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This paper presents a mathematical model for the flexible job shop scheduling problem (FJSP) with batch processing for
manufacturing enterprises with both the flexible job shop scheduling problem and a batch process (BP) problem in actual
production. An improved immune genetic algorithm (IGA) based on greedy thought combined with local scheduling rules is
used to solve this scheduling problem. In the flexible job shop part, the greedy optimal solution is obtained through the greedy
thought. The concept of cross-entropy is then introduced to improve the standard IGA. Calculating the cross-entropy of the
individual and greedy optimal solutions for optimization considerably accelerates the optimization speed of the algorithm and
enhances the ability of the algorithm to escape the local optimum. In the batching process, effective batching rules are designed
to reduce blockage and improve batching efficiency; thus, the job can quickly and effectively pass the batching process and
complete the entire production process. In the algorithm verification stage, standard FJSP datasets are used to simulate and
verify the proposed algorithm. Considering the specific FJFP with BP problem, we perform simulation experiments with actual
production data of a transformer manufacturer. The results show that the proposed method can effectively solve such problems.

1. Introduction

The flexible job shop scheduling problem (FJSP) is an exten-
sion of the traditional job shop scheduling problem (JSP)
and was first proposed by Brucker and Schlie [1] in 1990.
In FJSP, each job operation can be assigned to multiple
machines, which may have different processing times; thus,
FJSP is a more complicated nondeterministic polynomial-
hard problem than JSP. Recently, more methods have been
applied to solving the FJSP and its expansion problem. For
example, Zhao [2] proposed an improved neighborhood
structure hybrid algorithm and achieved good results. Lin
et al. [3] proposed a hybrid multiverse optimization to
address the fuzzy FJSP. An et al. [4] proposed an improved
nondominated sorting biogeography-based optimization to
solve the (hybrid) multiobjective FJSP. Li et al. [5] examined
the FJSP with transportation resource constraints, which
increased the problem complexity and practicability. Cao

et al. [6] studied the FJSP with sequencing flexibility. Lei
et al. [7] proposed a two-phase metaheuristic for multiobjec-
tive FJSP with a total energy consumption threshold. Gao
et al. [8] focused on a flexible job shop rescheduling problem
(FJRP) for new job insertion and solved the problem using a
discrete Jaya algorithm. Gong et al. [9] developed energy-
and labor-aware multiobjective flexible job shop scheduling
under dynamic electricity pricing. Yang et al. [10] proposed
mining dispatching rules from dispatching-related historical
data with the characteristics of industrial big data to solve
the FJSP. Other extended research issues of the FJSP include
distributed FJSP [11], FJSP considering automated guided
vehicle planning [12], and FJSP considering machine break-
downs [13–15]. Meanwhile, certain new methods have been
applied to solving the FJSP, and examples are distributed
particle swarm optimization algorithm [16], two-stage
genetic algorithm [17], and state transition algorithm based
on the normal cloud model [18–22].
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Batch scheduling is an optimization problem with a
strong application background. Its basic assumption is that
the machine can process multiple jobs simultaneously. Jia
et al. [23] proposed a two-objective collaborative optimiza-
tion algorithm based on the ant colony to solve the parallel
batch machine scheduling problem. Chi et al. [24] con-
structed a class of forward-looking batching algorithms for
uncertain environments. Wang et al. [25] studied a new
type of rolling batch scheduling problem arising in continu-
ous casting and rolling processes. Li et al. [26] investigated
the problem of scheduling jobs with unit processing time
and nonidentical sizes on single or parallel identical batch
machines. Tan et al. [27] addressed the green batch sched-
uling problem on nonidentical parallel machines with
time-of-use electricity prices. Wang et al. [28] studied a
new, mixed batch scheduling problem that arises in vacuum
heat treatment. Shahvari and Logendran [29] discussed the
batch scheduling problem in a hybrid flow shop with a
learning effect.

In the research of the combination of the FJSP and batch
process (BP), Huang et al. [30] studied the batch scheduling
algorithm of the flexible flow shop for incompatible job fam-
ilies in a flexible flow shop for mold heat treatment compris-
ing quenching and tempering processes. Zhou [31] studied
the scheduling problem of two batch processing machines
with different jobs. Zhu et al. [32] used a hybrid algorithm
that combines the particle swarm algorithm and Nawaz–
Enscore–Ham heuristic algorithm to study the batch sched-
uling problem of a differential job shop. Yin et al. [33] stud-
ied the scheduling problem of a large-scale flexible job shop,
adopted the batch scheduling method based on job group to
degrade the problem scale, and used the adaptive genetic
algorithm to optimize the solution. Currently, only a few
studies have investigated the scheduling problem comprising
flexible job shop and BP scheduling, which are combined in
different ways. Therefore, it is crucial to investigate flexible
job shop scheduling and batch scheduling thoroughly.

The rest of this paper is organized as follows. Section 2
describes the problem and mathematical model of the FJSP
with the BP. Section 3 introduces the method to solve the
FJSP–BP problem: Section 3.1 describes a proposed
improved immune genetic algorithm (IIGA) to solve the
FJSP part of the problem, including designing an effective
coding method, genetic operators, cross-entropy thought,
and greedy optimal solution; Section 3.2 describes the design
of effective batching methods and batching rules for the
batching process. Section 4 describes the experimental anal-
ysis: using the standard FJSP benchmark example to verify
the effectiveness of the algorithm and using the actual data
of a transformer manufacturing enterprise that conforms
to the FJSP–BP problem to verify the effectiveness and feasi-
bility of the algorithm. Section 5 summarizes the study and
highlights the scope of future work.

2. Problem Description

In this study, we developed the FJSP–BP, which is an
extension of the FJSP. The FJSP–BP is widely used in
manufacturing enterprises, such as transformer manufactur-

ing, semiconductor production, engine parts manufacturing,
and steel production line. In this type of problem, most job
operations are flexibly distributed on multiple machines.
At the same time, specific operations must be unified in
batches through batch processing machines, such as drying
ovens and dryers, which is a combination of batch schedul-
ing and FJSP.

