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Underwater target localization is the most crucial part of the underwater wireless sensor network (UWSN). Due to limited
communication range and energy constraints in underwater scenarios, only a subset of sensors can be selected to localize. This
paper investigates the sensor selection schemes for hybrid angle-of-arrival (AOA) and time-of-arrival (TOA) localization in the
underwater scenario. We first develop the Cramér-Rao lower bound (CRLB) for the hybrid AOA-TOA localization with
correlated measurement noise model with Gaussian priors, and a Boolean vector is introduced to denote the selected sensors
for hybrid measurement. Secondly, the sensor selection schemes are formulated as an optimization problem, and the
optimality criterion is to minimize the trace of CRLB. The original nonconvex problem has been modified to the semidefinite
problem program (SDP) by convex relaxation, and then, a randomization algorithm is chosen to advance the result of the SDP
method. Finally, simulations verify that the proposed algorithm approaches the exhaustive search algorithm, and the effect of
correlated measurement noise on the estimation performance in the hybrid localization system is proved.

1. Introduction

Target localization technology plays a significant role in
marine target detection and tracking, marine environment
monitoring, underwater vehicle navigation, etc. [1, 2]. How-
ever, owing to the limitations are high power consumption,
severe propagation delay, and so on [3–6]; it is not feasible
to active all sensors to localize or track the unknown target
in the underwater wireless sensor network (UWSN). Thus,
the problems of sensor selection for target localization in
UWSN have been considered; the goal is to make a compro-
mise solution between the localization estimation accuracy
and the best subset of activated sensors [7, 8].

Several localization methods have been developed using
different localization measurements, e.g., time-difference-
of-arrival (TDOA) or time-of-arrival (TOA) [9], angle-of-
arrival (AOA) [10], received signal strength (RSS) [11],

and frequency difference of arrival (FDOA) [12]. The
AOA-based and TOA-based localization are the most popu-
larly used ones. The AOA-based localization can be easily
obtained using triangulation approaches, but the estimation
accuracy is lower than the TOA localization. A reduced-
complexity algorithm based on a pseudo maximum likeli-
hood (ML) estimation is presented in [13]; an AOA-based
mechanism that associates the line-of-sight (LOS) over time
for a given trial location was described. Recently, a novel
AOA-based approximately unbiased estimation is derived
by using semidefinite relaxation (SDR) in [14]. In contrast,
the TOA can achieve better localization performance when
the high-precision timing measurements are acquired [15].
In [16], a new algebraic localization method was derived
based on a minimum number of localization measurements.
On this basis, an optimal linear unbiased estimator is
designed to calculate the final position estimation.
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Extensive research has been conducted to investigate the
sensor selection schemes in [17–21]. Generally, sensor selec-
tion schemes are transformed as an optimization issue by
using different optimality criterion. Two frequently used
optimization criteria are minimizing the trace of Cramér-
Rao lower bound (CRLB) (A-optimality criterion) and max-
imizing the determinant of the Fisher information matrix
(FIM) (D-optimality criterion). On this basis, the scheme
of sensor selection is transformed into an integer program-
ming (IP) scheme with an optimization variable. However,
owing to the IP scheme is an NP-hard scheme. The direct
way to acquire the best sensor subset is the exhaustive search
algorithm, which has high computational complexity and
does not apply to broad sensor networks. For these reasons,
several suboptimal algorithms have been presented to deal
with the sensor selection schemes.

