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Unmanned underwater vehicles (UUVs) that are widely utilized for underwater cooperative combat, underwater environment
detection and underwater resource exploration have to be localized by underwater acoustic sensor networks (UASNs).
However, the localization accuracy is hard to guarantee due to the limited bandwidths, long propagation latency, and limited
energy resources of the UASNs. In this paper, we propose a reinforcement learning (RL) and neural network based mobile
underwater localization scheme to optimize the anchor nodes selection in the UASNs to localize the target precisely. More
specifically, this scheme applies SqueezeNet to select the line-of-sight (LOS) anchor nodes based on the received signals. In
addition, an RL-based approach is further proposed to make further selection from the LOS anchor nodes without knowing
the underwater environment model. The Dyna architecture is applied to reduce the convergence time of the anchor nodes
selection. Simulation results based on a nonisovelocity geometry-based underwater acoustic channel model show that the
proposed schemes significantly improve the localization accuracy and reduce energy consumption of the UASN to achieve
trajectory correction.

1. Introduction

The location service enables unmanned underwater vehicles
(UUVs) to arrive in the target area in time, collect effective
information, and return safely in applications such as
underwater communication, underwater exploration, and
underwater environment detection. [1, 2] The equipped
strapdown inertial navigation system (SINS) navigates the
UUVs from the starting points to the destinations. However,
the cumulative error of the SINS increases over time.

Underwater acoustic sensor networks (UASNs) that
consist of a variable number of sensors the UUVs assist
the UUVs to localization [3]. UASNs that eliminate the need
for cables and do not interfere with shipping activities are
envisioned to enable applications for environment monitor-
ing of physical, chemical, and biological indicators, tactical
surveillance, disaster prevention, assisted navigation, and
undersea exploration [4]. The Communication Signal Prop-
agation Loss Localization Scheme (CSPLLS) proposed in [5]

uses the communication signal strength information to
calculate the distance from fix number of anchor nodes to
assist localizing target, which is a typical transmission loss-
distance based cooperative passive localization scheme. An
efficient packet transmission scheduling algorithm proposed
in [6] for underwater acoustic communications overcomes
the difficulty of the long propagation delay in UASNs. Node
cooperation (NC) based on the fact that underwater nodes
can overhear the transmission of the others proposed in
[7] can increase the data collection efficiency for the surface
node in UASNs. A node selection algorithm for UASN based
on particle swarm optimization proposed in [8] improves
the energy utilization of nodes, balances positioning perfor-
mance as well as energy use efficiency, and optimizes the
positioning result of UASN. Consequently, it is foreseeable
that an underwater acoustic sensor network which covers
key sea areas will be established in the near future. However,
the underwater localization through UASNs is a challenge
compared with the terrestrial localization due to limited
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coverage area, the time-varying of the complex underwater
environment, and the depth-dependent sound speed profile
[9]. Especially, the non-line-of-sight (NLOS) acoustic signals
receiving from UASNs lead to the low-precision localization
results and high energy consumption. The specific summary
is as follows.

(1) The propagation speed of underwater acoustic signal
is approximately 1500m/s, which is 5 orders of mag-
nitude lower than that of the radio signal, causing
higher latency and longer end-to-end time [10]

(2) The coverage area of a single underwater acoustic
location anchor is no more than a few dozen square
kilometers, and thus, the UASNs with limited energy
resources can only cover some critical areas. Hence,
only parts of the UUV voyage are localized by the
UASNs in most instances

(3) The non-line-of-sight (NLOS) signals affect the
receiving delay of the acoustic signal and cause the
distance measurement error between the anchor
node and the target, which degrade the location
accuracy in dynamic underwater environments

In this paper, a UUV mobile underwater localization
scheme based on reinforcement learning (RL) and neural
network techniques is proposed to improve the localization
accuracy with less UASN energy consumption. To be spe-
cific, firstly, the signal processing chips are installed on the
UUV and directly process the received localization signals
without transmitting the signals to the land monitoring cen-
ter, which ensures real-time performance of data processing,
reduces the communication overhead, and improves the
concealment of UUV. Then, UUV classifies the received sig-
nals from anchor nodes with the lightweight convolutional
neural network (CNN) to determine the type of the anchor
node in this localization cycle, i.e., the LOS or NLOS anchor
node. UUV selects the combination of the LOS anchor
nodes to determine the location, which is more accurate
than that determined by the NLOS anchor nodes in this
localization cycle. The process of anchor nodes selection
can be formulated as a Markov decision process (MDP)
and the underwater channel model is hard to obtain because
of its the nonisovelocity property and multiple reflections on
the sea surface and bottom [11], in which the RL technique
can be applied to determine the optimal selection policy
based on the observed state. The state consists of the selected
anchor nodes, energy consumption, and localization error
and is selected via trail-and-error. Consequently, the optimal
selection policy is determined without relying on the under-
water channel model. Moreover, the proposed scheme uses
the Dyna architecture to generate anchor nodes selection
simulated experiences and thus reduces the convergence
time in the framework of RL.

The main contributions of this paper are outlined as
follows:

(1) We investigate the silent UUV localization problem
in UASN. Meanwhile, we have designed the entire

underwater motion positioning framework, includ-
ing UUV motion tracking model, UASN energy con-
sumption model, underwater channel, and signal
receiving and transmitting model, in which we have
located the UUV and calculated the energy con-
sumption of UASN. In UUV motion tracking model,
UUV tracks the optimal path obtained by the path
planning algorithm to reach the destination. In the
UASN energy consumption model, we calculate the
energy consumption of each anchor node in the
UASN. In the underwater channel, we adopt a new
nonisovelocity geometry-based underwater acoustic
channel, in which acoustic signals sent from anchor
nodes reach the target through multiple reflections
on the sea surface and bottom as well as refraction
between different sound velocity layers

(2) We apply the lightweight neural network to distin-
guish the type of the anchor nodes based on the
received anchor node signals, which reduces the col-
lection of bad signals and improves the localization
accuracy. The lightweight neural network can be
trained faster because of less communication and is
feasible for deployment on memory limited hard-
ware, which are the advantages of applying to
UUV. A reinforcement learning based mobile under-
water localization scheme is proposed to select the
optimal anchor nodes from LOS anchor nodes,
which further improves the localization performance
and reduces the energy consumption of the UASN
system. Dyna architecture is applied to reduce the
convergence time of the learning process

(3) An underwater trajectory correction framework is
proposed, which introduces the acoustic signals in
the background of UASN. Meanwhile, the signal
process module is placed on the UUV to improve
the real-time performance. We apply the location
of UUV obtained from RL-based mobile underwater
localization scheme to the underwater trajectory cor-
rection framework to change the motion state of
UUV, which reduces the error between the actual
path and the ideal path

(4) We theoretically derive the Cramer-Rao lower
bound (CRLB) of the proposed scheme. Simulations
are performed to evaluate the performance of the
proposed scheme in terms of the localization accu-
racy, the energy consumption, the utility, and the
CRLB which are compared with the benchmarks