Figure 1 shows the production process of a transformer,
which illustrates the FJSP–BP problem. The entire produc-
tion process is divided into two parts. The first part is the
FJSP, where n jobs are assigned to M machines as an FJSP.
The operations consist of several sections, such as the core
process, coil process, and lead process setting. The second
part is batch processing. Here, the jobs pass through the dry-
ing oven in batches, which is equivalent to batch scheduling
problems with different arrival times. Figure 2 illustrates a
simplification of the production process 2.

The FJSP–BP can be described as follows: n jobs ðJ1, J2,
⋯, JnÞ must be processed on M + 1 machines (M1,M2,⋯,
Mm,MB). When the jobs are processed on (M1,M2,⋯,
Mm,MB), it is an FJSP, which meets the following conditions:
each job contains one or more operations; the sequence of
operations is predetermined; each operation can be proc-
essed on multiple processing machines; the processing time
of the operation varies with the processing machine. All the
jobs must pass through the batch machine MB in a batch
mode; the batch machine MB has volume or quality con-
straints; the batch processing times for different jobs are dif-
ferent; the time for the entire batch to pass through the batch
machine is the maximum of all the single-batch processing
times in the batch. To optimize a certain performance index
of the entire system, scheduling was aimed at selecting the
appropriate machine for each operation, determining the
best processing sequence and start time of each operation
on each machine, and determining the batching method
when all jobs pass through the batch machine. Therefore,
the FJSP–BP includes three subproblems: determining the
processing machine of each job (machine selection sub-prob-
lem), determining the sequencing of the operations on each
machine (operations sequencing sub-problem), and deter-
mining the way each job passes through the batch machine
(batching problem).

In addition, the following constraints must be met dur-
ing processing.

Flexible job shop part:

(1) A machine can only process one job per time

(2) An operation of the job can only be processed by one
machine per time

(3) Once each operation of each job starts, the process-
ing cannot be interrupted

(4) Different jobs have the same priority

(5) No sequential constraints exist between the opera-
tions of different jobs, and sequential constraints
exist between the processes of the same job

(6) All jobs can be processed at zero time

2 Wireless Communications and Mobile Computing



1

2

3

...

N

...

Stage1: Flexible job shop part

Iron core process
section

Assemble and lead
process section

Coil
process section

Six processes
section

Shearing
machine

Core winding
machine

Cutting
machine

Return feeder

Vertical
winding
machine

Wire
arranging
machine

Platinum
winding
machine

Horizontal
winding
machine

Large winding
machine

Small winding
machine

Oil filter

Air 
compressor

Body assembly
machine

Welding
machine

Plate oil filter

Drying oven

Stage 2: Batch
processing part

Drying
process section

Final
assembly/

experiment

Figure 1: Transformer production flow chart.
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Batch processing part:

(1) The batch machine can only process one batch at a
certain time, and the batch cannot be interrupted
once it starts processing

(2) The sum of the volume or mass of all jobs in each
batch is less than or equal to the volume or mass
threshold of the batch machine

For the convenience of subsequent description, the fol-
lowing mathematical symbols are defined, as presented in
Table 1.

The mathematical model of the FJSP–BP is expressed as

min Cmax ð1Þ

s:t:sjh + xijh × pijh ≤ cjh, ð2Þ

where i = 1, 2,⋯,m, j = 1, 2,⋯, n, and h = 1, 2,⋯, hj:

cjh ≤ sj h+1ð Þ, j = 1, 2,⋯, n, h = 1, 2,⋯, hj − 1, ð3Þ

cjhj
≤ Cmax, j = 1, 2,⋯, n, ð4Þ

sjh + pijh ≤ skl + I 1 − yijhkl
� �

,

 j = 0, 1,⋯, n, k = 1, 2,⋯, n, h = 1, 2,⋯, hj,
l = 1, 2,⋯, hk, i = 1, 2,⋯,m,

ð5Þ

Table 1: Mathematical symbols and their definitions.

Mathematics symbol Symbol definition and interpretation

n Total number of jobs

m Total number of machines

Ω Total machine set

i, e Machine serial number, i, e = 1, 2, 3,⋯,m
j, k Job serial number, j, k = 1, 2, 3,⋯, n。
hj Total number of operations of the job j

l Operation sequence, l = 1, 2, 3,⋯, hj
Ωjh Optional processing machine set for the operation h of the job j

mjh Number of optional processing machines for the operation h of the job j

Ojh Operations h of the job j

Mijh Operations h of the job j is processed on machine i

pijh Processing time of the operations h of the job j on machine i

sjh Processing start time of the operations h of the job j

cjh Completion time of the operations h of the job j

I A positive number large enough

dj Due date of the job j

Cj Completion time of each job

pj Batch processing time of the job j

sj Size of the job j

r j Arrival time of the job j to the buffer of the batch processing machine

C Batch processing machine capacity

Jb Set of jobs in batch b

B Sets of all batches

RTb Available time of batch b, the maximum arrival time of all jobs in batch b

STb Start time of batch b

PTb Processing time of batch b, the maximum processing time of all jobs in batch b

CTb Completion time of batch b
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cjh ≤ sj h+1ð Þ + I 1 − yikl j h+1ð Þ
� �

,

 j = 1, 2,⋯, n, k = 1, 2,⋯, n, h = 1, 2,⋯, hj − 1,
l = 1, 2,⋯, hk, i = 1, 2,⋯,m,

ð6Þ

〠
mjh

i=1
xijh = 1, h = 1, 2,⋯, hj, j = 1, 2,⋯, n, ð7Þ

〠
n

j=1
〠
hj

h=1
yijhkl = xikl , i = 1, 2,⋯,m, k = 1, 2,⋯, n, l = 1, 2,⋯, hk,

ð8Þ

〠
n

k=1
〠
hk

l=1
yijhkl = xijh, i = 1, 2,⋯,m, j = 1, 2,⋯, n, h = 1, 2,⋯, hk,

ð9Þ
sjh ≥ 0, cjh ≥ 0, j = 1, 2,⋯, n, h = 1, 2,⋯, hj,

xijh =
1, if operationOjh selectmachine i

0, else,

(
ð10Þ

yijhkl =
1, if operationOijh precedesOikl

0, else,

(
ð11Þ

〠
b∈B

xjb = 1, j = 1, 2,⋯, n, ð12Þ

〠
B

s=1
ybs = 1, ð13Þ

〠
n

j=1
sjxjb ≤ C, ð14Þ

RTb ≥ r jxjb, ð15Þ

PTb ≥ pjxjb, ð16Þ

STb ≥ RTb, ð17Þ

STb′ ≥ CTb ∀b, b′ ∈ B
� �

∩ ∀s ≤ B, 〠
s

i=1
ybi ≥ 〠

s

i=1
yb′i

 !
, ð18Þ

CTb = STb + PTb, ð19Þ
xjb, ybs ∈ 0, 1ð Þ: ð20Þ

Equation (1) is the optimization goal, which is to maxi-
mize completion time. Equations (2) and (3) express the
sequence constraints of each job. Equation (4) expresses
the constraint of the job completion time, where the comple-
tion time of each job cannot exceed the total completion
time. Equations (5) and (6) indicate that a machine can only
process one process per time. Equation (7) represents
machine constraints, and an operation can only be processed
by one machine per time. Equations (8) and (9) indicate that
the operation of each machine can be cyclic. Equation (10)

indicates that each parameter must be positive. Equation
(12) ensures that each job j can only be arranged in one
batch b. Equation (13) ensures that each batch is processed
only once on the machine, where s = 1, 2,⋯, B represents
the processing sequence of the batch on the machine. If
the processing order of batch b on the machine is s, then
ybs = 1; otherwise, ybs = 0. Equation (14) ensures that the
sum of the sizes of the jobs in each batch does not exceed
the machine capacity C. Equations (15) and (16) indicate
that the available time and processing time of the batch are
determined by the maximum arrival and processing times
of the jobs in the batch, respectively. Equation (17) indicates
that the start time of a batch cannot be earlier than its avail-
able time. Equation (18) indicates that batch processing can-
not be interrupted, and processing can only begin when a
previous batch has been processed. Equation (19) is the
expression for calculating batch completion time. Equation
(20) indicates that the decision variables xjb and ybs are all
0 or 1 variables [34].

Table 2 illustrates an example of a 4 × 5 FJSP problem,
which is an example of an FJSP with four jobs, five
machines, and 12 total operations. The numbers presented
in the table are the processing times of the corresponding
machine operation, and “—” indicates that the process can-
not be processed on the corresponding machine.

3. FJSP–BP Solution

To obtain the solution to the FJSP–BP, we solve the flexible
job shop part and the batch processing part separately. The
IIGA is used to solve the flexible job shop part, and the con-
cepts of greedy thought and cross-entropy thought are intro-
duced. The introduced concepts accelerate the optimization
speed and search ability of the algorithm. The batch process-
ing part is equivalent to solving the batch scheduling prob-
lem of a single-batch processing machine with different
arrival times; the rule-based method is used for batch pro-
cessing and batch sorting.

3.1. Solving the FJSP Part Using an Improved Immune
Genetic Algorithm. To obtain the solution to the FJSP part,

Table 2: A 4 × 5 FJSP problem.

Job Operation
Optional processing machine

M1 M2 M3 M4 M5

J1
O11 2 6 5 3 5

O12 — 8 2 4 —

J2

O21 3 7 — — 6

O22 4 6 5 10 —

O23 — 7 11 — 8

J3
O31 — 3 8 6 —

O32 7 8 2 9 —

J4

O41 — 8 6 4 4

O42 3 12 — 7 9

O43 — 5 6 10 —
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we propose the IIGA. The performance of the algorithm is
improved by the concepts of greedy thought and cross-
entropy thought. We design effective encoding and decoding
methods and optimize the selection, crossover, mutation,
and other operations in the algorithm framework.

3.1.1. Chromosome Coding. The FJSP part includes two sub-
problems: machine selection and operation sequencing,
which are independent of each other. Therefore, we code
machine selection and operation sequencing separately.
The chromosome is divided into two parts, A/B, represent-
ing the machine selection and operation sequencing sub-
problems, respectively. The length of both parts of the
chromosome is equal to T0, which represents the total num-
ber of operations.

Machine selection subproblem: the length of the
machine selection part of the chromosome is T0. Each gene
locus is represented by an integer, and the integers are
arranged sequentially according to the job and its order.
Each integer represents the serial number of the processing
machine selected in the current operation. The FJSP exam-
ple presented in Table 2 illustrates the machine coding
method. The encoding result is presented in Table 3.

Operation sequencing subproblem: the chromosome
length of the process sequencing part is equal to the total
number of processes T0. Each gene is directly coded with
a process number, and the order in which the part number
appears indicates the process sequence among the job oper-
ations; thus, the chromosomes are compiled from left to
right. For example, the h-th operation number indicates
the h-th operation of job j, and the number of occurrences
of the job number is equal to the total number of operations
hj of the job.

3.1.2. Chromosome Decoding. The decoding part also com-
prises the machine selection and operation sequencing
decoding.

Machine selection decoding: the machine selection part
is decoded from left to right and converted into a machine
sequence matrix JM and time sequence matrix T. JMðj, hÞ

represents the machine number of operation Oh of job J j;
JMðj, ∙Þ represents the arrangement of the machine num-
bers processed by all operations of the job J j in order of pri-
ority; and Tðj, hÞ represents the processing time of
operation Oh of job J j. JMðj, hÞ and Tðj, hÞ have a corre-
sponding relationship.

