change of conductivity is an effective means to detect the
change of lubricating oil quality. In the quality identification
of lubricating oil, permittivity and conductivity are two
important parameters to evaluate the electrochemical per-
formance of oil. The permittivity of different oil products

has little difference; however, the conductivity of different
oil products varies greatly due to the change of oil compo-
nents, generally ranging from 10-7 to 10-15 s/m, with a var-
iation range of about 8 orders of magnitude. Therefore,
when evaluating whether the quality of lubricating oil has
deteriorated, it can be judged by accurately measuring the
conductivity. Therefore, measuring conductivity will be a
comprehensive way to reflect the change of lubricating oil
quality. Therefore, this paper will study the theoretical
method based on the physical quantity of conductivity and
preliminarily design the online lubricating oil sensor [18].

3.6. Extraction of Wear Element Rules Based on Weka
Platform. The knowledge rule extraction of engine wear ele-
ments is mainly carried out with the help of Weka platform.
Weka is a comprehensive data mining system developed by
Waikato University in New Zealand. It not only provides a
variety of data mining methods (classification, clustering,
association rules, etc.) but also provides data preprocessing
functions suitable for any data set and a variety of algorithm
performance evaluation methods. The rule extraction func-
tion of Weka software relies on the decision tree classifica-
tion algorithm, namely, C4.5 algorithm. It is a guided
inductive learning algorithm, which inherits all the advan-
tages of ID3 algorithm and improves it. It is especially suit-
able for occasions with large amount of mining data and
high requirements for relative efficiency and performance.

4. Experimental Results and Analysis

In order to verify the effectiveness of this method, 2089 oil
spectral data of a military aircraft engine are used to verify
the method. Seven commonly used important elements are
selected for fault diagnosis, including Fe, Al, Cu, Cr, Ag,
Ti, and Mg, so the characteristic dimension of the data is 7.

4.1. Feature Fusion. Firstly, the original spectral data are nor-
malized to avoid the influence of magnitude difference on
the fusion results. Then, SOM training is carried out on
the normalized original data. Then, by comparing the dis-
tance distribution between neurons, the number of samples
gathered on each neuron, and the value size, 401 samples
on the third neuron are selected as normal samples and
trained and fused to obtain the fusion value of the samples.
Finally, the characteristic data of the sample and the fusion
features are formed into a new vector matrix, which is
adjusted in ascending order according to the value of the
fusion value based on the fusion value. The concentration
value of each element is compared with the fusion value
one by one, and it is concluded that the wear element and
the fusion value show the same change trend. It can be seen
that the fusion eigenvalue can reflect the change trend and
law of engine wear state [19].

4.2. Formulation of Limit Value. It can be seen from Figure 4
that the fitting effect of probability density function curve of
statistics and estimation is good. Therefore, the limit value of
the fusion value is formulated, and the data samples are
divided into normal, warning, and abnormal.
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Figure 6: Relationship between propagation factor and change of
lubricating oil conductivity (frequency 100MHz).
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Figure 7: Relationship between the propagation factor and change
of lubricating oil conductivity (frequency 500MHz).
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Figure 5 shows the propagation of electromagnetic wave
with frequency of F = 10MHz in lubricating oil. The rela-
tionship between electromagnetic wave propagation factor
and lubricating oil conductivity is simulated by MATLAB.
The abscissa represents the electrical conductivity of lubri-
cating oil, the ordinate represents the propagation factor of
electromagnetic wave, and the black curve in the figure rep-
resents the changing relationship between these two physical
quantities.

It can be seen from Figure 5 that when the conductivity
of lubricating oil σ = 10−15S/m, the propagation factor of
electromagnetic wave is about equal to 1. When the conduc-
tivity increases to σ = 10−8S/m, the propagation factor of the
corresponding electromagnetic wave is about 1.0004. When
the conductivity continues to increase to σ = 5 × 10−8S/m,
the propagation factor of the corresponding electromagnetic
wave is 1.0010. Finally, when the conductivity σ = 9 × 10−8
S/m, the propagation factor of electromagnetic wave is about
1.0013. The increasing trend of conductivity can be roughly

divided into two stages. The first stage: σ = ð10−15 ~ 10−8ÞS/
m (Δγ represents the change rate of propagation factor)
and the corresponding electromagnetic wave propagation
factor changes to 1~ 1.0004 ðΔγ = 0:0004Þ. At this stage,
the electromagnetic wave propagation factor changes slowly
with conductivity. The second stage: σ = ð10−8 ~ 9 × 10−8ÞS/
m, the corresponding electromagnetic wave propagation fac-
tor changes from 1.0004 to 1.0013 ðΔγ = 0:0009Þ [20]. At
this stage, the electromagnetic wave propagation factor
changes rapidly with the conductivity. Through comparative
analysis of these data changes, it is easy to conclude that with
the increase of lubricating oil conductivity, the propagation
factor of electromagnetic wave also increases, and their
change relationship is nearly linear in these two stages.