The structure of this paper is shown as follows. First, we
review related work in Section 2. Then, the system model is
presented in Section 3 and the underwater path planning
algorithm and reinforcement learning based underwater
mobile localization algorithm are presented in Section 4.
The CRLB of the proposed scheme is derived in Section 5.
Finally, we provide the simulation results in Section 6 and
conclude the work in Section 7.
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2. Related Works

Up to now, there are many researches on underwater mov-
ing target localization, underwater moving target trajectory
tracking and correction, resolution of underwater LOS sig-
nals and NLOS signals, and the underwater optimal path
planning. For instance, an inertial trajectory prediction sys-
tem proposed in [12] applies inertial sensors to predict the
trajectory of the autonomous underwater vehicle (AUV)
and uses the Kalman filter method to reduce the accumula-
tion of errors. An error-based adaptive model predictive
control and a proportional derivative controller designed
in [13] combine a real-time acoustic localization system to
guide UUV towards sensor nodes installed on surface ships,
and a hybrid acoustic-optical underwater communication
scheme is proposed, in which the acoustic link is used for
NLOS transmission and the optical link is used for LOS
transmission. By coordinating these two complementary
technologies, they can overcome their respective weaknesses
to achieve precise localization tracking and high-speed
underwater data transmission. An integrated navigation
algorithm based on deep learning model as proposed in
[14] deals with Doppler velocity measurement (DVL) failure
to improve the SINS/DVL integrated navigation system
when DVL is polluted by outliers and interrupted. The
effectiveness of this proposed algorithm is verified through
comparison with related work. A navigation strategy based
on D∗Lite search algorithm as proposed in [15] chooses
the optimal path to the destination that avoids the obstacles
and reduces the travel time. A tracking algorithm based on
second-order time difference of arrival (TDOA) combined
with particle filters proposed in [16] eliminates the unknown
signal period and overcomes the traditional limitations of
the TDOA-based method. A mobile beacon-based iterative
location (MBIL) mechanism proposed in [17] obtains a
higher localization rate in a shorter time, which effectively
reduces the localization error and extends the service life of
UASN. A two-step classifier based on signal strength and
propagation delay range measurements proposed in [18]
can accurately distinguish between LOS and NLOS links.

Meanwhile, RL has been applied in the underwater com-
munication and localization. For example, an RL-based
energy-efficient underwater localization algorithm proposed
in [19] applies Dyna-Q to reduce the localization error and
the energy consumption. An unsupervised wireless localiza-
tion method proposed in [20] applies deep RL to reduce
localization error. An RL-based localization algorithm as
proposed in [21] obtains the positions of the UUV, active
sensor nodes, and passive sensor nodes by performing an
online value iteration process as well as applies ray compen-
sation strategy and the mobility compensation strategy to
improve the localization accuracy. An underwater multi-
modal communication scheme based on reinforcement
learning is proposed in [22] to improve the reliability of
the underwater network and reduce the delay of underwater
applications via the relay selection. In addition, reinforce-
ment learning can also be applied in navigation. Although
localization and navigation are different concepts, there is a
strong correlation between them. Navigation based on rein-

forcement learning is investigated in plenty of works. For
example, a massive MIMO UAV navigation scheme pro-
posed in [23] applies deep RL to select the optimal strategy
based on the received signal strength to improve the naviga-
tion performance. An end-to-end navigation strategy based
on deep RL proposed in [24] converts the results of laser
ranging into motion actions and achieves map-free naviga-
tion in a complex indoor environment. A hybrid and
hierarchical reinforcement learning method proposed in
[25] optimizes the learning effect through different learning
methods, different types of status information, and reward
distribution system to achieve robot online guidance and
navigation tasks. A navigation based on supervised learning
and fuzzy reinforcement learning proposed in [26] applies
the best action of fuzzy rules to achieve robot navigation.
A new incremental learning algorithm proposed in [27]
merges new information into the exiting environment and
weakens the conflicts between them in advance to greatly
improve the convergence rate of reinforcement learning in
a dynamic environment. A tracking algorithm based on
partial reinforcement learning neural network proposed in
[28] is introduced into the wheeled mobile robotic system
to track the trajectory by controlling the time-varying
advance angle.

Neural networks have been also applied in different
applications including signal recognition and classification.
For instance, an efficient convolutional neural network
(CNN) is used to classify the acoustic signals of reinforced
concrete (RC), which outperforms typical feature extraction
and traditional machine learning based methods [29]. A
deep belief network based modulation recognition scheme
for wireless signals as proposed in [30] reaches 92.12%
recognition rate under high signal-to-noise. A CNN-based
satellite link interference signal classification proposed in
[31] classifies 5 types of interference signals with strong
robustness, including audio interference, narrowband inter-
ference, pulse interference, sweep interference, and spread
spectrum interference. A deep neural network framework
combined with multitask learning proposed in [32]
improves the learning efficiency of modulation and wireless
signal classification accuracy.

Inspired by above related works, we focus our research
on the mobile underwater localization, underwater naviga-
tion, and signal recognition.

3. System Model

3.1. Application Scenarios. The starting point of the UUV is
J0 = ½x0, y0, z0� and the destination is Jd = ½xd , yd , zd�. The
position of the i-th anchor node is Ui = ½xi, yi, zi�. The error
of the SINS will gradually accumulate over time without the
UASNs assistance. Thus, the route of the silent UUV is pre-
arranged to cross the UASNs and we use the established
UASN in the sea area to send acoustic signals to UUV.
Meanwhile, due to the influence of underwater terrain and
ships on the sea surface, many communication links in real
life between anchor node and UUV are NLOS links, which
will greatly affect the localization accuracy. In order to solve
this problem, we classify the received signals according to
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the neural network mounted on the UUV and select the
optimal anchor nodes based on reinforcement learning. In
the range of UASN-assisted localization, the silent UUV
can receive signals to localize itself and correct the trajectory
so that it gradually approaches the ideal path. The whole
system model is shown in Figure 1 and the framework of
the whole system is shown in Figure 2.

