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The normal operation of the transformer is an important guarantee for the safe operation of the whole power network. Usually,
the periodic maintenance work increases the workload of the operation and maintenance personnel. In this paper, an intelligent
predictive and maintenance system for dry-type transformer based on vibration is proposed to monitor the vibration state of the
transformer. The fractional-order Kalman filter and normalization method are used to preprocess the vibration data to reduce
noise interference, and then the fault is classified by one-dimensional convolution neural network. On this basis, an improved
grey Verhulst model is established to predict the fault time of the transformer. The experimental results show that the
classification accuracy of the one-dimensional convolution neural network can reach more than 95%, and the improved grey
Verhulst model can predict the fault of the dry-type transformer one week in advance.

1. Introduction

In recent years, with the expansion of China’s power capac-
ity, dry-type transformer, as an important component of the
power system equipment, has received more attention. The
normal operation of the transformer is an important guaran-
tee for the safe operation of the whole power network. Due
to the complex internal environment of the transformer,
long-term work will produce various faults due to aging
[1], which will seriously lead to regional power outages and
safety accidents, threatening the property and life safety of
the people. In order to eliminate the potential security risks
of transformers [2] and reduce the economic losses caused
by transformer damage and ensure life safety, predictive
maintenance of transformers is needed.

At present, most domestic and foreign scholars still used
the traditional machine learning algorithm to establish the
dry-type transformer fault model and classify the state of
the transformer. For example, C. Boonseng et al. [3] used
neural network to classify and predict the state of trans-

former by axial acceleration, current, voltage distortion
(THD), and current distortion (TDD). M. Bagheri et al. [4]
mathematically modeled the vibration of transformer core
and winding, established transformer vibration analysis
model using vibration time series to analyze transformer
abnormal and fault state, and then classified the vibration
signal by BP neural network. The research on fault detection
of dry-type transformer abroad has promoted the develop-
ment of dry-type transformer detection technology in China
to a certain extent. Cai Yonghua [5] used wavelet analysis
method and convolution neural network method to analyze
the vibration signal of transformer and proposes a trans-
former based on convolution neural network-based surface
vibration signal feature extraction method. By monitoring
the temperature, voltage, current, and other parameters of
dry-type transformer system, Li Wang [6] established RBF
(radial basis function) neural network to fit the nonlinear
data to classify the state of winding and iron core. The vibra-
tion of dry-type transformer is not in a single direction when
it fails. The traditional classification method of transformer
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working state did not fully consider the acceleration of each
direction of vibration, and there are problems such as com-
plex processing steps, poor classification effect, and unable to
predict the fault in advance.

In this study, the vibration information of the dry-type
transformer is collected by the acceleration sensor
ADXL356, and the fractional-order Kalman filter is carried
out. The fault diagnosis of the vibration signal is carried
out by one-dimensional convolution neural network.
Finally, the grey Verhulst model designed can predict the
fault time of the transformer one week in advance. The work
done in this paper provides ideas and reference for the devel-
opment of intelligent predictive maintenance technology of
dry-type transformer, and has certain significance.

2. Experimental Details

2.1. Vibration Mechanism Analysis of Dry-Type Transformer.
The main components of dry-type transformer are core and
winding. Insulation pouring winding is wrapped on the core.
The material of the core is usually laminated silicon steel sheet,
which can effectively reduce the eddy current loss. The outer
end of the winding is connected to the lead, which is responsible
for the transmission of internal and external electric energy, and
then the transformer ratio is controlled by the tap changer. The
tap changer is also divided into two types: no-load tap changer
and on-load tap changer. The difference between no-load tap
changer and on-load tap changer is that the no-load tap changer
needs to be powered off before adjusting the tap changer. The
on-load tap changer can adjust the tap changer under the con-
dition of power supply and change the transformer ratio by
changing the winding turns of the transformer.

The iron core is often installed in the body through rigid
connection parts. As shown in Figure 1, the vibration of the
transformer is caused by the vibration of the iron core
caused by Magnetostrictive [7] and Lorentz force [8], and
the vibration of the winding affected by electromagnetic
force applied to the load current. The vibration of the iron
core and winding can be transmitted to the wall of the trans-
former through rigid connection components [9, 10].

2.1.1. Iron Core Fault. The core fault of dry-type transformer
is mainly caused by core vibration and multi-point ground-
ing, among which multi-point grounding is most likely to
occur. The core failure is shown in Figure 2.