Figure 6 shows the propagation of electromagnetic wave
with frequency of F = 100MHz in lubricating oil. The black
curve in the figure shows the relationship between the trans-
mission coefficient of lubricating oil and the change of elec-
trical conductivity of lubricating oil. It can be seen from
Figure 6 that when the conductivity of lubricating oil σ =
10−15S/m, the propagation factor of electromagnetic wave
is about equal to 1. When the conductivity increases to σ
= 10−8S/m, the corresponding propagation factor of electro-
magnetic wave is about 1.0014. When the conductivity con-
tinues to increase to σ = 5 × 10−8S/m, the corresponding
propagation factor of electromagnetic wave is 1.0031.
Finally, when the conductivity σ = 9 × 10−8S/m, the propaga-
tion factor of electromagnetic wave is about 1.0042. Simi-
larly, the increase of conductivity is roughly divided into
two stages. The first stage: σ = ð10−15 ~ 10−8ÞS/m, the change
value of corresponding electromagnetic wave propagation
factor is 1~ 1.0014 ðΔγ = 0:0014Þ. It can be seen from the
figure that the change of electromagnetic wave propagation
factor with conductivity is relatively slow at this stage; The
second stage: σ = ð10−8 ~ 9 × 10−8ÞS/m, the change value of
electromagnetic wave propagation factor is 1.0014~1.0042 ð
Δγ = 0:0028Þ. At this stage, the electromagnetic wave propa-
gation factor increases rapidly with the increase of conduc-
tivity. It is easy to conclude from the data change that as
the conductivity of lubricating oil increases, the propagation
factor of electromagnetic wave in the whole process also
increases: especially from Figure 6, it can be intuitively found
that the relationship between the propagation factor and the
change of conductivity is a star near linear relationship [21].

Figure 7 shows the propagation of electromagnetic wave
with frequency of F = 500MHz in lubricating oil. The black
curve in the figure shows the relationship between the prop-
agation coefficient and the conductivity. It can be clearly
seen from Figure 7 that when the conductivity of lubricating
oil is σ = 10−15S/m, the propagation factor of electromag-
netic wave is about equal to 1. When the conductivity
increases to σ = 10−8S/m, the corresponding propagation
factor of electromagnetic wave is about 1.0031. If the con-
ductivity continues to increase to σ = 5 × 10−8S/m, the prop-
agation factor value of electromagnetic wave is 1.0071;
finally, when the conductivity increases to σ = 9 × 10−8S/m,
the propagation factor value of electromagnetic wave is
about 1.0095. Similarly, the increase of conductivity is
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Figure 8: Relationship between propagation factor and change of
lubricating oil conductivity (frequency 1GHz).
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Figure 9: Relationship between electromagnetic wave propagation
factors of different frequencies and changes of lubricating oil
conductivity.
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roughly divided into two stages for comparative analysis.
The first stage: σ = ð10−15 ~ 10−8ÞS/m, the variation range
of corresponding electromagnetic wave propagation factor
is 1~ 1.0031 ðΔγ = 0:0031Þ. At this stage, the electromag-
netic wave propagation factor increases slowly with the
increase of conductivity. However, in the second stage: σ =
ð10−8 ~ 9 × 10−8ÞS/m, the corresponding electromagnetic
wave propagation factor changes from 1.0031 to 1.0095 ðΔ
γ = 0:0064Þ. In this stage, the electromagnetic wave propaga-
tion factor increases with the increase of conductivity. It can
be concluded from the figure and table that the change law
of these data can be obtained. When the conductivity of
lubricating oil increases, the propagation factor of electro-
magnetic wave also increases, and their change relationship
is also nearly linear in the first and second stages [22].