3.2. UUV Motion Tracking Model. UUV has autonomous
navigation, which is composed of Doppler velocity log
(DVL), gyroscope, depth gauge, and so on. Taking into
account the uncertainty of ocean currents and acoustic
speed, we denote the entire state space vector of UUV as
Sti = ½xi, yi, zi, θi, vi, u1i, u2i� where the state variables u1i
and u2i are the measurement noises on the UUV velocity
and yaw, respectively. It is assumed that the measurement
noises of velocity and yaw are both zero-mean Gaussian
noises with the variances ϑ21 and ϑ22 [33] We assume that
ocean currents only occur in the x and y directions which
is discovered in [34, 35]. The self-propelled velocity vi is
on the xOy plane, also called thrust velocity, which is
directly measured by the DVL. The yaw θi is the heading
angle of the UUV on the horizontal plane, which is
directly measured by the on-board compass. The UUV
coordinate (xi, yi) at time i is obtained through the inertial
navigation system and the depth zi is directly obtained
through the UUV’s own depth gauge. Then, the entire
UUV motion model is given by

xi+1 = xi + vi + u1ið Þ · cos θi + u2ið Þ · t,
yi+1 = yi + vi + u1ið Þ · sin θi + u2ið Þ · t,

ð1Þ

where t is the time interval.
UUV usually needs to reach the destination from the

departure when performing tasks. In order to save the
energy consumption of the UUV, an optimal path should
be found through a path planning algorithm. Then, UUV
tracks the optimal path to reach the destination with the
least energy. After UUV obtains the trajectory point of the

ideal path, it will track the trajectory point according to its
own model and adjust the forward-looking distance through
ldi = k·vi where vi is UUV thrust velocity at time i and ldi is
the forward-looking distance, and k is the forward-looking
distance coefficient. The forward-looking distance ldi is
constrained by the coefficient k. The larger forward-
looking distance means the smoother the tracking trajectory.
The smaller the forward-looking distance will make the
tracking more accurate, but it will also bring control shocks.
If (x0, y0) is the next track point to be tracked by UUV, yaw
is updated which is given by

θi+1 = θi +
vi
Lp

· 2 · L · sin arctan y0 − yið Þ/ x0 − xið Þð Þ − θið Þ
Ldi

· t,

ð2Þ

where Lp is the preview distance of UUV and L is the length
of UUV.

3.3. UASN Energy Consumption Model. Energy consumption
directly affects the life cycle and cost of the entire localiza-
tion system, which is often reflected in the sensor nodes
communication reception and transmission, perception data
processing, and movement adjustment. Meanwhile, the
transmission power of underwater acoustic communication
is much higher than that of radio wave communication.
Consequently, in order to extend the life of UASN and
improve the tracking accuracy, we have to reduce the energy
consumption of the underwater localization. When UUV
enters the UASN, each anchor node starts to send an acous-
tic signal to UUV. Then, the UUV gives a feedback signal in
time. The energy consumption in the entire UASN is the
sum of the energy consumed by all anchor nodes which send
signals. We apply a commonly used underwater communi-
cation energy model to the entire system model. [33, 36]
Thereby, the energy consumption of a single anchor can be
described as

Et = bE0 + 4:2 · bTbZe
g fð Þd · 10−9:5, ð3Þ

Anchor node
UASN

UUV
Planning path

Destination

GPS satellite

Sea surface

Figure 1: Presentation of the application scenario.
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where d denotes the transmission distance from the anchor
node to UUV, b denotes the bit length of the data packet,
and Tb denotes bit duration. Specifically, E0 represents the
unit energy consumption for processing 1 bit message. Z
represents the depth and gð f Þ defines the absorption coeffi-
cient in [36]. In addition, f is the center frequency of the
transmission channel. Meanwhile, within a localization
period, the total energy consumption of the entire network
can be described as Eall=N ·Et where N is the number of
anchor nodes that send acoustic signals in this localization
period.

3.4. Underwater Channel and Signal Receiving and
Transmitting Model. Since the underwater isovelocity
assumption does not hold in many real-world scenarios,
we adopt a new nonisovelocity geometry-based underwater
acoustic channel signal transmission model. Underwater
acoustic speed changes with the depth. [37–39] Conse-
quently, the geometry-based stochastic underwater acoustic
(UWA) channel modeling method has to consider the
non-uniform velocity characteristics generated by ocean
layers with different sound velocity characteristics and
acoustic signal sent from anchor node reach the target
through multiple reflections on the sea surface and bot-
tom. [11]

In this paper, we have expanded the geometric model in
[40] regarding the propagation conditions of non-equal
sound velocity and then proceeded from the geometric
model, referring to [11], we further simulate the underwater
channel model which is bounded by the sea surface and bot-
tom. These natural boundaries can be regarded as reflectors
of sound waves, thus taking into account the specular reflec-
tions on the sea surface and bottom. Meanwhile, the simu-
lated sound velocity varies piecewise linearly with depth,
thus taking into account the refraction between different
sound velocity layers. The entire underwater channel model

is shown in Figure 3. There are 3 paths for the transmission
of acoustic signals from the transmitter to the receiver. The
first is the LOS direct path, the second is the downward
arriving (DA) path to the target, and the last is the upward
arriving (UA) path to reach the target.

In this paper, we assume that sound speed changes
piecewise linearly with the depth of the water. The one-
dimensional geometric sound velocity model with water
depth h is divided into K different equal-width layers, and
the width of each-width layer is given by Δz = h/K . The
sound speed profile is modeled as

vk = vs + k · g · Δz, ð4Þ

where vk is the sound velocity in the k layer, vs is the
initial sound velocity, g is the sound velocity gradient,
and k =1,2, ⋯, K .

When the acoustic signal passes through different equal-
width layers, it will be refracted. According to Snell’s law, we
can obtain the angle between the propagation path in the
j-th layer and the k-th layer, which is given by

Rk = arcsin vk
vj

· sin Rj

À Á !
, ð5Þ

where Rk is the angle between the propagation and each
equal-width layer, k =1,2, ⋯, K , and k ≠ j. The propaga-
tion distance of the acoustic signal can be denoted as

dk =
Δz

cos Rkð Þ , ð6Þ

where dk is the propagation distance in the k-th equal-
with layer.

Energy
consumption

model

Underwater
channel

Underwater acoustic
sensor networks (UASNs)

GPS satellites

Location
information (anchor nodes)

Path
planning

Ideal trajectory
UUV motion tracking

model

Unmanned underwater
vehicles (UUVs)

Figure 2: Illustration of the UASN, where the UUV receives the message from anchor nodes to position itself for trajectory correction.
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According to [41], we can know that the acoustic signal
can only be received when it is in the monitoring range of
UUV. In order to allow UUV with unknown coordinate to
receive the signal transmitted from anchor nodes, according
to [42], we equip the signal transmitter with an omnidirec-
tional hydrophone which can send signals every certain
angle ω. If the transmitter is in the i-th equal-width layer
and the receiver is in the j-th equal-width layer, the hori-
zontal propagation path of the acoustic signal can be
described as

sm =
zup · tan R0ð Þ + 〠

j

k=i−1
dk · sin Rkð Þ

zdown · tan R0ð Þ + 〠
j

k=i+1
dk · sin Rkð Þ

8>>>>><>>>>>:
, ð7Þ

where zup is the distance between the transmitter and the
upper surface in the same layer and zdown is the distance
between the transmitter and the lower surface in the same
layer. The vertical propagation path of the acoustic signal
zm can be described as

zm =
zt − zup − Δz · i − j − 1ð Þ
zt + zdown + Δz · j − i − 1ð Þ

,
(

ð8Þ

where zt is the depth of the transmitter. The distance l
between the signal and the transmitter can be given by

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm − st−rð Þ2 + zm − zrð Þ2

q
, ð9Þ

where st−r is the horizontal distance between the transmit-
ter and the receiver and zr is the depth of the receiver.
The entire design flow is summarized as follows. First of

all, we divide the water depth h into k equal-width layers
and the sound velocity of each layer is vk. Then, the signal
transmitter transmits signals every certain angle ω. In this
underwater channel, the acoustic signal is refracted between
different equal-width layers and reflected on the sea bottom
and sea surface. Finally, the distance l to the receiver is judged
according to the propagation distance of the acoustic signal.
The maximum monitoring range of the receiver is lmax.
If l≤lmax, the receiver can receive the signal; if l > lmax,
the receiver can not receive the signal.