The iron core fault is mainly manifested as local over-
heating, abnormal vibration, and noise. The local overheat-
ing is generally caused by multi-point grounding and local
short circuit. The multi-point grounding is often caused by
the iron core contacting the transformer wall or the trans-
former entering the foreign body, which will lead to a rapid
increase in the local temperature of the iron core [11]. The
local short circuit may be caused by the aging of the insulat-
ing material. The abnormal vibration and noise are mainly
caused by the loosening of the iron core caused by aging,
which will cause winding deformation. According to statis-
tics, the deformation at the top of the iron core is generally
the most obvious. Therefore, sensors can be installed at the
top of the transformer to collect vibration data.

2.1.2. Winding Fault. According to statistics, winding is the
fault-prone point of transformer [12], mainly winding with
vibration deformation caused by magnetic field force
changes, winding aging, or not dry-type winding short cir-
cuit; winding fault can be shown in Figure 3.

Winding faults include winding short circuit and wind-
ing disconnection, which is generally caused by winding dis-
connection caused by poor welding. Winding short circuit is
mainly caused by the decline of insulation capacity, includ-
ing the aging of insulation materials, winding loose deforma-
tion caused by vibration, further leading to the overall
vibration of the body.

2.2. Vibration and Fault Identification Method of Dry-
Type Transformer

2.2.1. Vibration Data Acquisition. As shown in Figure 4,
ADXL356C acceleration sensor produced by ADI Company
is selected as the vibration sensor in this paper to monitor
the vibration signal of SCB10-1600 wind power tower dry-
type transformer and further monitor the state of the trans-
former. Place sensors to monitor the status of vulnerable
areas, collect data every 0.1 seconds, and save them.

The sensor is placed at the bottom of the dry-type trans-
former to collect the vibration signal. When the transformer
is under normal load, the rated current is applied to 92.4A,
by applying 1.1 times rated current to simulate the fault.
When the dry-type transformer is under normal load, the
vibration acceleration range is between 0.6m/s2 when the
rated current is applied. 1.1 times the rated current vibration
range is between 0.7m/s2.

2.2.2. Vibration Data Process

(1) Data Filtering. In the application practice, the data col-
lected by the sensor will have certain measurement errors,
including the errors of the sensor system itself and the envi-
ronment. The process of reducing noise interference is called
filtering. Kalman filter estimation error mainly uses the min-
imum mean square error prediction model, which has good
accuracy in noisy data. Kalman filter can estimate the equip-
ment state at a certain time in the future through the current
part of the model, so it is often used for data preprocessing.

Integer-order Kalman filter is mainly based on the esti-
mated value of the previous moment to predict the state of
the current moment, predict the covariance matrix of the
error between the predicted value and the real value of the
current moment, and then calculate the Kalman gain matrix
of the current moment. The estimated value of the current
moment can be updated by using the observed value of the
current moment and finally update the covariance matrix
of the error between the estimated value and the real value
of the current moment [13, 14].

Considering that the noise in the actual engineering sys-
tem may be non-Gaussian white noise, this paper uses the
fractional-order Kalman filter [15] to effectively realize the
state estimation of the continuous-time linear fractional-
order system with fractional-order colored process noise or
fractional-order colored measurement noise [16].
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Combining fractional-order algorithm with Kalman filter,
this paper will use the Grunwald-Letnikov definition of frac-
tional discrete derivative:

Δ∝xk =
1
hn

〠
k

j=0
−1ð Þj n

j

� �
xk+1−j, ð1Þ

where n denotes the fractional order; h is the sampling

interval; default is 1; h is the digital sample for calculating
the derivative; and ðn/jÞ can be expressed as:

n
j

� �
=
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The state space model of fractional-order network
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Figure 1: Vibration propagation diagram of dry-type transformer.
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Figure 2: Iron core fault diagram.
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Figure 3: Winding fault diagram.
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system can be expressed by the following equation:

Δ∝xk+1 = Adxk + Buk +wk,

xk+1 = Δ∝xk+1 − 〠
k+1

j=1
−1ð Þj∝jxk+1−j,

yk = Cxk + vk,

ð3Þ

where Ad is the transition matrix, uk is the system input, yk is
the system output, C is the output matrix, wk is the system
noise, and vk is the instantaneous output noise:

Δγxk+1 =
Δn1x1,k+1

⋮

ΔnN xN ,k+1

2
664

3
775,
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n1

k

 !
⋯

nN

k

 !" #
:

ð4Þ

Some related formulas are predefined:

x̂k = E xk y
∗
kjð Þ½ �,

P̂k = E xk − x̂kð Þ xk − x̂kð ÞT
h i

,

~xk = E xk y
∗
k−1jð Þ½ �,

~Pk = E xk − ~xkð Þ xk − ~xkð ÞT
h i

,

ð5Þ

where x̂k represents the state estimation variable, ~Pk is the
covariance matrix of estimation error, and ~xk is the state pre-
diction matrix of time k. y∗k is a measurement matrix, includ-
ing the measured output y0, y1, y2,⋯yk and the input signal
u0, u1, u2,⋯uk. Usually, the conventional fractional Kalman
algorithm can be mainly expressed by the following two
steps:

Forecast equation:

Δ∝~xk+1 = Adx̂k + B,

x̂k+1 = Δ∝~xk+1 − 〠
k+1

j=1
−1ð Þj∝jx̂k+1−j,

~Pk+1 = Ad +∝1ð Þ~Pk Ad +∝1ð ÞT +Qk + 〠
k+1

j=2
∝jPk+1−j∝T

j
:

ð6Þ

Filtering equation:

Gk+1 = ~Pk+1C
T C~Pk+1C

T + Rk+1
� �−1,

x̂k+1 = ~xk+1 + Gk+1 yk+1 − C~xk+1½ �,
P̂k+1 = I − Gk+1Cð Þ~Pk+1:

ð7Þ

Gk+1 represents the Kalman filter gain vector at k + 1. Qk
and Rk can be regarded as zero-mean Gaussian white noise
with covariance matrix wk and vk. Qk and Rk can be defined
as:

Qk = E wkwk
T� �
,

Rk = E vkvk
T� �
:

ð8Þ

The vibration data after fractional Kalman filtering are
shown in Figure 5. By comparing Figures 6 and 7, it can be
seen that the data after the improved fractional Kalman filter
are smoother, which facilitates the downstream fault
classification.

(2) Normalization. In order to improve the convergence
speed and accuracy of the model, the original data measured
by the vibration sensor are normalized after fractional-order
Kalman filtering.

norm xið Þ = xi − ui
σi

: ð9Þ

Sensor

Rigid
body

connection
parts

Figure 4: Field experiment.
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In the formula ui and σi represent the mean and variance
of group i data in the filtering sensing data. The zero-mean
data of training set and test set are normalized and linearly
scaled to [−1, 1]. The data obeys standard normal distribu-
tion, which is convenient for classification.

2.2.3. Fault Diagnosis Using One-Dimensional Convolutional
Neural Network

(1) Dataset Partitioning. The state of the dry-type trans-
former will change when the transformer fails, so the state
of the transformer can be judged by monitoring the vibra-
tion acceleration of the dry-type transformer.

In this paper, the whole working process of the trans-
former is divided into two stages: the stable working stage
(the stable stage) and the fault warning stage (the warning
stage). Then, for the normalized data, the above two labels
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Figure 5: Fractional Kalman filtering results.

5Wireless Communications and Mobile Computing



are affixed to mark the data. Use 70% of the dataset as a
training set and 30% as a test set.

(2) Design of Convolution Neural Network for Vibration
Acceleration. 1D-CNN [17] (one-dimensional convolution
neural network) is essentially the same as convolution neural
network. Traditional CNN is mainly used for two-
dimensional image recognition. The vibration acceleration
of the transformer is a time series signal. If the time series
signal is transformed into a binary image to process, it is
easy to lose the fault information and miss the equipment
fault. Therefore, the time series signal can be processed by
one-dimensional convolutional neural network [18].

The 1D-CNN model was trained using the Keras frame-
work in PyCharm software. The number of batch processing
was 64, and epochs was 150. The loss function adopted the
cross entropy loss function, and the SGD optimization algo-
rithm was used. The learning rate was set to 0.001. The con-
volution kernel of the convolution layer is set to 4 and the
step length is 1. The activation function of each convolution
layer is selected as the Relu function. The convolution kernel
of the pooling layer is set to 2 and the step length is 2. After
two to three convolution layers and pooling layer operations,
the pooling layer of the last layer is flattened by the flatten
layer to obtain the full connection layer [19]. Finally, the
softmax classifier is used for classification. This paper con-
structs a 9-layer 1D-CNN model, as shown in Figure 6.

