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To address the severe spectrum scarcity problem and achieve efficient green communications, we propose a new and practical
scheme to obtain electromagnetic data (ED) and a composite electromagnetic map reconstruction method (CEMRM). The
scheme uses a small number of sensing nodes to obtain incomplete sampled ED, then uses CEMRM to reconstruct complete
ED according to the incomplete ED and builds realistic electromagnetic maps (EMs) in various propagation scenarios.
Specifically, we firstly adopt kriging (KG) method to obtain the geography-based ED (GED) according to geographical
correlation of the locations of the sampled ED. Meanwhile, a novel algorithm, named filtered subdistrict sparsity adaptive
matching pursuit (FSSAMP), is proposed to obtain the pure ED (PED) according to electromagnetic correlation of the sampled
ED. Then, weight factors are mapped into the above two types of data and the fast gradient projection (FGP) method is
employed to obtain the highly accurate combined ED (CED). Based on the CED, the accurate and practical EMs can be drawn.
Simulation results demonstrate that the proposed scheme can provide more accurate ED and EMs than existing benchmark
schemes in various propagation scenarios, and the built EMs can provide accurate information for the assessment of spectrum
resources utilization to make spectrum resources efficiently used.

1. Introduction

The rapid development of wireless applications and blos-
soming growth of traffic demand lead to severe spectrum
scarcity problem. To achieve efficient application of spec-
trum resources and green communications, it is necessary
to obtain electromagnetic data (ED) first and then assess
the spectrum resources utilization so as to adopt spectrum
resources allocation method. In the existing methods to
obtain ED, manual measurements cost highly especially in
a large-scale area. Employing lots of human beings to obtain
the ED is not realistic, and the obtained ED may be not accu-
rate due to the human subjectivity. With the development of
automation technology, sensing nodes replace human beings
to obtain the ED [1]. However, the cost and effect are relative
to the number of sensing nodes. If sensing nodes are

deployed redundantly, the cost is high but accurate and
complete ED can be obtained. If there are a small number
of available sensing nodes deployed, the cost is greatly less
than that when sensing nodes are deployed redundantly,
and the obtained ED are accurate but incomplete [2]. How-
ever, the incomplete ED cannot provide sufficient informa-
tion for assessing the usage of spectrum resources. The
completeness degree of ED and cost are both proportional
to the number of sensing nodes in a certain range. The men-
tioned three types of measurement methods cannot make a
balance between the cost and effect. Therefore, it is necessary
to study an effective and low-cost method to obtain ED.

An electromagnetic map (EM) [3] is a promising tool for
assessing the usage of spectrum resources, which contains
lots of information about electromagnetic spectrum
resources. The EM can make spectrum resources efficiently
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used, which can solve the spectrum scarcity problem and
achieve efficient green communications. The existing works
on EMs are mainly about the constructing methods of radio
environment maps (REMs), whose methods can be classified
into three categories, which are called indirect methods,
direct methods, and hybrid methods. Indirect methods are
mainly based on propagation models or radiation geograph-
ical positions, direct methods are mainly interpolation
methods, and hybrid methods are the combination of indi-
rect methods and direct methods.

In indirect methods, the authors of [4] proved that the
propagation model can be used to construct the REM. ED
of unsampled positions can be inferred from the known or
estimated radiation source locations and the propagation
model, and it is the main method used by the indirect
methods to obtain the ED. However, the single electromag-
netic propagation model cannot fit the dynamic electromag-
netic environment, and the selection of relevant parameters
is difficult without relevant information of electromagnetic
environment, so the effect of the method based on the prop-
agation model cannot be ensured in the dynamic and nonco-
operative electromagnetic environment [5, 6].

On the other hand, the direct methods need no informa-
tion about electromagnetic environment especially propaga-
tion models, and they are used to reconstruct the ED
according to the geographical correlation of the sampled
positions. The kriging (KG) [7] is the mostly used algorithm,
and its accuracy is satisfactory [8]. However, the accuracy of
KG is influenced by the outliers [9], and the calculation
complexity is high [10]. Different from KG, other interpola-
tion methods are used to construct the REM, such as the
local polynomial (LP) algorithm [11], nearest neighbour
(NN) algorithm [12], and inverse distance weighting
(IDW) algorithm [13]. However, LP is sensitive to neigh-
bourhood distance, and a small searching neighbourhood
distance will cause an empty hole in the data reconstruction.
The data reconstruction result of NN is not continuous.
IDW is sensitive to isolating outliers, and a lot of isolating
outliers cause downfall in the accuracy when IDW is used
in large-scale data reconstruction. Generally, the REM con-
struction effect of existing interpolation methods is relatively
lower when the number of sensing nodes is small [8].