The sensor selection scheme was formulated based on
minimizing the log-determinant of the estimated error
covariance matrix, and the convex relaxation was adopted
to solve the problem in [17]. The authors proposed a
sparsity-promoting method by minimizing the number of
sensors to be selected with the limitation of the estimation
performance in [18]. Thus, the original nonconvex optimi-
zation issue can be transformed to a sparse vector design
scheme. The problem of sensor scheduling in the linear sys-
tem with correlated measurement noise was presented in
[19], which was transformed to minimize the trace of the
inverse of the Bayesian FIM. Recently, the sensor selection
issue for TDOA-based localization was formulated by mini-
mizing the trace of CRLB and two independent Boolean vec-
tors as the selected reference sensors and ordinary sensors in
[20]. The convex relaxation methods are utilized to formu-
late the nonconvex problem as an SDP. The two suboptimal
sensor selection algorithms were designed for DOA-based
and TOA-based localization algorithms to minimize the
trace of CRLB, which only used one Boolean vector as the
optimization variable in [21]. Both of the nonconvex prob-
lems were relaxed as convex SDP.

In the literature mentioned above, sensor selection
schemes usually utilize only one kind of measurement. The
key to locating a target is obtaining sufficient measurement
from the multiple sensors to improve estimation accuracy.
Therefore, an intuitive method, knowns as hybrid measure-
ments, has attracted considerable attention recently [22, 23].
Besides, since the underwater channel has the features of low
communication channel bandwidth, serious multipath
effect, and variable acoustic velocity [24], it is necessary to
improve the localization performance using the hybrid local-
ization method. Plenty of hybrid target location methods are
implemented based on different combinations of mixed
measurements, e.g., TDOA-RSS, AOA-TOA, and RSS-
AOA [22, 23, 25–28]. The authors derived the CRLB for
the hybrid method using both AOA and TOA estimates in
[25]. Lately, a joint TOA and AOA estimator was proposed
for UWB indoor ranging under LOS operating conditions
[26]. In [27], the authors focus on the energy-efficient local-
ization strategy using hybrid TOA/AOA measurements, and
a joint resource allocation and an antenna selection frame-
work were presented to minimize the estimation error. In

[28], the authors extend the sensor selection method to a
mixed TDOA and AOA localization scenario with the pres-
ence of sensor location error. However, the sensor selection
schemes with correlated noise measurement were little con-
sidered in the above literature due to the FIM being a non-
linear function. Besides, the FIM becomes more
complicated by using more types of measurements. There-
fore, the sensor selection problems for the hybrid measure-
ments with correlated noise in UWSN are nontrivial tasks.
Moreover, the inaccurate sensor locations can also cause a
considerable reduction of localization accuracy, which
should be considered in the sensor selection schemes.

This paper investigates sensor selection strategies for
hybrid AOA-TOA-based localization in underwater sce-
nario. The key contributions are summarized as follows:

(1) The CRLB for the hybrid AOA-TOA cooperative
localization measurement model is presented for
Gaussian priors, and one Boolean vector is used for
the expressions of sensor selection scheme with the
hybrid AOA-TOA measurement under correlated
measurement noise

(2) To mitigate the localization error caused by uncer-
tainty in sensor locations, a calibration source with
precisely known location is introduced. The sensor
selection scheme is formulated by a nonconvex opti-
mization problem based on minimizing the trace of
CRLB, and the convex relaxation techniques are
adopted to transform the original problem as SDP
problem. Besides, a randomization algorithm is also
approved to improve the result

The rest of this paper is organized as follows: In Section
2, the CRB for the hybrid AOA-TOA-based localization is
derived, and sensor selection scheme is formulated. Section
3 investigates the method to reduce the sensor location error
and then transform the original scheme to the nonconvex
optimization schemes. The convex relaxation and a random-
ization algorithm are developed to solve the sensor selection
problems in Section 4. The comprehensive simulation
results are presented in Section 5. Finally, Section 6 is
devoted to our conclusions and future research directions.

2. Problem Formulation

This section introduces the hybrid AOA-TOA measurement
model and the CRLB for the hybrid AOA-TOA-based local-
ization in UWSN, and the sensor selection scheme is
introduced.