2.3. Fault Prediction of Dry-Type Transformer. With the
aging of the transformer, the service life is also continuously
reduced. How to predict the fault at a certain time in the

future at the beginning of the fault, that is, to predict the
fault, can be realized by predicting the vibration data of the
transformer. Therefore, it is an essential step to predict the
vibration data of the transformer in the research of trans-
former fault prediction and maintenance. This paper studies
and compares the grey GM (1,1) model and the grey Ver-
hulst model [20]. The improved grey Verhulst model is
applied to the prediction algorithm, which can predict the
data well. The predicted data can be used to determine the
fault by the above 1D-CNN model.

2.3.1. Pretreatment of Raw Data. In the original data, the
previous data have a weak impact on the prediction effect
of the prediction model, and the new information is often
more representative of the change trend [21]. Therefore,
we can remove Xð0Þð1Þ and increase Xð0Þðk + 1Þ to obtain
the new original data:

X 0ð Þ kð Þ = x 0ð Þ 2ð Þ, x 0ð Þ 3ð Þ,⋯, x 0ð Þ k + 1ð Þ: ð10Þ

Since the prediction model conforms to the law of expo-
nential growth, it is necessary to smooth the original data. In
this paper, the sliding smoothing method is used to process
Xð0ÞðkÞ½17�. As follows:

X 0ð Þ kð Þ = x 0ð Þ k − 1ð Þ + 2x 0ð Þ kð Þ + x 0ð Þ k + 1ð Þ
h i

/4 1 < k < nð Þ:
ð11Þ
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Figure 6: 1D-CNN network structure diagram.
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Left and right endpoints can be expressed as follows:

X 0ð Þ 1ð Þ = 3x 0ð Þ 1ð Þ + x 0ð Þ 2ð Þ
h i

/4,

X 0ð Þ nð Þ = x 0ð Þ n − 1ð Þ + 3x 0ð Þ nð Þ
h i

/4:
ð12Þ

Through the establishment of the traditional grey Ver-
hulst model, the background weight coefficient μ is also opti-
mized. The traditional weight coefficient μ is defaulted to

0.5, but it is not necessarily the most suitable weight coeffi-
cient for the application object. On the basis of μ=0, a small
amount of Δμ can be added, from 0 to 1, and the highest
prediction accuracy of the model can be obtained [22],
which is regarded as the best weight coefficient.

2.3.2. Background Value-Simpson Algorithm Design. Zð1ÞðkÞ
= ðxð1ÞðkÞ + xð1Þðk − 1ÞÞ/2, k = 2, 3,⋯, n is the background
value in traditional prediction model. It is constructed by
the trapezoidal formula in the numerical integration, not
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Figure 7: Integer-order Kalman filtering results.
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necessarily the most suitable background value. According to
the characteristics of the exponential function itself, the back-
ground value of the data is reconstructed by using Simpson’s
law, which is closer to the real data curve. The background value
can be expressed by the following formula:

Z 1ð Þ kð Þ = x 1ð Þ kð Þ + 4x 1ð Þ k − 1ð Þ + x 1ð Þ k − 2ð Þ� �
6 , k = 2, 3,⋯, n:

ð13Þ

3. Results

3.1. Data Filtering

3.1.1. Integer-Order Kalman Filter. The integer-order Kal-
man filter is used for filtering the vibration accelerations in
X, Y, and Z directions under normal and abnormal vibra-
tions. The filtering results are shown in Figure 7.

3.1.2. Fractional Kalman Filter. As shown in Figure 5, when
we used the fractional-order Kalman filter for filtering the
vibration accelerations in X, Y, and Z directions under nor-
mal and abnormal vibrations, the results show that the data
becomes smoother. Smoother filtering results can effectively
prevent the misjudgment of the neural network. This is
because the vibration incentive of the transformer is com-
plex and often presents an irregular state. Sometimes the
sudden violent vibration in a short time is not caused by
the fault. Therefore, this filter can more effectively eliminate
the vibration noise, rather than identify the instantaneous
large amplitude vibration as a fault.

3.2. One-Dimensional Convolution Neural Network Fault
Identification Results

3.2.1. Influence of Activation Function. In this paper, the fil-
tered vibration data sets are tested by fault discrimination
experiment, and the fault overall discrimination rates of acti-
vation functions Sigmoid, Tanh, and Relu in the training set
are analyzed and compared. The test is shown in Figure 8.
Through comparison.