JM =

1 3

2 4 2

3 2

5 4 2

2
666664

3
777775,

T =

2 2

7 10 7

8 8

4 7 5

2
666664

3
777775:

ð21Þ

Operation sequencing decoding: the chromosomes of
the operation sequencing part are read from left to right,
and the processing machine and processing times corre-
sponding to each job process are obtained according to
the machine and time sequence matrices corresponding to
the machine selection part. Finally, the operation is sorted
to obtain the scheduling result.

3.1.3. Chromosome Crossover. Machine selection part: the
machine selection part must ensure that the sequence of
each gene remains the same, using the uniform crossover.

Step 1. Randomly generate an integer r in the interval [1,T0]
to represent the number of gene positions that remain
unchanged.

Step 2. Generate r unequal integers, which correspond to the
specific positions of the r invariant gene positions.

Step 3. According to the r integers generated in Step 2, copy
the genes at the corresponding positions in the parent chro-
mosomes P1 and P2 to the offspring chromosomes C1 and
C2, maintaining their position and order.

Step 4. Genetically copy the remaining genes of P1 and P2
to C1 and C2, maintaining their position and order.

As Figure 3 illustrates and taking Table 2 as an example,
P1 and P2 are the two parent chromosomes. Assuming r = 3
and the three random numbers of Step 2 are 2, 5, and 7, then
the offspring chromosomes C1 and C2 are obtained by the
uniform crossover.

Operation sequencing part: the operation sequencing
part adopts the precedence preserving order-based crossover
method, and the operation of multiple jobs in each chromo-
some can better inherit the excellent characteristics of the
parent individual.

Table 3: FJSP chromosome coding.

(a)

Machine selection coding(MS)

1 3 2 4 2 3 2 5 4 2

J1 J2 J3 J4
O11 O12 O21 O22 O23 O31 O32 O41 O42 O43

M1 M3 M2 M4 M2 M3 M2 M5 M4 M2

(b)

Operation sequencing coding(OS)

2 1 3 4 4 2 1 2 3 4

J

O21 O11 O31 O41 O42 O22 O12 O23 O32 O43
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Step 1. Randomly divide the job set fJ1, J2,⋯, Jng into two
job sets, Jobset1 and Jobset2.

Step 2. Copy the processes of the jobs contained in Jobset1/
Jobset2 in the parent chromosomes P1 and P2 to C1/C2,
maintaining their positions and sequences.

Step 3. Copy the processes of the jobs excluded from Jobset1/
Jobset2 in P1 and P2 to C2/C1, and maintain only their order.

In Figure 3, Jobset1 = f1, 4g.
3.1.4. Chromosome Variation. Both the machine selection
and operation sequencing parts use the random variation
method, and the steps are outlined as follows.

Machine selection part:

Step 1. Randomly select r positions in the variant
chromosome.

Step 2. Select each position in turn and randomly replace the
machine in each position with one of the machines in the set
of optional machines.

Operation sequencing part:
Randomly select r genes in the mutant chromosome,

maintain the position and order of genes in other positions,
and randomly order the selected r genes to replace their
original positions and orders.

3.1.5. Greedy Optimal Solution Thought. We improve the
IGA and introduce the greedy thought. Before each iteration
of the algorithm, a “greedy optimal solution” is obtained
through the greedy thought.

This greedy optimal solution is not necessarily the global
optimal solution, but it is highly similar to the global optimal
solution with a high probability. Therefore, the optimization
can be accelerated by selecting highly similar individuals to
the greedy optimal solution in the IIGA.

The greedy optimal solution selection thought is as
follows:

(1) When selecting the machine for each job operation,
choose the machine with the shortest process time
in the optional machine collection

(2) During machine selection, distribute the process
evenly to each machine as much as possible

(3) Considering the constraints of the operation
sequence, start processing the earlier processes as
soon as possible

Greedy optimal solution selection: the steps for selecting
the greedy optimal solution for n jobs andmmachines are as
follows.

Step 1. Set up an integer array with a length equal to the total
number of machinesm, followed by the machine serial num-
ber ½M1,M2,⋯,Mm�; the array corresponds to the process-
ing time, and each element in the array is initialized to zero.

Step 2. Among the initialized n jobs, randomly select a job J j1
and set its first operation as Oj11. Select the machine Mm1

with the shortest processing time in the collection of pro-
cessing machines where the operation Oj11 is located.

Assign operation Oj11 to machine Mm1 and define the
processing time of the corresponding machine. Mm1 =
T j11m1 .T j11m1 is the processing time of the job J j1 on
machine Mm1 .

Step 3. Randomly select J j2 from the remaining n – 1 jobs
and set its first operation as Oj21. Select the machine Mm2

with the shortest processing time in the collection of pro-
cessing machines where the operation Oj21 is located. (At
this time, the processing time of the first operation Oj21 of
job J j2 on machine Mm1 should be T j21m1 = T j21m1 +Mm1 .)
Update Mm1 = T j21m1 . If the time is unchanged, the machine
with a small number of assigned operations is preferred.

1 3 2 4 2 3 2 5 4 2 3 4 1 2 5 2 3 4 1 3

3 3 1 2 2 2 2 4 1 3 1 4 2 4 5 3 3 5 4 2

P
1

C
1

P
2

C
2

(a)

2 1 3 4 4 2 1 2P
1

P
2

C
1

3 4 1 4 2 2 3 1 4 3 2 4

1 4 2 2 3 1 4 3 2 4 2 1 3 4 4 2 1 2 3 4

2 1 2 4 4 3 1 3 2 4 1 4 2 2 3 4 1 3 2 4

P
2

P
1

C
2

(b)

Figure 3: FJSP chromosome crossover. (a) Machine selection uniform crossing. (b) Operation sequencing precedence preserving order-
based crossover crossing.
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Step 4. By analogy, complete the machine allocation problem
of the first operation of all jobs.