In hybrid methods, the mostly used combination
scheme is to combine the KG and propagation models
[14, 15]. In fact, the combination of a single propagation
model and KG is suitable for the special scenario, and the
accuracy is much better than KG and the propagation
model. However, the effect of the method is relatively lower
in scenarios of other kinds of propagation models, and the
methods also need information about propagation models
in a certain content.

In the case of noncooperation, the information of the
electromagnetic environment like propagation models can-
not be obtained, even though some methods like maximum
likelihood estimation [16] can be used to estimate the infor-
mation, the error is not acceptable; moreover, the method
based on a single propagation model cannot do well in sce-
narios of different propagation models. In the case that a
small number of sensing nodes are available, the interpola-

tion methods cannot obtain good results, and the accuracy
needs improvement. As for the hybrid methods, these kinds
of methods do badly in the case of noncooperation or the
case that a small number of sensing nodes are available,
and the method has high complexity. In order to achieve
the reconstruction of EMs in the case of noncooperation
and the case that a small number of sensing nodes are avail-
able, it is necessary to study an effective method.

To address the above challenges, this paper proposed a
novel scheme to obtain accurate ED, reconstruct the practi-
cal electromagnetic signal map (which we refer to as an EM),
and take the reference signal receiving power (RSRP) as the
research object of EMs.

The contributions of the paper are summarized as
follows:

(1) To achieve ED reconstruction, this paper proposes
an improved sparsity adaptive matching pursuit
(SAMP) algorithm, which reconstructs ED based
on the electromagnetic correlation of the sampled
ED. Besides, the processing time of the proposed
improved SAMP is much less than that of the tradi-
tional SAMP algorithm

(2) To achieve the reconstruction of EMs in the nonco-
operation situation with a small number of sensing
nodes, this paper proposes a composite EM recon-
struction method (CEMRM) to obtain the complete
and accurate ED and reconstruct realistic EMs. Sim-
ulation results show that the obtained EMs recon-
structed by the CEMRM are more accurate than
those reconstructed by existing methods

The organization of this paper is as follows. Section 2
describes the system model of the proposed scheme. Section
3 presents algorithm description about the proposed
method. In Section 4, simulation results are presented.
Finally, the paper draws the conclusions in Section 5.

2. System Model

Assuming that there are three base stations in the target area
as shown in Figure 1, a small number of sensing nodes are
deployed randomly in the target area, and the ratio of sens-
ing nodes to the total number of ED is 2% (smaller than that
in existing works [17]). First of all, the target area is divided
into grids to ascertain the total number of ED and obtain the
corresponding geographic positions. The values of ED are
RSRP values. We just consider the electromagnetic datum
in each grid center. When reconstructing a large-area EM,
the total number of ED is huge. If we study the relation
between the change in the specific quantities of sensing
nodes and the accuracy of reconstructed EMs, the workload
is huge and results are not accurate. However, if we study the
relation between the change in the ratio of sensing nodes to
the total number of ED and the accuracy of reconstructed
EMs, the useless work can be decreased and the results are
accurate. Therefore, this paper uses the ratio to describe
the number of sensing nodes instead of the specific
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quantities. The sampled ED must be incomplete. After sam-
pling the ED [18, 19], the incomplete data are sent to the
data processing center, where CEMRM is adopted to recon-
struct the precise EMs. The data processing center assesses
the usage of spectrum resources according to the recon-
structed EMs and then controls the working status of the
base stations with the adopted spectrum resources allocation
method. If the data processing center breaks down, the cal-
culating task will be undertaken by the distributed calculat-
ing platform in the sensing nodes.

3. Algorithm Description

This section proposes the CEMRM to achieve ED recon-
struction, which is shown in Figure 2.

Specifically, CEMRM consists of four parts. In the first
part, KG is used to reconstruct the ED according to the
incomplete data obtained by sensing nodes, and the obtained
geography-based ED (GED) contain strong geographical
correlation. At the same time, the filtered subdistric sparsity
adaptive matching pursuit (FSSAMP) is used to reconstruct
the ED according to the incomplete data obtained by sensing
nodes, and the obtained pure ED (PED) contain strong elec-
tromagnetic correlation. The ED are affected by geography
just in a certain extent, so the GED obtained by KG can be
more accurate after being processed with the electromag-
netic correlation. In order to make obtained ED containing
both geographical and electromagnetic correlation, weight
allocation is used to balance the two kinds of correlation.