3.2.2. Influence of Convolution Kernel Number. In the 1D-
CNN discriminant model 1 designed in this paper, the con-
volution kernel size in the convolution layer is set to 4, the
step length is 1, the initial number of convolution kernels
in model 1 is set to 8, and model 2 is set to 16. The discrim-
inant effect is compared. After three convolution and pool-
ing layers, the data is flattened by flatten layer, and then
the data is discriminated by the full connection layer. The
network structure parameters are shown in Tables 1 and 2.

Under the premise that the number of convolution iter-
ations of the model is fixed to 3 times, different fault dis-
criminant models are established by setting different
number of convolution kernels. Model 1 sets 8 convolution
kernels, and model 2 sets 16 convolution kernels, respec-
tively, for training, and then test the discriminant effect.
The characteristic curves of iteration number and discrimi-
nant rate are established in the training set, as shown in
Figure 9.

Through the experiment, it can be seen that with the
increase of the number of iterations, the discriminant rate
is rising. After comparison, it is found that model 2 has fas-
ter convergence speed, and model 2 has higher prediction
accuracy than model 1, so model 2 is better than model 1.
The number of convolution kernels set to 16 is more suitable
for the fault diagnosis.

3.2.3. Influence of Iteration Times. Iterative number design
refers to the number of convolutions and pooling of the
model. The more convolutions, the more features can be
extracted. However, it will also lead to excessive calculation
and over-fitting of the system. The number of convolution
pooling is generally 2-3 times. This paper compares the dis-
criminant effect of one-dimensional convolution neural net-
work model with two and three iterations. Two iterative
structures are designed as shown in Table 3, and three itera-
tive structures are designed as shown in Table 4.

Under the condition that the number of convolution
kernels is set to 16, model 3 and model 4 are established with
different iterations. Model 3 is set to be iterated twice, and
model 4 is set to be iterated three times. Train separately,
and then test the discriminant effect. The fault discriminant
rates of model 3 and model 4 in the test set are shown in
Figure 10.

Through this experiment, it can be seen that the state
discrimination rate of three iterations is higher than that of
two iterations in the test set, so model 4 is better than model
3. Iteration 3 times is more suitable for the fault diagnosis.

3.3. Grey Verhulst Model. Because the vibration signal will
increase greatly when the transformer is running fault, the
grey Verhulst model can be established to predict the fault
time of the transformer. The average weekly vibration accel-
eration of dry-type transformer is taken, and the data from
the first week to the eighth week are taken as input. The
vibration acceleration of the transformer in the ninth week
predicted by the model in the eighth week is shown in
Figure 11.

The grey Verhulst model predicts that the transformer
will have a large vibration amplitude at the ninth week, that
is, the vibration amplitude of the fault is reached. Therefore,
the maintenance personnel can overhaul the transformer at
the eighth week. At week 7, based on the original data, by
comparing the prediction results of GM (1,1) model, tradi-
tional Verhulst model, and grey Verhulst model improved
by background value-Simpson algorithm, it is found that
only the improved Verhulst model can be closer to the orig-
inal data. Therefore, our improved grey Verhulst model has
more accurate data prediction effect.

4. Discussion

Since the beginning of the 21st century, the demand for
energy is growing. Wind energy as a renewable energy,
wind power generation technology has been paid more
and more attention by all countries in the world. Dry-
type transformer is an embedded booster substation in
the wind power tower. Its normal operation is an
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important guarantee for the safe operation of the whole
power network. The fault of dry-type transformer is
mainly aging problem, which is a long-term and slow pro-
cess. However, the traditional machine learning algorithm

does not have real-time and predictability to establish the
fault model of dry-type transformer. Therefore, it is neces-
sary to establish an accurate fault classification model,
which is also the basis of fault prediction.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
Epoch

0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ur
ac

y

Test of activation function

Tanh
Sigmoid
Relu

Figure 8: Test of activation function.

Table 1: One-dimensional convolutional neural network discriminant model 1 structural parameters.