2.1. The Hybrid AOA-TOA Measurement Model. We con-
sider a two-dimensional underwater scenario composed of
multiple sensors with known locations and an unknown sta-
tionary target. Assuming that the unknown target follows a
given prior probability density function (PDF) p ~N ðp0,
C0Þ, where p0 and C0 are the mean and covariance matrix
of p. The unknown target location is p = ðpx, pyÞT , and the

kth mutiple sensor is sk = ðsxk, sykÞT , k = 1,⋯,N . Each
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multiple sensors can achieve the hybrid AOA and TOA
measurements. Consequently, the hybrid measurement can
acquire an estimator for the unknown target. The calibration
source is located at c = ðcx, cyÞT , which is utilized to correct
the sensor location errors.

The kth sensor has the measurement model as follows:

~zk = zk + αk = f k p, skð Þ + αk, ð1Þ

and f kðp, skÞ denotes a nonlinear measurement model with
p and sk. We assume that the measurement noise is αk.

Stacking ~zk for k = 1,⋯,N . The vector form of the above
(1) is

~z = z + α, ð2Þ

with

~z = ~z1,⋯,~zN½ �T ,
z = z1,⋯,zN½ �T = f1 p, s1ð Þ,⋯,f N p, sNð Þ½ �T ,

α = α1,⋯,αN½ �T ,
ð3Þ

and we assume that α is white, Gaussian, zero-mean random
vectors. Owing to the noise experienced is correlated among
different sensors; the covariance matrix Rα of α is a nondia-
gonal matrix.

Without loss of generality, different sensor types obtain
different measurements and parameter expressions. Hence,
we first introduce the AOA and TOA measurements,
respectively.

The measurement model of AOA-based localization at
the kth sensor is given [29]

zk = f k p, skð Þ = tan−1
py − syk
px − sxk

, ð4Þ

and tan−1 denotes the 4-quadrant arctangent; and the noisy
AOA measurement of the $k$th sensor is ${{\tilde{\theta
}}_{k}}$.We assume AOA measurement noise vector β ~N

ð0, σ2
ARAÞ, with σ2A denoting the noise power, while ΣA =

σ2ARA represents the covariance matirx.
For the noisy circular-based TOA measurement of the

kth sensor, we obtain [30]

~tk = tk + lk =
p − skk k
v

+ lk, ð5Þ

where tk ignores the presence of distance errors, v is the sig-
nal velocity, and lk denotes the measurement noise. Writing
the range measurement equation in the (5) form gives

zk = f k p, skð Þ = p − skk k, ð6Þ

where dk = kp − skk denotes the distance of the target and
sensor, and we also assume the TOA measurement noise
vector χ ~N ð0, σ2

TRTÞ, with σ2
T denoting the noise, while

ΣT = σ2TRT represents the covariance matirx.

Therefore, the hybrid AOA-TOA measurement noise
vector can be expressed as

ζ = β, χ½ �, ð7Þ

the hybrid AOA-TOA measurement noise covariance
matrix with 2N measurements is given by

Σ = E ζζT
n o

= diag E ββT
n o

, E χχT� �n o

  = diag ΣA, ΣTf g = diag σ2
ARA, σ2TRT

� �
:

ð8Þ

The Jacobian matrices of the N sensor for the AOA mea-
surement errors and the TOA measurement errors can be
expressed as, respectively

JAOA =

∂eθ1
∂px

∂eθ1
∂py

⋮ ⋮

∂eθN
∂px

∂eθN
∂py

2
66666664

3
77777775

�������������
p

=

−sin θ1
d1

cos θ1
d1

⋮ ⋮
−sin θN
dN

cos θN
dN

2
666664

3
777775
N×2

,

JTOA =

∂~t1
∂px

∂~t1
∂py

⋮ ⋮

∂~tN
∂px

∂~tN
∂py

2
6666664

3
7777775

������������
p

=

2 cos θ1 2 sin θ1

⋮ ⋮

2 cos θN 2 sin θN

2
664

3
775
N×2

:

ð9Þ

Thus, we can get the Jacobian matrix of the hybrid AOA-
TOA measurements as

J =
JAOA
JTOA

" #
2N×2

: ð10Þ

Using (8) and (10), the FIM for the hybrid AOA-TOA
localization with Gaussian priors yields [31]