Step 5. Repeat Steps 2–4 to complete the machine allocation
problem of all operations of all jobs.

Step 6. Get the greedy optimal solution Xbest of the final
machine allocation result.

The solution process is illustrated in Figure 4.

3.1.6. Information Entropy and Cross-Entropy. In the IGA,
concepts such as antibody information entropy, antibody
similarity, and antibody concentration are introduced. The
immune optimization method calculates the affinity between
the antibody and antigen as well as the similarity between
antibodies. The adoption of a concentration-based selection
mechanism not only encourages antibodies with high adapt-
ability but also inhibits antibodies with high concentrations,
which reflects the regulatory function of the immune system
and can prevent falling into a local optimal solution.

We introduce the concept of cross-entropy into the IGA.
Cross-entropy is an important concept in Shannon’s infor-
mation theory, mainly used to measure the difference in
information between two probability distributions. If pðxÞ
is the true probability distribution of the data and qðxÞ is
the probability distribution calculated from the data, then
the cross-entropy is defined as

H p, qð Þ = −〠
x

p xð Þ ln q xð Þ: ð22Þ

Cross-entropy is often used in machine learning. It is
hoped that the data distribution qðxÞ obtained by the algo-
rithm is as close as possible to the true distribution pðxÞ of
the data. In machine learning, cross-entropy is generally
defined as a loss function.

In the initial stage of the population, we obtain the
greedy optimal solution Xbest through greedy thought.
Xbest corresponds to the true distribution pðxÞ according
to the cross-entropy thought, and other ordinary individ-
uals in the population correspond to qðxÞ. We expect indi-
viduals to be as similar to Xbest as possible. By calculating
the cross-entropy, similarity, and other indicators of each
individual xi and Xbest, the better individual is selected in
the selection process, which speeds up the optimization
process of the entire algorithm. The calculation method of
cross-entropy is illustrated in Table 4 and by Equations
(23) and (24).

qk xð Þ = The number of Xbest kin the k‐th gene
The number of the k‐th gene , ð23Þ

pk xð Þ = The number of Xbest k in the k‐th gene
Number of optionalmachines for the k‐th gene :

ð24Þ

Illustrate by the FJSP in Table 2 . In stage 1, the order of randomly selected jobs is 2-4-3-1. According to the greedy 
optimal solution solving rule, and the processing time of their first operation, the machine selection result is 1-4-2-3.
Then complete stage 2 and stage 3 according to the solving rules. Finally, the machine selection result is converted
into MS code

Steps

Stage1

Random
job

Corresponding
operation

Machine
selection M1

M1

M4

M2

M3

M3

M1

M4

M2

M5

M3

O21J2

J4

J3

J1

J1 J2 J3 J4

J3

J4

J1

J2

J2

J4

3

3

3

3

3

5

5

5

5

5

0

0

3

3

3

3

3

9

9

9

0

0

0

5

7

7

7

7
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Cross-entropy similarity definition:

AXbest,Xi
=

1
1 +H Xbest, Xið Þ : ð25Þ

The greater the value of the cross-entropy similarity is,
the higher the similarity between this individual and the
greedy optimal solution.

3.1.7. Algorithm Steps of the IIGA to Solve the FJSP Part. The
IIGA framework is outlined as follows.

The flow chart of the IIGA is shown in Figure 5.

3.2. Batch Process Part. For each solution in the flexible job
shop part, all the jobs will arrive sequentially in the buffer
in front of the batch machine with different arrival times.
For the batch machine, this is equivalent to the batch pro-
cessing of problems with different arrival times [35].

Batch rules: BF (best fit) rules:

(1) Given a sequence of jobs, a solution for the flexible
job shop part is calculated by calculating the arrival
time of all the jobs in the front buffer of the batch
machine. Sort the jobs according to the arrival time
from smallest to largest

(2) Select the first job J1 in the sequence as the first job
of batch b1. Then, check whether the second job
can be added to the batch b1; if it can be added,
add job J2 to batch b1; otherwise, create a batch b2
with job J2 as the first job

(3) Then check whether the job J3 can be added to
batches b1 and b2 in sequence. If it is possible, add
the job to the batch; if not, create a new batch b3

(4) When the capacity of a certain batch reaches the
maximum value, no other job can be added. For
job Ji, find the batch bk that can accommodate the
modified job and the earliest arrival time among all
unfinished batches; then, add job Ji to the batch.
Otherwise, create a new batch bl and add the job to
the new batch

(5) By analogy, repeat the above steps until all the jobs
are finished in batches

When multiple formed batches wait in the buffer, the
batch sorting problem is involved.

Batch sorting rules: ERT–LPT (earliest release time–lon-
gest processing time):

(1) Calculate the arrival and processing times of all
batches. The arrival time of the batch is the arrival
time of the latest job in the batch, and the processing
time of the batch is the maximum processing time of
the job in the batch

(2) Arrange the batches in the order of arrival time. If
there are multiple batches with the same arrival time,
they are further arranged in the order of the batch
processing time

(3) Select the machine that is currently idle and arrange
the first batch in the batch sequence for processing
on this machine

(4) Repeat Step (3) until every batch scheduling is com-
pleted; finally, calculate the makespan

4. Experimental Results and Analysis

For the IIGA verification in this study, we used MATLAB
2014 run on an environment with an Intel Core I5 fourth-
generation CPU (3.20GHz main frequency), 8GB memory,
and Windows 7 operating system (64-bit, professional edi-
tion). The experiments were divided into two parts. In the
first part, to verify the effectiveness of the IIGA, we used a
standard FJSP example to compare the performance of dif-
ferent algorithms. In the second part, we focused on the
FJSP–BP. Taking the actual data of a transformer
manufacturing enterprise as an example, we solved the
FJSP–BP by the IIGA and used batching rules to verify the
feasibility and effectiveness of the algorithm.