Figure 8 shows the propagation of electromagnetic wave
with frequency of F = 1GHz in lubricating oil. The black
curve in the figure shows the relationship between the trans-
mission coefficient of lubricating oil and the electrical con-
ductivity of lubricating oil. It can be seen from Figure 8
that when the conductivity of lubricating oil σ = 10−15S/m,
the propagation factor value of electromagnetic wave is
about 1. As the conductivity increases to σ = 10−8S/m, the
propagation factor of electromagnetic wave is 1.0045. When
the conductivity continues to increase to σ = 5 × 10−8S/m,
the propagation factor of electromagnetic wave is 1.0100.
Finally, when the conductivity σ = 9 × 10−8S/m, the corre-
sponding propagation factor of electromagnetic wave is
about 1.0134. The change of conductivity can be roughly
divided into two stages. The first stage: σ = ð10−15 ~ 10−8ÞS/
m, the variation range of corresponding electromagnetic
wave propagation factor is 1~ 1.0045 ðΔγ = 0:0045Þ. At this
stage, the electromagnetic wave propagation factor increases
slowly with the change of conductivity. The second stage: σ
= ð10−8 ~ 9 × 10−8ÞS/m, the change value of the correspond-
ing electromagnetic wave propagation factor is
1.0045~ 1.0134 ðΔγ = 0:0089Þ. At this stage, the electromag-
netic wave propagation factor changes rapidly with the con-
ductivity. It can be seen from the figure that the change
relationship between these two change stages is also nearly

linear. From the relationship between the propagation fac-
tors of the above electromagnetic waves with different fre-
quencies in the lubricating oil and the conductivity, the
graphics drawn by MATLAB show that they all have a com-
mon feature: in the two different stages of conductivity
change, they all have a nearly linear relationship [23].

In Figure 9, the abscissa is the variation range of electri-
cal conductivity of lubricating oil, ordinate is the size of
propagation factor, black is the electromagnetic wave with
a frequency of 10MHz, red is the electromagnetic wave with
a frequency of 100MHz, blue is the electromagnetic wave
with a frequency of 500MHz, and green is the electromag-
netic wave with a frequency of 1GHz. It can be concluded
that the change of the conductivity factor is very linear, but
it is not completely linear at several turning points in the
curve of the propagation factor σ = 10−8S/m. From the vari-
ation law of several curves, it can be concluded that with the
increase of the frequency of electromagnetic wave, under the
same change of conductivity, the change of propagation fac-
tor also increases, that is, it can be understood that the
higher the frequency, the higher the sensitivity of electro-
magnetic wave to the change of conductivity [24, 25].
Through the simulation of the relationship between the elec-
tromagnetic wave propagation factor and the conductivity of
lubricating oil by MATLAB software, it is verified that the
change between propagation factor and conductivity is
nearly linear.

4.3. Rule Extraction. In order to verify the effectiveness of the
method, 1/2 samples in the divided state are randomly
selected for rule extraction and the other 1/2 samples for rule
verification. Based on the fusion of important elements, the
rules of samples are extracted with the help of Weka soft-
ware to build the knowledge base of fault diagnosis. The
mined rules are shown in Table 1.

The extracted knowledge rules are used to verify the state
of samples, and the recognition rate is 97.47%. In order to
more fully explain the difference between important element
fusion and all feature fusion, all features are extracted. At the
same time, the fault diagnosis and recognition rate of all

Table 1: Summary of rules.

Rule 1
Condition c AIð Þ ≤ 0:4
Conclusion Normal

Rule 2
Condition 0:4 < c AIð Þ ≤ 0:8 and c Agð Þ ≤ 0:1
Conclusion Normal

Rule 3
Condition c Feð Þ ≤ 0:2 and 0:4 < c AIð Þ ≤ 0:8 and c Agð Þ > 0:1
Conclusion Normal

Rule 4
Condition c Feð Þ > 0:2 and 0:4 < c AIð Þ ≤ 0:8 and c Agð Þ > 0:1
Conclusion Warning

Rule 5
Condition c AIð Þ > 0:8
Conclusion Warning
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features is not high, only 62.39%. This means that not all fea-
tures play a positive role in the fault diagnosis of the auto-
mobile engine wear state.

5. Conclusion

An automobile engine wear fault diagnosis algorithm based
on SOM feature fusion based on Internet of Things technol-
ogy is proposed. Through the feature fusion of multifeature
data, the fusion value is obtained, and then, the boundary
value of the fusion value is formulated to divide the sample
state. Finally, Weka software is used to extract the knowl-
edge rules of oil data. The relationship between the propaga-
tion factor of the excitation signal in the sensor in the
lubricating oil and the change of the conductivity of the
lubricating oil is simulated, and the curve between the out-
put signal of the sensor and the conductivity of the lubricat-
ing oil is simulated. It can be seen at a glance that the
lubricating oil sensor designed in this paper is feasible and
practical. The automation and intellectualization of fault
diagnosis of automotive engine lubricating oil spectral wear
data are realized. According to the actual wear data of auto-
mobile engine, the proposed method is used for wear fault
diagnosis, and the recognition rate is 97.47%, which shows
that this method has a high recognition rate for fault state.
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The data underlying the results presented in the study are
available within the manuscript.
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