FIM =C−1
0 + JTΣ−1J, ð11Þ

CRLB = FIM−1: ð12Þ

2.2. Sensor Selection Problem. The goal of the sensor selec-
tion scheme is to select the best nonredundant set of sensors
for localization tasks while satisfying some performance. We
consider a localization problem, which chooses a specific
subclass with M sensors of N (N >M) sensors to satisfy a
range of demand. We assume N sensors can obtain N
AOA and N TOA measurements in the UWSN. Conse-
quently, two different measurements are obtained by the
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same sensor. A Boolean vector can be defined as

r = wT , vT
� �T , ð13Þ

w = w1,w2,⋯,wN½ �T ,wi ∈ 0, 1f g, i = 1, 2,⋯,N ,

v = v1, v2,⋯,vN½ �T , vj ∈ 0, 1f g, i = 1, 2,⋯,N ,
ð14Þ

and ith element of w denotes if the ith sensor is selected or
not for the AOA measurement, and the ith element of v
denotes if the ith sensor is selected or not for the TOA mea-
surement. It assumed that when the ith sensor is selected,
both the AOA and TOA measurements from that sensor
are jointly considered for the localization task.

More specifically, we define two sensing matrices Φw
ðΦw ∈ℝM×NÞ and ΦvðΦv ∈ℝM×NÞ [17], where Φw is a sub-
matrix of diag ðwÞðdiag ðwÞ ∈ℝN×NÞ that only contains all
rows corresponding to the selected sensors, diag ðwÞ is a
diagonal matrix, and the diagonal elements are obtain by w
. The similarly definition is available for Φv and v. Note that
the links of them are associated by

ΦwΦT
w = Iw,ΦT

wΦw = diag wð Þ,
ΦvΦT

v = Iv,ΦT
vΦv = diag vð Þ,

ð15Þ

thus

ΦrΦT
r = Ir ,ΦT

r Φr = diag rð Þ: ð16Þ

Based on the above definitions, the covariance matrix of
the hybrid measurements for the selected sensor is given by

Σr = E Φrζ Φrζð ÞT
h i

=ΦrΣΦT
r : ð17Þ

With the above hybrid measurement model and the def-
initions, the FIM for selected sensors is expressed as

FIMr =C−1
0 + JTΦT

r Σ−1
r Φr J: ð18Þ

3. Sensor Selection Method for the Hybrid
AOA-TOA-Based Localization

This section introduces a calibration source with a precisely
known location to alleviate the localization performance
degeneration caused by the sensor position errors. The sen-
sor selection issue for hybrid AOA-TOA-based localization
is transformed into an optimization issue. The optimality
criterion chosen is to minimize the inverse of the FIM,
which is also known as the A-optimality criterion. Other cri-
teria are also available such as the D-optimality criterion
(maximizing the determinant of the FIM or minimizing
the volume of the localization error ellipsoid), which may
be cause large estimation error with volume minimization
in some cases, and the E-optimality criterion (minimizing
the maximum eigenvalue of the CRLB matrix), and the A-
optimality criterion is the most commonly used criteria for

performance measurement, which is equivalent the estima-
tion mean squared error (MSE).

3.1. The Method to Correct Sensor Location Errors. To miti-
gate the localization inaccuracy caused by sensor position
error in the underwater scenario, a calibration source is
introduced to correct the sensor location errors. Assuming
that the calibration source location in the localization model
is precisely known, the signal for sensor position compensat-
ing is sent to sensors through the calibration source. Accord-
ing to the received signal and the calibration source location,
the sensors can use the arrival time to realize the correction
of position error.