4.1. Algorithm Parameter Setting. The IIGA used in this
study had three parameters at the algorithmic level: cross-
over probability Pc, mutation probability Pm, and selection
parameter τ in the selection process.

Determining and optimizing parameters is extremely
complicated, thereby requiring continuous simulation
experiments. For the crossover probability Pc and mutation
probability Pm under the genetic algorithm framework, the
crossover probability Pc was set to (0.6, 0.9), while the muta-
tion probability Pm ranged between (0.005, 0.02). These
values were based on previous experiments. In the following
examples, the operating parameters of the crossover

Table 4: Cross-entropy calculation explanation.

Xbest 3 4 1 2 5 2 3 4 1 3

X1 4 4 1 2 5 2 3 4 1 3

X2 3 2 1 2 5 2 3 4 1 3

H Xbest, X1ð Þ = −〠
10

k=1
pk xð Þ ln qk xð Þ = −

1
5
•ln 1

2
+ 0+⋯ 0

� �

H Xbest, X2ð Þ = −〠
10

k=1
pk xð Þ ln qk xð Þ = − 0 +

1
3
•ln 1

2
+ 0+⋯ 0

� �
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probability Pc and mutation probability Pm were set to 0.75
and 0.01, respectively. For the selection parameter τ intro-
duced by the improved algorithm in this study, we used
the MK01 example to test the selection of τ.

The MK01 example is one of the ten classic FJSP test
problems designed by Brandimarte. The problem contains
ten jobs, six machines, and 55 operations. We considered
different settings of τ to determine the influence of the
parameter on the performance of the algorithm. The popu-
lation size and the maximum number of iterations were both

100, and the algorithm ran 20 times continuously. The
experimental results are illustrated in Figure 6.

Figure 6 shows that when τ is relatively small, the part
selected by cross-entropy in the selection process is larger,
the average number of iterations when the algorithm con-
verges is small, and the algorithm converges quickly, but
the number of optimal solutions and the average optimal
solution are inferior. When τ is relatively large, the selection
process based on fitness is larger, the average number of iter-
ations when the algorithm converges is large, the algorithm

1: Randomly generate initial populations P0 and Q0; the population size is N ; set t = 0.
2: Combine the parent and offspring populations, namely, Rt = Pt ∪Qt .
3: Obtain Xbest through the greedy thought and then calculate the fitness value of the 2N individuals in Rt and the cross-entropy value
and similarity with Xbest , respectively.
4: Arrange F2N and H2N according to their values and take the largest of the first N phases as FN and HN .
5: Let TE = FN ∩HN
6: Define Pt+1 = TE + Xbest + ðFN − TEÞτ∙ðN−1−EÞ + ðHN − TEÞð1−τÞ∙ðN−1−EÞ; update population Pt+1
7: Perform a crossover operation on the population Pt+1.
8: Perform a mutation operation on the population Pt+1 to generate a new population Qt+1.
9: If t <maxgen, then t = t + 1; return to Step 2; otherwise, the algorithm terminates.

Algorithm 1: IIGA framework.

Start

Population
initialization

Population
amalgamation

Solving greedy
optimal solution Xbest

Calculate cross
entropy and perform
population selection

Crossover and
mutation operations

Termination
conditions

Yes

No

Output
results

Figure 5: Flow chart of IIGA for solving the FJSP part.
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convergence speed is low, and the number of optimal solu-
tions and the average optimal solution effect are moderate.
When the value of τ is in the range of (0.4, 0.6), the algo-
rithm considers both the convergence speed and optimal
solution quality. Although the convergence speed is moder-
ate, the number of optimal solutions and the average optimal
solution effect are both good. Therefore, in the following
experiment, the value of τ was set to 0.5.

4.2. Standard FJSP Example to Verify the Effectiveness of the
IIGA. To verify the improvement effect of the improved

algorithm, we used 27 sets of FJSP standard case data to
test and analyze the IIGA. The genetic algorithm, IGA,
and the emerging group intelligence algorithm JAYA were
used for comparison. The 27 sets of data used include the
following:

(1) Five groups of Kacem calculation examples. The
Kacem calculation example is the earliest standard
FJSP calculation example. The five questions are
combined from the number of jobs from 4 to 15
and the number of machines from 5 to 15
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Figure 6: Optimization of τ. (a) Relationship between the optimal solution times and τ. (b) Relationship between the average optimal
solution and τ. (c) Relationship between the average iterations when converging to the optimal solution and τ.
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(2) Ten sets of BRdata calculation examples. The BRdata
calculation example is one of the classic standard
FJSP calculation examples proposed by Brandimarte.
The ten questions are combined from the number of
jobs from 10 to 20 and the number of machines from
4 to 15. The process of each group of questions
ranges from 5 to 15, and the average number of pro-
cessing machines for each process in each group of
questions ranges from 1.43 to 4.10

(3) Twelve groups of BCdata calculation examples. The
BCdata example is a 21-example problem proposed
by Barnes and Chambers. The 21 calculation examples
are mainly constructed from the three most challeng-
ing problems in the classic JSP (mt10, la24, and la40)
according to certain principles. The average number
of processing machines in each process of the BCdata
calculation example is relatively small, and its data
type and flexibility are similar to those in the flexible
job shop part of the transformer production line.
Therefore, 12 of 21 groups of BCdata calculation
examples were selected for algorithm verification

Each algorithm ran 30 times on each group of data, the
initial population of the four algorithms was 100, and the
maximum evolutionary number was 200 generations. n ×
m represents the problem scale; LB and UB represent the
lower and upper bounds of the optimal solution, respec-
tively; CM is the minimum value of the maximum comple-
tion time; and AVCM

represents the average optimal value
obtained by running the algorithm 30 times continuously.
The test results are presented in Tables 5 and 6.