According to [42], the time-variant channel impulse
response (TVCIR) of the underwater channel model can be
denoted as

h tð Þ = hLOS tð Þ + hDA tð Þ + hUA tð Þ, ð10Þ

where hLOSðtÞ describes the LOS component; hDAðtÞ
describes the DA component, and hUAðtÞ describes the UA
component. The propagation loss coefficient of the signal
in the underwater acoustic channel can be simplified as [42].

c0 = cup
À Án1 · cdownð Þn2 · k

d
, ð11Þ

where cup is attenuation coefficient of the sea surface; cdown is
attenuation coefficient of the sea bottom; n1 is the number of
reflections on the sea surface; n2 is the number of reflections
on the sea bottom; k is the attenuation constant of the
underwater acoustic channel and d is the acoustic signal
propagation distance. In the positions of the transmitter
and receiver change, there will be no LOS path.

Transmitter

Rk – 1

vkRk

DA path

Receiver

UA pathLOS path

Sea bottom

Sea surface

𝛥z

Figure 3: Illustration of entire underwater channel model, in which there are 3 paths for the transmission of acoustic signals from the
transmitter to the receiver.
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4. Reinforcement Learning and Lightweight
Underwater NLOS Signal Recognition Neural
Network Based Energy-Efficient Mobile
Underwater Localization Algorithm

We propose a reinforcement learning and neural network
(SqueezeNet [43]) based energy-efficient mobile underwater
localization scheme in UASN that optimizes the anchor
node selection policy and selects the anchor nodes in two
rounds according to the signals transmitted from anchor
nodes to UUV. Then, the optimal anchor nodes are used
to locate UUV so as to balance the localization accuracy
and the energy consumption of UASN. To be specific, in
order to minimize the energy consumption of UUV from
departure to destination, the path has to be shortest. How-
ever, due to the complex underwater environment, there
are many underwater obstacles between the departure and
the destination, which makes it impossible for UUV to reach
the destination directly in a straight line. At this time, all
anchor nodes in the UASN are required to conduct a rough
monitoring of the underwater terrain, which rasterizes the
entire underwater map. After getting the entire two-
dimensional matrix, it is sent to UUV. Then, the ideal path
is generated through path planning algorithm. Finally,
UUV tracks the ideal path through pure pursuit algorithm.
When UUV enters the UASN, it will send signals to activate
all anchor nodes. After activating all anchor nodes, clock
synchronization is performed between each anchor node
and the position of each anchor node is obtained through
GPS. Then, all anchor nodes send acoustic signals to UUV
at the same time. When the UUV receives the signals sent

by all anchor nodes, it uses SqueezeNet to classify the
received LOS and NLOS signals and then selects the LOS
anchor nodes and discards the NLOS anchor nodes. Thus,
the first round of anchor node selection through SqueezeNet
is completed. After first round selection, the optimal anchor
nodes are selected through reinforcement learning from the
obtained LOS anchor nodes for second round selection. In
second round selection, the current decision of UUV is only
dependent on the latest state, so the anchor nodes selection
process can be formulated as a Markov decision process
(MDP), where the RL technique can be applied to determine
the optimal transmission policy based on the observed state
via trail-and-error. More specifically, at time slot k, the target
obtains the current state xk which includes the previous
selected anchor nodes, the previous localization error, and
the previous energy consumption. Meanwhile, the anchor
nodes are selected according to the current state and Q-
function which is updated according to the Bellman equa-
tion iteratively. [44] When the optimal anchor nodes are
obtained, UUV will locate itself by the least square method.
Then, the motion state of UUV is adjusted by purepursuit
algorithm according to its own coordinates, which makes
it close to the ideal path. The whole process is shown in
Figure 4.

4.1. Signal Classification Neural Network.When UUV enters
the UASN, it sends out a command signal to activate all
anchor nodes. Due to the influence of underwater terrain
and ships, UUV receives LOS signals and NLOS signals.
However, NLOS signal will greatly affect the localization
accuracy, which affects the UUV trajectory correction. In

Navigation with inertial
navigation system (INS)

Enter the
UASN

UUV receives the acoustic
signals

Route planning

Optimal path
Monitoring center on land

Send activation
signal

Location
information

GPS
satellites

Sensing data

Calculate utility

Initialization of Q-values

Update Q-values S = {M, r, p}

LOS anchor nodes

Choose the optimal
anchor nodes

The energy and RMSE of
the selected new anchor

node combinationSecond
round

selection

Feedback
information

All anchor nodes
send acoustic

signals to UUV

Underwater
environment
information

Underwater
acoustic sensor

network (UASN)

First
round

selection Input Output

Squeezenet

32

32

16

16
8 4

22
48

Figure 4: Illustration of underwater trajectory correction process.
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this paper, SqueezeNet is applied to identify the received
acoustic signal, so as to make full use of LOS signal and elim-
inate NLOS signal.

In recent years, many researches about deep convolu-
tional neural networks have focused on improving the clas-
sification accuracy. It is not difficult to find multiple CNNs
that can reach a certain level of accuracy. With the same
level of accuracy, a smaller CNN model can facilitate us with
three advantages. First, smaller CNNs require less cross-
server communication when conducting distributed training
and can receive training faster because of less communica-
tion, which have great advantages for the classification of
underwater LOS/NLOS signals. Second, smaller CNNs can
simplify the process of exporting new models from the cloud
to UUV which makes it easier for UUV to import new train-
ing models, which is very important for complex underwater
environments. Last but not least, smaller CNN model can be
deployed on hardware with limited memory. When the
CNN model is too large, it cannot be deployed on UUV.
Considering all these advantages, we choose SqueezeNet to
classify underwater LOS/NLOS signals whose model size is
only 0.5MB. [29]

SqueezeNet is composed of several Fire module com-
bined with convolution layers, downsampling layers, and
fully connected layers; the developers of which mainly
adopted three strategies to obtain fewer parameters:

(1) The first strategy for designing SqueezeNet is to
replace 3 × 3 filters with 1 × 1 filters. Most filters
are 1 × 1, which makes the parameters of the model
9 times less

(2) The second strategy adopted to build the SqueezeNet
is to reduce the number of input channels to 3 × 3
filters

(3) The last strategy adopted is to down sample late in
the network in order to ensure that SqueezeNet has
fewer parameters, which can obtain a convolutional
layer with a large activation map that can lead to
higher classification accuracy. For down sampling,
strides are set to greater than one in some convolu-
tional and pooling layers

In short, the first two strategies are related to the reduc-
tion of the number of parameters in CNN and the last strat-
egy is about maximization accuracy under a limited budget
of parameters.