On the premise that the calibration source is completely
synchronized with the sensor clock in the UWSN, the time
delay of the sensors that received the signal is sent by the cal-
ibration source and can be expressed as

τk =
1
v

sk − c + Δskk k + εk = Δτk + εk, ð19Þ

where v represents the transmission speed of underwater
acoustic signal and Δsk denotes the position error contained
in the kth sensor. εk denotes the measurement noise, which
follows εk ~N ð0, α2kÞ. We assume that ε = ðε1, ε2,⋯, εNÞT ,
τ = ðτ1, τ2,⋯, τNÞΔτ = ðΔτ1, Δτ2,⋯, ΔτNÞ. When the noise
variance of each sensor is different, Q = cov ðεεTÞ = diag ð
α21, α22,⋯, α2NÞ, which is the covariance matrix of the time
of arrival measurement error.

The likelihood function of sensor measurement can be
expressed as

f τjsð Þ = 1
2πð ÞN/2 ffiffiffiffiffiffiffiffiffiffiffiffi

det Q
p exp −

1
2

τ − τ sð Þð ÞTQ−1 τ − τ sð Þð Þ
� 	

:

ð20Þ

The maximum likelihood estimation of target location is

ŝτ = arg min
sτ

f sτð Þ, ð21Þ

where the f ðsτÞ is denoted as cost function.

f sτð Þ = τ − τ sτð Þð ÞTQ−1 τ − τ sτð Þð Þ: ð22Þ

It assumed that the variable estimation sτ has the intial
estimation s0τ, and the kth estimation obtained by iteration
is skτ. We denote the residual error as

e sτð Þ = τ skτ

 �

− τ: ð23Þ

To compute the residual error, the first-order Taylor
series approximation is used for eðsτÞ in skτ . Therefore,
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(23) can be rewritten as

e sτð Þ ≈ e skτ

 �

+
∂τ sτð Þ
∂sτ

����
sτ=skτ

sτ − skτ

 �

= e skτ

 �

+ J skτ

 �

Δskτ:

ð24Þ

By substituting (24) into (22), we obtain

f sτð Þ = τ − τ sτð Þð ÞTQ−1 τ − τ sτð Þð Þ

≈ e skτ

 �

+ J skτ

 �

Δskτ

 �T

Q−1 e skτ

 �

+ J skτ

 �

Δskτ

 �

=eT skτ

 �

Q−1e skτ

 �

+ 2eT skτ

 �

Q−1J skτ

 �

Δskτ + ΔskτJT skτ

 �

Q−1J skτ

 �

Δskτ:

ð25Þ

We take the derivative of Δskτ to the above formula and
make it zero to obtain

Δskτ = − JT skτ

 �

Q−1J skτ

 �
 �−1

JT skτ

 �

Q−1e skτ

 �

: ð26Þ

Thus, the k + 1 estimation of the variable can be
expressed as

sk+1τ = skτ + Δskτ: ð27Þ

Hence, we can adopt the above method to modify the
sensor position error before sensor selection. For simplify,
we still use sk to represent the precise sensor position.

3.2. Sensor Selection for Correlated Noises. We shall investi-
gate the sensor selection scheme for hybrid AOA-TOA-
based localization with the correlated noises. Using [31],
the noise covariance matrix can be decomposed as

ΣA = λAIN + ZA,

ΣT = λTIN + ZT ,
ð28Þ

where the positive scalar is λA, λT is selected to make sure
the matrix ZA, ZT is all positive definite, and I denotes the
identity matrix. The hybrid AOA-TOA measurement for
the decomposition can be expressed as

Σ = ΓN + Z, ð29Þ

with Γ = diag fλAIN , λTINg and Z = diag fZA, ZTg.
Using (29) in (17), we can obtain

Σr =Φr ΓN + Zð ÞΦT
r = Γr +ΦrZΦT

r , ð30Þ

with Γr = diag fλAIM , λTIMg. Substituting (30) into (18),
with the matrix lemma [32], we have