Table 5 shows that for the Kacem and BR examples, IGA
has a similar optimization effect to that of JAYA, but JAYA
is slightly better. The average completion time of the two

algorithms is relatively small, while their optimization effect
is rather better. Compared with IGA and JAYA, both CM
and AVCM

of the GA are larger, and the optimization effect
is relatively poor. In terms of AVCM

, IIGA is slightly worse
than JAYA in the MK05 and MK09 instances but better than
JAYA in the seven instances of kacem2-kacem5, MK06,
MK07, and MK10; the AVCM

of the two algorithms is the
same in the other six instances. Therefore, the performance
of the two algorithms is similar in terms of AVCM

. IIGA is
slightly better than JAYA but far better than the other two
algorithms. In terms of CM , IIGA has the best value on five
instances of kacem5, MK05, MK06, MK07, and MK10; in
the remaining ten instances, the best value of CM is parallel
to other three algorithms. Thus, IIGA is significantly better
than the other three algorithms in terms of CM .

For BCdata, in terms of the optimization effect, IIGA has
a significant improvement compared with the other three
algorithms. In terms of the average optimization effect, the
optimization effect of IIGA is also significantly better than
that of GA, IGA, and JAYA.

During testing, we found that when four algorithms used
data for 30 simulation experiments, the CM obtained each
time had obvious volatility. Because the algorithm easily falls
into local extreme values, its CM may even have large abnor-
mal values. To better compare and evaluate the optimization
effects of the four algorithms, we selected the MK06 group of
data as an example and drew the CM obtained by running
the four algorithms 30 times into a box plot, as shown in
Figure 7.

The box plot is a statistical graph used to show the
degree of dispersion in a set of data. The stability of the opti-
mization effect can be reflected through the box plot. The
interquartile range (IQR) is used in the box plot to measure
the degree of dispersion in the data.

Table 5: Kacem and BR problem test results.

Problem n ×m LB,UB
GA IGA JAYA IIGA

CM AVCM
CM AVCM

CM AVCM
CM AVCM

Kacem1 4 × 5 11,∗ 11 11.5 11 11 11 11 11 11

Kacem2 8 × 8 14, ∗ 23 24.6 15 16.2 14 14.6 14 14.3

Kacem3 10 × 7 11, ∗ 19 21.6 14 14.8 11 12 11 11.6

Kacem4 10 × 10 7, ∗ 13 16.4 8 8.3 7 7.8 7 7.5

Kacem5 15 × 15 11,∗ 27 31.5 17 18.4 14 14.7 11 12.1

Mk01 10 × 6 36,42 40 41.5 40 40 40 40 40 40

Mk02 10 × 6 24,32 29 29.1 26 26 26 26 26 26

Mk03 15 × 8 204,211 204 204 204 204 204 204 204 204

Mk04 15 × 8 48,81 67 47.34 60 60 60 60 60 60

Mk05 15 × 4 168,186 176 178.1 173 176.8 173 174.4 172 175.2

Mk06 10 × 15 33,86 67 68.82 58 60.5 58 60.5 57 58

Mk07 20 × 5 133,157 147 152.9 144 146.3 144 148.5 139 140.2

Mk08 20 × 10 523 523 523.34 523 523 523 523 523 523

Mk09 20 × 10 299,369 320 327.74 311 311 307 309 307 310.8

Mk10 20 × 15 165,296 229 235.72 201 203.6 197 200.2 196 198.6
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Figure 7 shows that in the 30 runs of the algorithm, IGA
had the widest solution range fluctuation, indicating that it is
easier for the algorithm to fall into the local extreme value
because of the immune mechanism. The position of the
box plot generated by IIGA is the lowest, indicating that
the overall quality of the solution generated by the algorithm
is better than that of the other three algorithms. Moreover,
the IQR of the box plot generated by IIGA is smaller than
that of the other three algorithms, showing that the degree
of dispersion of the solution produced by the algorithm is
smaller than that of the other three algorithms. Its stability
is also the best among the four algorithms.

We plotted the relationship between the maximum com-
pletion time and the number of iterations of the four algo-
rithms under the MK06 data, as shown in Figure 8.

Figure 8 shows that IIGA has the fastest convergence
speed and the smallest optimal solution, and it converges
to the optimal solution in the shortest time: Cmax of 57 after
about 60 iterations. The final convergence value of GA is 67,
and the performance is the worst. The optimal values of IGA

and JAYA are both 58, but the optimization speed of IGA is
faster. Analyzing the search mechanism of the two algo-
rithms shows that JAYA uses the optimal individual Xbest
and worst individual Xworst in the search process for optimi-
zation according to the iterative formula, and it only selects
individuals according to the fitness function value, making
the algorithm easy to fall into a local optimum. Meanwhile,
IGA calculates the similarity between antibodies and anti-
bodies in addition to the affinity between antibodies and
antigens in the optimization process, and the algorithm
adopts a concentration-based selection mechanism, which
encourages the adaptation of antibodies with a high degree
of concentration to inhibit antibodies with a high concentra-
tion. The algorithm reflects the regulation function of the
immune system, which can escape the local optimal solution
and accelerate the convergence speed. The selection mecha-
nism and results of the convergence speed of both algo-
rithms are different.

Figure 9 shows the Gantt chart of IIGA under the MK06
example.

Table 6: Twelve BCdata problem test results.