Network structure Convolution kernel size Step size Convolution kernel number Output size

Convolution layer 4 1 8 64∗8
Pooling layer 2 2 8 32∗8
Convolution layer 4 1 16 32∗16
Pooling layer 2 2 16 16∗16
Convolution layer 4 1 32 16∗32
Pooling layer 2 2 32 8∗32
Flatten layer 256 1 — 256∗1
Fully connected layer 100-10-2 1 — 100 ∗ 1 − 10 ∗ 1 − 2 ∗ 1
Discrimination layer 2 1 — 2∗1

Table 2: One-dimensional convolutional neural network discriminant model 2 structural parameters.

Network structure Convolution kernel size Step size Convolution kernel number Output size

Convolution layer 4 1 16 64∗16
Pooling layer 2 2 16 32∗16
Convolution layer 4 1 32 32∗32
Pooling layer 2 2 32 16∗32
Convolution layer 4 1 64 16∗64
Pooling layer 2 2 64 8∗64
Flatten layer 512 1 — 512∗1
Fully connected layer 100-10-2 1 — 100 ∗ 1 − 10 ∗ 1 − 2 ∗ 1
Discrimination layer 2 1 — 2∗1
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In this paper, the vibration signal of dry-type trans-
former is collected, and the data is filtered by a fractional-
order Kalman filter. From the filtering results, this filter
can make the vibration data smoother. Then, this paper pro-
poses a 1D-CNN fault classification model with Tanh activa-
tion function, 16 convolution kernels, and three iterations
through the 1D-CNN fault classification experiment using

filtered data. The experimental data show that this model
can achieve 100% recognition rate for dry-type transformer
faults. Finally, the grey Verhulst prediction model is
improved by background value-Simpson algorithm, and
the effectiveness of the prediction model is demonstrated.

It is found that compared with the traditional machine
learning algorithm, the neural network model can achieve
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Figure 9: Test of kernel number.

Table 3: One-dimensional convolutional neural network discriminant model 3 structural parameters.

Network structure Convolution kernel size Step size Convolution kernel number Output size

Convolution layer 4 1 8 64∗8
Pooling layer 2 2 8 32∗8
Convolution layer 4 1 16 32∗16
Pooling layer 2 2 16 16∗16
Flatten layer 256 1 — 256∗1
Fully connected layer 100-10-2 1 — 100 ∗ 1 − 10 ∗ 1 − 4 ∗ 1
Discrimination layer 2 1 — 4∗1

Table 4: One-dimensional convolutional neural network discriminant model 4 structural parameters.

Network structure Convolution kernel size Step size Convolution kernel number Output size

Convolution layer 4 1 8 64∗8
Pooling layer 2 2 8 32∗8
Convolution layer 4 1 16 32∗16
Pooling layer 2 2 16 16∗16
Convolution layer 4 1 32 16∗32
Pooling layer 2 2 32 8∗32
Flatten layer 256 1 — 256∗1
Fully connected layer 100-10-4 1 — 100∗1-10∗1-4∗1
Discrimination layer 4 1 — 4∗1
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more accurate fault identification results by learning a large
number of vibration data in various directions. At the same
time, the grey Verhulst prediction vibration fault prediction
proposed in this paper makes up for the blank of dry-type
transformer fault prediction.

However, due to the limitations of experimental condi-
tions and cost, we used overcurrent input signal to simulate
dry-type transformer’s fault vibration and carry out filtering
processing, fault classification, and prediction.

Therefore, in the future, we suggest that through long-
term dry-type transformer condition monitoring, collect
more transformer condition data to improve the database
for future test analysis.

5. Conclusion

In this paper, the one-dimensional convolutional neural net-
work is used to classify the equipment state with the filtering
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Figure 10: Test of iteration times.
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Figure 11: Data comparison diagram of prediction model.
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data of fractional-order Kalman vibration data as input. The
correct recognition rate of transformer fault is 95%. The
experiment shows that with the increase of the number of con-
volution kernels and the number of iterations, it will have bet-
ter discriminant effect, and Tanh activation function has good
discriminant performance. The grey Verhulst model is also
improved in this study. The results show that the prediction
method can predict the fault of dry-type transformer one week
in advance, and the basic functions of dry-type transformer
prediction system can meet the design requirements. The fol-
lowing conclusions can be drawn from this study.

We can predict the dry-type transformer fault by vibra-
tion, especially using the fault identification and prediction
method in this paper. However, there are still some areas that
need to be improved and perfected, such as through long-term
dry-type transformer condition monitoring, collecting more
transformer state data to improve the database for future test
analysis, and the intelligent predictive maintenance algorithm
is applied to the local end to realize the local end fault warning.

Data Availability
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