ΦT
r Σ−1

r Φr

=ΦT
r Γr +ΦrZΦT

r

� 
−1Φr

= Z−1 − Z−1 Z−1 + Γ−1r ΦT
r Φr

� 
−1Z−1

= Z−1 − Z−1 Z−1 + Γ−1r diag rð Þ� 
−1Z−1:

ð31Þ

Substituting (31) into (18), it derives

FIMr =
C−1
0 + JTZ−1J

−JTZ−1 Z−1 + Γ−1r diag rð Þ� 
−1Z−1J:
ð32Þ

As discussed above, the relationship between FIMr and r
is created absolutely by (32). We adopt the A-optimality cri-
terion as the optimization objective, which is equivalent to
minimize the trace of inverse of the FIM; thus, the sensor
selection issue in the hybrid AOA-TOA-based localization
is given by

min
r

tr FIM−1
r

� 


s:t:
1Tr = 2M

r ∈ 0, 1f g2N
ð33Þ

It is clear from the (33) is a nonconvex optimization
scheme because of the last Boolean constraints. In the fol-
lowing sections, we propose employing the convex relaxa-
tion to approximately solve it.

4. Semidefinite Relaxation for Sensor
Selection Problem

This section we analyze and present the method to settle the
above nonconvex problem. The sensor selection scheme
described in Section 3 is a nonconvex and NP-hard problem.
We present a convex relaxation solution for the hybrid
AOA-TOA sensor selection. What is more, a randomization
algorithm is approved to advance the achievement of the
SDP.

4.1. The SDP Method. To simplify the problem and facilitate
theoretical analysis, we construe A =C−1

0 + JTZ−1J and B =
Z−1J in (32). Hence, the optimization issue in (33) is trans-
formed as

min
r

tr Xð Þ

s:t: A − BT Z−1 + Γ−1r diag rð Þ� 
−1BμX−1

1Tr = 2M

r ∈ 0, 1f g2N
ð34Þ

and the X ∈ℝM×M in the above optimization issue is an
auxiliary variable; the first constraint in (34) is given by [17]

A − BT Z−1 + Γ−1r diag rð Þ� 
−1B
 �
′X: ð35Þ

Here, we introduce the other one variable Y ∈ℝM×M and
the inequality constraint in (35) can be equivalently trans-
formed to

A − YμX−1, ð36Þ
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YμBT Z−1 + Γ−1r diag rð Þ� 
−1B: ð37Þ

Here, the U ≤VðorU ≥VÞ shows that V −U (or U −V)
is the positive semidefinite matrix. Applying to the Schurs
complement, the first constraint in (34) is transformed to
the below linear matrix inequality (LMI)

A − Y I
I X

" #
μ0,

Y BT

B Z−1 + Γ−1r diag rð Þ

" #
μ0, ð38Þ

Substituting (38) into (34), and the original optimization
issue is rewritten as

min
r,X,Y

tr Xð Þ

s:t: LMIs in 38ð Þ
  1Tr = 2M

  r ∈ 0, 1f g2N

ð39Þ

We can find that the above optimization problem is non-
convex owing to the Boolean selection vector r. Thus, we uti-
lize (16) and introduce an auxiliary variable R = rrT ; the
number of sensor selection and Boolean constraints in (39)
is given by

tr Rð Þ =M, diag Rð Þ = r, ð40Þ

and then, the R = rrT can be relaxed to RμrrT ; we reach the
following optimization problem

min
r,X,Y

tr Xð Þ

s:t: LMIs in 38ð Þ
  tr Rð Þ =M

  diag Rð Þ = r

 
R r
rT 1

" #
μ0

ð41Þ

For the SDP (41) problem, the interior point algorithm is
utilized to solve it quickly, and then, the fractional r can be
obtained. Thus, the w and v also can be extracted from the
r as defined before. The convenient method is to select the
M largest sum of a fractional element wk and vk, and the cor-
responding index denotes the selected sensors.

We also can use a randomization algorithm to get a bet-
ter solution, which consists of an iterative procedure. The
aforementioned procedure is called “SDP,” and the details
of the randomization algorithm are shown in Algorithm 1,
which is called “SDP with randomization.”