As shown in Figure 5 below, fire module is the most
important part of SqueezeNet which consists of squeeze
layer and expand layer. The squeeze layer is composed of a
set of continuous 1 × 1 and 3 × 3 convolution filters. In fire
module, the number of 1 × 1 convolution filters in the
squeeze layer is recorded as s1×1, the number of 1 × 1 con-
volution filters in the expand layer is recorded as e1×1, and
the number of 3 × 3 convolution filters in the expand layer
is recorded as e3×3. Meanwhile, in the fire module, s1×1
< e1×1+s3×3, which helps to keep the number of input
channels limited to 3 × 3 filters, as discussed for the sec-
ond strategy adopted for SqueezeNet.

Figure 6 represents the SqueezeNet structure with simple
bypass used in this paper. It starts with a convolution layer,
which is named conv1 in Figure 6. After conv1, there are 8
fire modules, where the number of filters in each fire module
is gradually increasing. After fire module 4 and fire module
8, max pooling is performed. Finally, it ended with a convo-
lution layer after which max pooling is performed. Mean-
while, the input is a matrix signal of dimension 64 × 64.
Initial learning is 0.001 and input batch size for training is
32. In addition, the optimizer of SqueezeNet is “Adam”
and the output is the precision and the classified signal.
Moreover, the loss function Loss is the cross-entropy loss
function, and the expression is

Loss = −
1
S
〠
j

〠
G

d=1
yjd log pjd

� �
, ð12Þ

where S is the number of the samples and G is the number of
the label categories. yjd is a symbolic function. When the
true category of sample j is equal to d, yjd =1; otherwise,
yjd =0. Moreover, pjd is the probability value for each predic-
tion result by softmax, where we choose 0.5 as the threshold
due to the binary classification. The architecture parameters
of the SqueezeNet are shown in Table 1.

4.2. Path Planning Algorithm. According to [45, 46], path
planning algorithms can be divided into grid map method,
roadmap method, and artificial potential field method. All
anchor nodes in the UASN conduct a rough monitoring of
the underwater terrain and rasterize the entire underwater
map to form a two-dimensional grid. Meanwhile, according
to whether there are obstacles in the grid, we can divide each
grid into two states, where the barrier-free grid is called the

1 × 1 convolution filters

Squeeze

Expand

ReLU

ReLU

...

...

3 × 3 convolution filters

Figure 5: Fire module.
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free grid; the obstacle grid is called the obstacle grid. The
UUV path planning problem is actually to find the shortest
path from the starting grid to the target grid by bypassing
the obstacle grid. Since the A∗ algorithm can handle fixed
threats and sudden threats and can find the optimal path
in a short time [45], it can achieve online real-rime path

planning. Meanwhile, it is an efficient heuristic searching
algorithm, which can improve the search efficiency and
ensure the optimal cost of the voyage. At the same time,
the simulated annealing (SA) algorithm is a general proba-
bility algorithm which is also widely applied in path optimi-
zation. In order to find the optimal path quickly and
accurately, we compare the A∗ algorithm and the SA algo-
rithm under the 200 × 200 grid map. Meanwhile, in order
to compare the robustness of the algorithm, we compose
different underwater environments numbered E1 ~ E5 by
changing the position of obstacles in the grid map. The
simulation result is shown in the following Table 2. Accord-
ing to the simulation results, the paths obtained by the A∗
algorithm are better than the SA algorithm in different
underwater environments. Consequently, we choose the
A∗ algorithm to plan the optimal path.

4.3. RL-Based Mobile Underwater Localization Algorithm.
The pseudo-code of RL-based mobile underwater localiza-
tion algorithm is summarized in Algorithm 1. The number
of anchor nodes in UASN is N . After UUV receives the sig-
nals transmitted from all anchor nodes, it uses the trained
neural network to judge the received signals, which is the

Table 2: The distance of the optimal path of the A∗ algorithm and
SA algorithm under different underwater environments E1 ~ E5.

Algorithm A∗ SA

Distance (m)

E1 144.84 178.98

E2 98.28 104.14

E3 144.84 150.70

E4 132.42 138.28

E5 146.56 212.42

Signal dataset

Input signal

Convolution Adaptive Avg pooling

Classification

Output signal

LOS signal NLOS signal

Fire modelMax pooling

...

64 × 64

32

16

16

8

8
4

4
2232

Figure 6: The structure of SqueezeNet.

Table 1: The architecture parameters of the SqueezeNet.

Layer Filter size/number Output size

Input signal 64 × 64/3

Convolution 3 × 3/96 32 × 32/96

Maxpool 2 × 2/96 16 × 16/96

Fire2
squeeze2 1 × 1/16

16 × 16/128
expand2 1 × 1/64 3 × 3/64

Fire3
squeeze3 1 × 1/16

16 × 16/128
expand3 1 × 1/64 3 × 3/64

Fire4
squeeze4 1 × 1/32

16 × 16/256
expand4 1 × 1/128 3 × 3/128

Maxpool 3 × 3/256 8 × 8/256

Fire5
squeeze5 1 × 1/32

8 × 8/256
expand5 1 × 1/128 3 × 3/128

Fire6
squeeze6 1 × 1/48

8 × 8/384
expand6 1 × 1/192 3 × 3/192

Fire7
squeeze7 1 × 1/48

8 × 8/384
expand7 1 × 1/192 3 × 3/192

Fire8
squeeze8 1 × 1/64

8 × 8/512
expand8 1 × 1/256 3 × 3/256

Maxpool 3 × 3/512 4 × 4/256

Fire9
squeeze9 1 × 1/64

4 × 4/512
expand9 1 × 1/256 3 × 3/256
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first selection in order to obtain LOS anchor nodes Nlos.
When Nlos are obtained, the target uses Algorithm 1 to select
multiple optimal anchor nodes from Nlos to localize itself.
The selected anchor nodes information Mk−1, localization
error rk−1, and energy consumption pk−1 are obtained by
the UUV in order to formulate the state sk, which is given
by Sk = ½Mk−1, rk−1, pk−1�. Then referring to the current state,
UUV uses trial-and-error to select anchor nodes. UUV
needs at least 3 anchor nodes to localize itself. Consequently,
the number of selected anchor nodes localization combina-
tions is ∑NLOS

i=3 Ci
NLOS

. To be specific, the index of selected
anchor nodes Ik is the Nlos-bit binary number, where the a
-th binary bit takes the value 0 or 1 to indicate whether the
anchor node a is selected and the selected anchor node is
stored in M. Then according to the selected the anchor
nodes information, UUV calculates its own localization
and energy consumption and the unselected anchor nodes
are not included in the calculation and keep silent in order
to reduce energy consumption. Meanwhile, UUV applies
the ε-greedy method to select to avoid falling into local opti-
mum. More specifically, the optimal anchor nodes with
maximum Q-value are selected with a high probability 1-ε
and UUV selects anchor nodes randomly with a small prob-
ability ε [47].