Problem n ×m LB,UB
GA IGA JAYA IIGA

CM AVCM
CM AVCM

CM AVCM
CM AVCM

mt10c1 10 × 11 655,927 928 928.2 927 927.2 927 927.4 927 927

mt10cc 10 × 12 655,914 910 912.4 910 911.7 908 908.8 908 908

mt10x 10 × 11 655,929 918 919.6 918 918 918 918 918 918

mt10xx 10 × 12 655,936 918 918.6 918 918 918 918 918 918

setb4c9 15 × 11 857,924 919 920.4 919 919.2 914 914.6 914 914.2

setb4cc 15 × 12 857,909 909 915.0 909 911.6 907 910.0 907 908.5

setb4x 15 × 11 846,937 925 934.3 925 926.8 925 925 925 925

setb4xx 15 × 12 847,930 925 933.7 925 925.4 925 925 925 925

seti5c12 15 × 16 1027,1185 1174 1184.7 1174 1176.0 1174 1174.2 1170 1171

seti5cc 15 × 17 955,1136 1136 1146.5 1136 1137.2 1136 1136.4 1135 1135.8

seti5x 15 × 16 955,1218 1209 1213.2 1200 1209.0 1201 1203.6 1198 1199.4

seti5xx 15 × 17 955,1204 1204 1205.9 1199 1200.6 1198 1202.4 1197 1198.3

Algorithm

Cm
ax

58
60
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64
66
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70
72
74
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Figure 7: Box plot of the four algorithms.
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4.3. Transformer Manufacturer Data.We considered the data
from an actual transformer manufacturing enterprise as an
example. The production workshop of the transformer manu-
facturer includes several sections, including the coil process,
iron core, and lead process setting sections, as the FJSP part;
the transformer body drying process section is the BP part.

The FJSP part contains multiple machines and equip-
ment, and the drying oven is batched with job volume as a
constraint. We simplified the FJSP part into a total of 20

machines. In the BP part, the selected jobs are divided into
two categories. Similar jobs have the same volume, and the
FJSP part has different processing times; the job volume dif-
fers by category, and the batch processing times differ. The
batch processing part normalizes the volume, and the batch
machine has a capacity of 12; the volumes of the two job
types are three and four, respectively.

Among the two job types, the job of class A is a lami-
nated core transformer, while the job of class B is an
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Figure 8: Iteration graph of the four algorithms.
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Table 7: Basic information on two job types.

Job category Number of operations Number of machines Job volume Batch machine volume Batch processing time

Category A 11+1
20+1

3
12

10

Category B 11+1 4 12

Table 8: Detailed processing information on two job types.

Category A Category B
Operation
number

Operation name
Optional

machine sets
Processing

time
Operation
number

Operation name
Optional

machine sets
Processing

time

1 Low voltage winding 1-3 5-7 1 Low voltage winding 1-3 6-8

2 High voltage winding 4-7 6-9 2 Pressing and drying 8-9 3-5

3 Pressing and drying 8-9 4-5 3 High voltage winding 4-7 7-10

4 Remove the mold 10-11 2-3 4 Pressing and drying 8-9 3-4

5
Turn measurement and

brush glue
10-11 7-8 5 Remove the mold 10-11 2-3

6 Inspection 12-13 3-4 6
Turn measurement and

brush glue
10-11 8-10

7 Coil assembly 14-20 8-10 7 Inspection 12-13 3-4

8 Insert silicon steel sheet 14-20 6-8 8 Coil assembly 14-20 7-9

9 Body assembly 14-20 4-6 9 Body assembly 14-20 4-6

10 Lead assembly 14-20 3-5 10 Lead assembly 14-20 2-5

11 Inspection 12-13 3-4 11 Inspection 12-13 3-4

12 Drying 21 10 12 Drying 21 12

4+14+3+8 11+19+5 13+9+22 18+6+17 2+20+16 1+7+10 21+23+12 15+25+24

Processing time
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Figure 10: Gantt chart of the transformer production process (J = 25).
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amorphous alloy transformer. Table 7 presents basic infor-
mation about the two job types.

Both types of jobs in the FJSP part have 11 operations.
Compared with class A jobs, class B jobs require two
press-fitting and drying operations, and class B jobs have
no insertion operation. In the actual production process,
the iron core and coil operations of class A products are pro-
duced in parallel, and the iron core of class B products is
purchased out. In this study, we investigated the coil process,
body equipment, and drying process sections. The iron core
part was set as a prefabricated part, and unified installation
was performed in the coil assembly operation. The detailed
processing information of the two job types is shown in
Table 8.

According to the actual production situation of the
transformer manufacturer, we use half a month’s production
data to verify the effectiveness of the algorithm. The total
number of jobs is J = 25, where A=15 and B = 10. The Gantt
chart of scheduling results is shown in Figure 10.

Figure 10 shows that the jobs are evenly distributed to
each machine, and the completion time is 225. In the actual
production process, the completion time is 282. Thus, the
completion time is increased by 25.3%, reflecting the effec-
tiveness of the algorithm in this paper.

5. Conclusion

In this study, a combination of intelligent methods and
scheduling rules is used to solve the FJSP–BP problem. An
improved IGA based on the concept of greed and cross-
entropy is proposed, and an effective batching method and
batching rules are designed. The standard FJSP benchmark
example and data conforming to the FJSP-PB problem from
a transformer manufacturing enterprise were used to verify
the effectiveness and practicability of the proposed algo-
rithm. This work provides a significant reference for solving
the FJSP–BP problem.

From a scheduling problem perspective, we only investi-
gated the single-batch machine problem under small-scale
data. In future research, we will thoroughly study the FJSP
with parallel batch machines under medium- and large-scale
data. As the problem is more complicated, the selection of
batch machines must be considered based on MS and OS.
Meanwhile, analysis and research will be conducted for differ-
ent optimization objectives, including machine load, equip-
ment energy consumption, and early/delay penalty. In
addition, in terms of research methods, it is necessary to deter-
mine a global optimization algorithm that considers both the
FJSP and BP parts as well as a multiobjective optimization
algorithm that includes multiple optimization objectives.
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