5. Number Results

In this section, we first analyze the complexities of the pro-
posed approach, and then, extensive simulations prove that

the proposed approach can obtain high estimation perfor-
mance for the hybrid TOA-AOA-based localization.

The commonly used method is the interior point
method for the SDP solution, which the computational com-
plexity is OðN3Þ [33]. Furthermore, the SDP with the ran-
domization algorithm should be considered. Due to the
additional multiplication operations are needed for the ran-
domization algorithm isSOM , and S denotes the number of
random vectors. The exhaustive search algorithm itemizes
all the possible sensor subsets with M from the total N sen-
sors; thus, all possible sensor subsets are N!/ðN −MÞ!M!,
and we can choose the sensor subset with the minimum
trace of CRLB. The exhaustive search algorithm that has
high computational complexity isOðN!Þ. It is noticeable that
the proposed algorithm has lower computational complexity
compared to the exhaustive algorithm.

In what follows, the proposed algorithm validity is dem-
onstrated by simulation results. In the simulation experi-
ment, let us assume that N sensors are randomly arranged
in a region of size 1000m × 1000m. The prior PDF of p is
given by p ~N ðp0, C0Þ, and p0 = ð0, 0ÞT , C = diag ð50, 50Þ.
The calibration source location is c0 = ð30,−20ÞT . The posi-
tive definite is ZA and ZT , and we set λ = 0:9λmin, where
λmin is the minimum eigenvalue of ΣA and ΣT . Two general
approaches, the closest sensor algorithm and exhaustive
search algorithm are recommended to contract with the pro-
posed approach in this paper. The exhaustive algorithm can
obtain the best result and is also used for comparison. In the
closest sensor algorithm, the M shortest distance between
the sensors and target of sensors is chosen. For simplicity,
“Exhaustive search” is used to represent the exhaustive
search algorithm, and “Closest sensors” is used to represent
theM closest sensors. “SDP” and “SDP with randomization”
are utilized to indicate our proposed SDP algorithm and
SDP with Algorithm 1. Besides, we also use “All sensors”
to represent the total activated sensors, and “Random selec-
tion” is utilized to represent randomly selected M sensors.

In the first experiment, we investigate the algorithm’s
performance to correct the sensor location errors using the
calibration source. We assume that noise variance of the
TOA measurement is σ1 =⋯ = σN = 1m, and the noise var-
iance of the AOA measurement is γ1 =⋯ = γN = 1°. The
errors of the sensor position are within a 2-mile radius of
the true position. Figure 1 depicts the localization accuracy
with the different number of sensors. We observe that the
trðCRLBÞ of the corrected sensor position is close to trð
CRLBÞ of the ture sensors; the conclusion can be realized
under the SDP solution and SDP with randomization algo-
rithm. The effectiveness of the sensor position error correc-
tion method is proved, and the SDP with randomization
obtains a high localization accuracy with the different num-
ber of selected sensors.

Next, we consider that the simulation scenarios are com-
posed of M = 5 and M = 10 selected sensor, and the noise
variance of AOA measurement remains constant while the
noise variance of TOA measurement is a variable from
1m2 to 10m2. Figure 2 presents the trðCRLBÞ increase as
the noise variance growing of all these algorithms. However,
the SDP with randomization algorithm always has better
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localization accuracy and is close to the exhaustive search
algorithm.

To further demonstrate the efficiency of the proposed
method, we also consider the simulation scenarios in that
the noise variance of TOA measurement remains constant.
In contrast, the noise variance of AOA measurement varies
from 1° to 10°. Other parameter settings remain unchanged
as Figure 2.

We observe in Figure 3 that the trðCRLBÞ does not
increase significantly as γ2 increases, which is consistent
with the results in [34].