After receiving anchor nodes information including
anchor node coordinate U , depth h, and reception time tr ,
in order to simplify UUV operation when performing tasks,
we apply an isogradient depth-dependent acoustic speed
profile and the assumption of a straight-line propagation
[9], where the acoustic speed decreases linearly with depth

according to the formula v = b − az, where a is a constant
depending on the environment, b indicates the sound speed
at the surface, and z denotes the underwater depth. In real
scene, since we do not know the underwater channel model
accurately, UUV uses pressure sensors to estimate its depth
and calculates the average velocity vave of acoustic signal
between itself and anchor node via

vave =
a z − hð Þ

ln b − ahð Þ − ln b − azð Þ : ð13Þ

Similar to [19], UUV estimates the distance l between
itself and anchor node based on signal reception time and
average speed vave obtained above. Then according to the
received anchor node coordinates, UUV calculates its own
position uk which is given by

u = ATA
À Á−1

ATb, ð14Þ

where A = ½Ui −Um�T1≤i≤m−1, b = ½kUik2 − kUmk2 + klmk2 −
klik2�T1≤i≤m−1, and m is the number of selected anchor nodes.
After obtaining uk, in real life, since we cannot know the real
location of UUV. Consequently, UUV estimates the localiza-
tion error rk via [19].

r = 1
m
〠
i∈m

l2i − Ui − uk k2Â Ã
: ð15Þ

1: Initialize learning rate α, discount rate β, the constant of the utility C and μ, probability constant ε, initial Q-table Qðsk, akÞ = 0 and
initial state s0.
2: for k =1, 2, 3⋯ do
3: Observe the state sk=[Mk−1, rk−1, pk−1]
4: Choose ak via ε-greedy
5: for each selected anchor node a do
6: Send Ua,ha, and tra and store in Mk
7: end for
8: Calculate vaveðkÞ via (13)
9: Calculate uk via (14)
10: Calculate rk via (15)
11: Calculate pk via (3)
12: Evaluate δk via (16)
13: Qðsk, akÞ⟵ ð1 − αÞQðsk, akÞ + αðδk + β · max Qðsk+1, aÞÞ
14: Θ′ðsk, ak, sk+1Þ⟵Θ′ðsk, ak, sk+1Þ + 1
15: Θðsk, akÞ⟵∑sk+1∈Λ

Θ′ðsk, ak, sk+1Þ
16: Update Rðsk, akÞ via (20)
17: Update Ξðsk, ak, sk+1Þ via (21)
18: for n=1,2,3⋯ do
19: Randomly select ð_sn, _anÞ
20: Calculate Rð_sn, _anÞ via (20)
21: Obtain _sn+1 via (21)
22: Update Q-function Qð_sn, _anÞ via Bellman equation
23: end for
24: end for

Algorithm 1: RL-based mobile underwater localization algorithm(RMUL).
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Then, using rk and pk, UUV obtains its utility δk which is
calculated by

δk = C − μrk −〠
jεm

p jð Þk, ð16Þ

where C and μ are the constants to ensure that rk and
∑jεmpðjÞk are in a same scale and also determine the weight
between the localization error and energy consumption.
[47] Moreover, the smaller localization error and energy
consumption, the better its utility. At the same time, the
Q-function is updated each time slot according to the Bell-
man equation iteratively [44] with the learning rate α and
the discount rate β. In the whole reinforcement learning
framework, the Q-function is applied to learn the optimal
anchor node selection strategy to find the optimal anchor
node, which reduces the localization error and energy con-
sumption and optimizes the utility of the entire UASN.

We use Dyna architecture to reduce the convergence
time of the reinforcement learning. More specifically, UUV
records each state-action pair based on historically selected
actions to generate a virtual environment and accelerates
the learning process according to this virtual environment.
After real learning, the current state, action, next state, and
reward are recorded to obtain each new exploration experi-
ence. Then, UUV updates count vector via

Θ′ sk, ak, sk+1ð Þ =Θ′ sk, ak, sk+1ð Þ + 1: ð17Þ

From the combination of actions and states that have
occurred, a total state-action counter vector Θðsk, akÞ that
consists of a vector Θ′ðsk, ak, sk+1Þ of all possible next state
counts under the current state-action pair has been con-
structed, which is given by

Θ sk, akð Þ = 〠
sk+1∈Λ

Θ′ sk, ak, sk+1ð Þ: ð18Þ

After each real experience obtained, the corresponding
model rewards denoted by R′ðsk, ak,Θðsk, akÞÞ can be
recorded by UUV via

R′ sk, ak,Θ sk, akð Þð Þ⟵ δk sk, akð Þ: ð19Þ

Meanwhile, based on R′ðsk, ak,Θðsk, akÞÞ, the reward
function denoted by Rðsk, akÞÞ can be updated via

R sk, akð Þ⟵ 1
Θ sk, akð Þ 〠

Θ sk ,akð Þ

n=1
R′ sk, ak, nð Þ: ð20Þ

Based on Θ′ðsk, ak, sk+1Þ and Θðsk, akÞ, a transition prob-
ability from the current state to the predictive next state can
be constructed, which is given by

Ξ sk, ak, sk+1ð Þ = Θ′ sk, ak, sk+1ð Þ
Θ sk, akð Þ : ð21Þ

In model learning, the UUV randomly selects an action-
state pair from the experiences recorded in the virtual envi-
ronment at each time slot. According to (20) and (21), the
UUV predicts the next state and gets a reward. Then, the
Q-function is updated based on the state-action pair, next
state, and the model reward according to the Bellman equa-
tion, which iterates multiple times. [47] Thereby, hypotheti-
cal experience in the model is obtained to speed up the
convergence. In addition, in order to reflect the role of
virtual experience, we do not add Dyna structure in this
algorithm at the same time, which is called RMUL-Q.

To sum up, during a trajectory correction cycle, UUV
first filters out the LOS anchor nodes through SqueezeNet
and then selects the optimal anchor nodes through RMUL-

Table 3: The recognition rate of SqueezeNet for LOS/NLOS signals
at different SNR.