Furthermore, we consider the sensor selection scenario
with each sensor having different noise variance while the
number of the selected sensor varies from 4 to 16. Figure 4
plots the trðCRLBÞ corresponding to these algorithms. It is

observed from Figure 4 that the trðCRLBÞ decreases with
the selected sensor number from 4 to 16. The SDP with ran-
domization algorithm yields a lower estimation error than
other algorithms and almost achieves the exhaustive search
algorithm.

Finally, the correlated measurement noise scenario is
considered. The correlation parameter λA = λT = λ varies
from 0.1 to 0.9, and the remaining parameters of this simu-
lation unchange as above. Figure 5 depicts the trðCRLBÞ
comparison of different number of selected sensors. and it
can be observed that the trðCRLBÞ curve of the SDP with
randomization algorithm has the same variation tendency
when the different selected sensors. That is the localization
accuracy is raising as the correlation gets stronger, which is
consistent with the results in [35]. Due to the strongly

Input: The fractional solution w and v;
1: fork = 1, 2,⋯,Ndo
2: Generate two random vectors: wk

ς ~N ðwO,Ww −wowoTÞ, vkς ~
N ðvO,Vv −VoVoTÞ.
3: set the largest M elements as 1 and the rest as 0 to generate two feasible vectors ðwk

ςÞN and ðvkςÞN
4: Obtain the selected sensor index from ðwk

ςÞN and ðvkςÞN , select the same sensor index of the two vectos as 1.
5: selsect the rest ðM − aÞ sensors from the rest of “1” sensors.
end for

6:Substitute each possible combination into objective fuction and choose vectors with the minimum value.
7: Output: the solved Boolean vector to choose with the minimum value

Algorithm 1: A randomization algorithm.
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2.4
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 (m
)

SDP without sensor position errors
SDP correcting sensor position errors
Random selection without sensor position errors
Random selection correcting sensor position
SDP-randomization without sensor position errors
SDP -randomization correcting sensor position errors

Figure 1: Comparison with different number of sensors.
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SDP M = 5
SDP with randomization M = 5
Exhaustive search M = 5
All sensors
SDP M = 10
SDP with randomization M = 10
Exhaustive search M = 10

Figure 2: Comparison with different noise variance of TOA as M = 5 and M = 10.
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SDP with randomization M = 5
Exhaustive search M = 5
All sensors
SDP M = 10
SDP with randomization M = 10
Exhaustive search M = 10

Figure 3: Comparison with different noise variance of AOA as M = 5 and M = 10.
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Figure 4: Comparison with different numbers of sensors and noise variance.
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Figure 5: Comparison with different correlation parameter as M = 6, M = 16, and all sensors.
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correlated noise, noise cancellation is achieved by subtract-
ing one sensor from the rest. Furthermore, it is observed that
SDP with randomization approach obtained better localiza-
tion accuracy than the SDP solution.

6. Conclusion

This paper explores the sensor selection scheme for an
uncertain target localization based on hybrid AOA-TOA
measurements with the correlated noise in the underwater
scenario. Considering that the original nonconvex optimiza-
tion problem is formulated by minimizing the trðCRLBÞ, the
optimization issue can be relaxed by convex relaxation and
solved by the SDP method. The randomization algorithm
is utilized to refine the results. Besides, a calibration source
with a precise position is used to correct the sensor position.
Simulation studies confirm that the superiority of the pro-
posed algorithm over the existing algorithms; besides, the
influence of the noise correlation on the sensor selection
scheme is also discussed.

In the future work, we will investigate the sensor selec-
tion scheme for multiple underwater unknown targets with
correlated noise, which will be formulated as a convex com-
bination problem. We will develop the SDP solution for sen-
sor selection for TDOA, AOA, and/or RSS. Furthermore, it
is interesting to devise the sensor selection scheme with
hybrid localization for target tracking in the underwater sce-
nario. Sensor selection in the presence of non-line-of-sight
propagation is also a challenging research topic.

Data Availability

The data used to support the finding of this study are
included in the article.
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