Parameter Value

Area 5000 × 5000 m2

Center frequency 20 kHz

Bandwidth 20 kHz

Modulation 4FSK

Forward-looking distance coefficient k 0.7

UUV speed v 5m/s

Bit length of data packet b 2

Energy of data packet E0 0.5

Attenuation coefficient of the sea surface cup 0.9

Attenuation coefficient of the sea bottom cdown 0.5

Learning rate α 0.85

Discount rate β 0.95

Constant C 20

Table 4: The recognition rate of SqueezeNet for LOS/NLOS signals
at different SNR.

SNR(dB) −6 −4 −2 0 2 4

Precision 0.672 0.776 0.906 0.964 0.984 0.996

tm tn

M

N O

tn

to

to

Figure 7: The model of moving target receiving acoustic signals, in
whichM, N , and O are selected anchor nodes, tm, tn, and to are real
reception time, and �tn and �to are real reception time with
compensation time.
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Dyna-Q. In the remaining of the trajectory correction
period, no acoustic signal is sent from non-optimal anchor
nodes in order to save energy. Meanwhile, during this trajec-
tory correction period, UUV continuously locates itself by
receiving the signals sent by the optimal anchor nodes. After
obtaining its own calculated location, UUV approaches the
ideal trajectory according to the pure pursuit algorithm, so
as to achieve trajectory correction. When this trajectory
correction cycle ends, the next trajectory correction cycle
is performed immediately. Then, the above operations
are repeated.

5. CRLB

As a good indicator for the uncertainty in the parameter esti-
mation, the Cramer-Rao Lower Bound (CRLB) expresses a
lower bound on the variance of any unbiased estimator of
a deterministic parameter. In order to examine the perfor-
mance limit of the localization problem, we derive a CRLB
without considering the target movement first. Then, we
derive a CRLB by considering the movement of the target
and optimal anchor nodes.

Theorem 1. The CRLB for the localization without consider-
ing the target movement is given by

CRLB ϑð Þ = Tr F̂ ϑð ÞÀ Á−1h i
=

cFϑ 1,1 +cFϑ 2,2cFϑ 1,1cFϑ 2,2 −cFϑ 1,2cFϑ 2,1
: ð22Þ

The Fisher information matrix (FIM) [48] for F̂ðϑÞ is
given by

F̂ ϑð Þ =
cFϑ 1,1 cFϑ 1,2cFϑ 2,1 cFϑ 2,2

24 35, ð23Þ

in the formula

cFϑ 1,1 = 〠
M

i=1

x − xið Þ2
σ2
i ϑ −Uið Þ2 �V2

i

, ð24Þ

cFϑ 1,2 =cFϑ 2,1 = 〠
M

i=1

x − xið Þ y − yið Þ
σ2i ϑ −Uið Þ2 �V2

i

, ð25Þ

cFϑ 2,2 = 〠
M

i=1

y − yið Þ2
σ2i ϑ −Uið Þ2 �V2

i

: ð26Þ

Proof. Given a vector ϑ = ½x, y�T , theM measurements on the
reception time are as follows

ti =
ϑ −Uik k
�Vi

+ ni, i = 1,⋯,M, ð27Þ

where ni ~Nð0, σ2i Þ is the measurement error of the
reception time between the target and anchor node i. Con-
sequently, the log-likelihood function denoted as �LðϑÞ is
given by

�L ϑð Þ = −
1
2 ln 2π

YM
i=1

σ2i

 !
− 〠

M

i=1

1
2σ2

i

ϑ −Uik k
�Vi

− ti

� �2
:

ð28Þ

Then, the FIM is given by

F̂ ϑð Þ = E
∂2�L ϑð Þ
∂ϑ2

" #
: ð29Þ
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Figure 8: The performance of SqueezeNet for LOS/NLOS signals at different SNR.

12 Wireless Communications and Mobile Computing



0 500 1000
Time slot

2

4

6

8

10

12

14

U
til

ity

RMUL-Q
RMUL-Dyna-Q
CSPLLS [45]

(a) Utility

0 500 1000
Time slot

2.5

3

3.5

4

4.5

5

5.5

En
er

gy
 (J

)

RMUL-Q
RMUL-Dyna-Q
CSPLLS [45]

(b) Energy consumption

Figure 9: Continued.
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Based on (28) and (29), the FIM for F̂ðϑÞ is derived as
(23); thus, CRLB for the localization without considering
the target movement is derived.

Theorem 2. The CRLB for considering the movement of the
target and optimal anchor nodes is given by

CRLB ζð Þ = Tr F̂ ζð ÞÀ Á−1h i
=

cFζ 1,1 +cFζ 2,2cFζ 1,1
cFζ 2,2 −cFζ 1,2

cFζ 2,1

: ð30Þ

The Fisher information matrix (FIM) [48] for F̂ðϑÞ is
given by

F̂ ζð Þ =
cFζ 1,1

cFζ 1,2cFζ 2,1
cFζ 2,2

24 35, ð31Þ

in the formula

cFζ 1,1 = 〠
N

i=1

x − xið Þ2
σ2i + σ2

si

À Á
ζ −Uið Þ2 �V2

i

, ð32Þ

cFζ 1,2 =cFζ 2,1 = 〠
N

i=1

x − xið Þ y − yið Þ
σ2
i + σ2si

À Á
ζ −Uið Þ2 �V2

i

, ð33Þ

cFζ 2,2 = 〠
N

i=1

y − yið Þ2
σ2i + σ2

si

À Á
ζ −Uið Þ2 �V2

i

, ð34Þ

where N is the number of selected anchor nodes.

Proof. Given a vector ζ = ½x, y�T , the N measurements on the
reception time are as follows

�ti =
ϑ −Uik k
�Vi

+ ni + nsi, i = 1,⋯,N , ð35Þ

where ni ~Nð0, σ2
i Þ is the measurement error of the recep-

tion time between the target and anchor node i when the tar-
get is stationary and nsi ~Nð0, σ2

siÞ is the compensation error
of the reception time between the target and anchor node i
when the target is in motion as shown in Figure 7. Since ni
and nsi are independent normal distributions, their sum is
nti ~Nð0, σ2i + σ2:si Þ.

Based on (28), (29), and (35), the FIM for F̂ðζÞ is derived
as (31); thus, CRLB for the localization by considering
the movement of the target and optimal anchor nodes
is derived.

Remark 3. The UUV applies the SqueezeNet and the RL-
based mobile underwater localization algorithm to optimal
the anchor nodes selection policy without knowing the
underwater acoustic channel in dynamic localization pro-
cess. If the UUV is stationary in the underwater environ-
ment, the CRLB only considering the impact of reception
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Figure 9: Performance in the underwater environment.
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time measurement error is derived as (22). Consequently,
the CRLB can be obtained by substituting the coordinates
ðx, yÞ of the UUV, the coordinates ðxi, yiÞ of the anchor
node i, the underwater sound speed �Vi, and the variance
of the measurement error σ2

i into the formula (22)–(26).
Moreover, if the UUV performs a task, the UUV move-
ment will affect the reception time measurement error.
In this case, we derive the CRLB as shown in (30). Conse-
quently, the CRLB can be obtained by substituting the
coordinates ðx, yÞ of the UUV, the coordinates ðxi, yiÞ of
the anchor node i, the underwater sound speed �Vi, the
variance of the measurement error σ2i , and the variance
of the compensation error σ2si into the formula (30)-(34).

6. Simulation Results

In order to evaluate the performance of the entire trajectory
correction algorithm, we have performed multiple simula-
tions on MATLAB. The entire range of UUV motion is
5000 × 5000 m2, in which 20 fixed anchor nodes are ran-
domly located at an area of 1000 × 1000 m2 within the depth
of 500m. In these simulations, in order to improve the
authenticity of the simulation, we choose the underwater
channel designed in Chapter 3 as the underwater channel
between target and anchor node. The center frequency and
the bandwidth of the underwater acoustic signal are set as
20 kHz. The transmission range of the UUV and anchor
nodes are 1000m and the modulation and the communica-

tion rate are 4FSK and 2 kbps, respectively. In pure pursuit
algorithm, the relevant parameters are as follows, where
the forward-looking distance coefficient is k =0.7 and the
velocity of UUV is v =5m/s; in underwater energy consump-
tion, refer to [33], the relevant parameters are as follows,
where bit length of data packet is b =2 and unit energy of
data packet is E0 =0.5; in underwater channel, the relevant
parameters are as follows, where attenuation coefficient of
the sea surface is cup =0.9 and attenuation coefficient of the
sea bottom is cdown =0.5; in RL-based mobile underwater
localization algorithm, the relevant parameters are as fol-
lows, where learning rate α is 0.85, discount rate β is 0.95,
and the constant C is 20. The Communication Signal Prop-
agation Loss Localization Scheme (CSPLLS) proposed in [5]
and RMUL-Q are evaluated as the benchmarks in simula-
tions. Meanwhile, the CRLB is taken into comparison as a
baseline in localization accuracy. More specifically, the
parameter table is shown in Table 3.

In the first round of anchor node selection, we apply
SqueezeNet to identify the received signals. Simulation
shows the recognition rate of SqueezeNet for LOS/NLOS
signals at different signal-to-noise (SNR) ratios. The perfor-
mance of SqueezeNet is counted in Table 4 and is shown in
Figure 8.

In the second round of anchor node selection, simula-
tion results of the performance of CSPLLS, RMUL-Q, and
RMUL-Dyna-Q schemes versus 1000 time slots are plotted
in Figure 9. As shown in Figure 9, the proposed RMUL-
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Figure 10: Performance in the different underwater environment.
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DynaQ and RMUL-Q schemes decrease the RMSE and
energy consumption and increase utility in 1000 time slots.
However, the benchmark basically keeps RMSE, energy con-
sumption, and utility within a stable range. To be specific,
the RMUL-Q scheme reduces the RMSE from 17.5m to
10.8m and decreases the energy consumption from 5.0 J to
3.2 J in 1000 time slots. At the same time, the RMUL-
Dyna-Q scheme reduces the RMSE from 16.7m to 8.8m
and decreases the energy consumption from 5.0 J to 3.0 J in
500 time slots. From Figure 9, we can infer that the perfor-
mance of the RMUL-Dyna-Q outperforms that of the
benchmarks. More specifically, compared with RMUL-Q
and CSPLLS, the RMUL-Dyna-Q has the lowest RMSE, low-
est energy consumption, and highest utility. As shown in
Figure 9(a), the RMUL-Dyna-Q achieves 50.2% and 15.0%
higher utility compared with CSPLLS and RMUL-Q rela-
tively. Meanwhile, as shown in Figure 9(b), the RMUL-
Dyna-Q achieves 40.0% and 6.2% lower energy consump-
tion compared with CSPLLS and RMUL-Q relatively. As
shown in Figure 9(c), the RMUL-DynaQ achieves 49.7%
and 18.5% lower RMSE compared with CSPLLS and
RMUL-Q relatively. Moreover, RMUL-Dyna-Q is closer to
CRLB compared with CSPLLS and RMUL-Q.

When UUV performs underwater missions, it often
needs to experience different underwater environments.
Meanwhile, when the underwater environment is different,
the position of anchor nodes, the topology of UASN, and
the number of NLOS anchor nodes in the UASN will
change. In order to obtain simulation results in different
underwater environments, we have randomly changed the

position of underwater obstacles, the starting point, and des-
tination of the UUV. Correspondingly, these underwater
environments are called A, B, C, D, and E. We then evaluate
the performance of the RMUL-Dyna-Q, RMUL-Q, and
CSPLLS in different underwater environments. As shown
in Figure 10, the RMUL-Dyna-Q scheme has the lowest
RMSE, lowest energy consumption, and highest utility from
1-1000 time slots in different underwater environments. As
can be seen from Figure 10, by simulating in different under-
water environments, we can conclude that RMUL-Dyna-Q
can find the optimal anchor nodes in a short time in differ-
ent underwater environments.

As shown in Figure 11, after accurately positioning
through optimal anchor nodes the UUV, the UUV can cor-
rect its trajectory through the pure pursuit algorithm men-
tioned in Chapter 3, which achieves close to the ideal path
to reach the destination. However, the trajectory of UUV
after positioning through all anchor nodes is more deviated
from the ideal path than the trajectory of only INS. The rea-
son for this phenomenon is that there are many NLOS
transmissions of signals because of the underwater terrain
environment, which greatly affects the positioning accuracy
and the trajectory of the UUV. Consequently, it is necessary
to make multiple selections of anchor nodes.

7. Conclusion

In this paper, we have proposed an UUV underwater trajec-
tory correction scheme based on reinforcement learning
(RL) and neural network techniques to address the problems
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Figure 11: Navigation performance.
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of the existing methods and reduce energy consumption of
the UASN. Meanwhile, we designed a nonisovelocity
geometry-based underwater acoustic channel signal trans-
mission model and signal receiving and transmitting model.
We provided the CRLB of the proposed scheme. Simulation
results showed that the proposed scheme outperforms the
benchmarks in localization accuracy and energy consump-
tion in different underwater environments. For instance,
compared with CSPLLS and RMUL-Q, the RMUL-Dyna-Q
achieves 39.0% and 10.5% higher utility, 40.0% and 6.3%
lower energy consumption, and 51.1% and 17.3% lower
RMSE, respectively.

As a result, we can come to the conclusion that the pro-
posed method enables UUVs to achieve trajectory correction
so as to accurately arrive at the destination to perform tasks
and save energy in complex underwater environments.
However, there are still some shortcomings in the proposed
method, such as low recognition rate under low SNR and
slow convergence speed of reinforcement learning. In the
future, the proposed method will be extended to the more
complex underwater acoustic communication environment.
In addition to this, we will validate our method in underwa-
ter experiments. Meanwhile, how to further reduce the con-
vergence time is also our future work.
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