G = 0:8 × GED + 0:2 × PED: ð1Þ

After weight allocation, the primary ED, G is obtained.
The fast gradient projection (FGP) is an algorithm to
improve the data accuracy according to the correlation of
data, so the FGP is promising to help improve the accuracy
of the primary ED according to the weight allocation of the
geographical and electromagnetic correlation. After G with
strong correlation being processed by the FGP, more accu-
rate combined ED (CED) can be obtained. Finally, the EM
is drawn with isomagnetic lines according to the CED.

The proposed CEMRM needs no electromagnetic infor-
mation about the electromagnetic environment, and it just
needs a small number of sensing nodes. With the help of
electromagnetic correlation extracted by the FSSAMP, and
accuracy improvement by the FGP, it can overcome the
weakness that KG is sensitive to outliers and obtain realistic
results.

3.1. Kriging. KG is an accurate interpolation algorithm and
can reconstruct ED according to geographical correlation,
and the obtained ED contain geographical correlation. The
principal of KG to predict the RSRP is given by [7].

vout hð Þ =wT hð Þι + e hð Þ, ð2Þ

where voutðhÞ is the value of the RSRP, and h is the location.
wðhÞ = ½w1ðhÞ,w2ðhÞ,⋯,wNðhÞ�T is the vector containing
N selected functions that consist of the regression model. ι
= ½ι1, ι2,⋯, ιN �T is the parameter vector of the model. eðhÞ

Data processing
center 

Base station

Sensing node

Figure 1: System model. The sketch of the proposed scheme to obtain the ED.

ED sampling 

KG FSSAMP

GED PED

Weight allocation

FGP

EM drawing

Primary ED

CED

Figure 2: The structure of the proposed CEMRM. GED are the ED
reconstructed by KG, PED are the ED reconstructed by FSSAMP.
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is a stochastic process satisfying the following conditions:

E e hð Þ½ � = 0,

E e hið Þe hj

� �� �
= τ2R κ, hi, hj

� �
,

ð3Þ

where E½·� is an operation that calculates the expectation, hi,
hj are both input locations, Rðκ, hi, hjÞ is the correlation
model, τ2 is the variance of eðhÞ, and κ is the parameter of
the correlation model. The algorithm defines ½b1,⋯, bq� as
a set of sampling point locations whose value is V =
½v1,⋯, vq�T. Then,

bι = FTR−1F
� �−1FTR−1V,

bτ2 = 1
q

V − Fbιð ÞTR−1 V − Fbιð Þ,
ð4Þ

where bι and bτ2 are the predicted values of the corresponding
variables ι and τ2. F is a q ×N matrix containing wðbiÞ, for
i ∈ ½1, q�. R is a q × q correlation matrix of the sampling
points containing Rij = Rðκ, bi, bjÞ. The correlation function
is defined as follows:

R κ, μ, hð Þ =
Yn
j=1

Rj κ, μj − hj
� �

, ð5Þ

where n is the dimension of sampling points. Note that the
following condition should be ensured:

min
κ

Λ κð Þ = Rj j 1/qð Þτ2
h i

, ð6Þ

where j·j calculates the determinant of a matrix. Here, the
spherical model is adopted.

Rj κ, dj

� �
= 1 − 1:5ξj + 0:5ξ3j ξj =min 1, κj d j

�� ��	 

, ð7Þ

where dj = μj − hj. Then, the predicted RSRP vout of the
unsampled location h is shown as follows:

v̂out hð Þ =wT hð Þbι + rT hð ÞR−1 V − Fbιð Þ,
r hð Þ = R κ, h, b1ð Þ,⋯, R κ, h, bq

� �� �T
:

ð8Þ

The complete ED obtained by the KG are GED = v̂out,
where v̂out is the union of v̂outðhÞ.
3.2. Improved Sparsity Adaptive Matching Pursuit. The pro-
cedure of sampling ED with sensing nodes can be described
as

y =Kx, ð9Þ

where y = ½⋯, 0, y1,⋯, 0, yM ,⋯�T is the sampled ED con-
taining M non-zero values, x is the real complete ED, x ∈
RN , and M≪N need to be met. Here, K is the observation

matrix.

K =

⋱        

  1      

    ⋱    

      0  

        ⋱

2666666664

3777777775
N×N

, ð10Þ

where N is the total number of ED.
Since it is difficult to determine x directly, the problem is

converted to

min θk kl0 ,
s:t: y = Aθ,

ð11Þ

where A =KΨ is the sensing matrix, Ψ is the sparse base
matrix, k·kl0 is calculating the l0-norm of a matrix, and θ is
the projection result of x in the sparse base matrix Ψ, which
is given by

Ψ =
ffiffiffiffi
N

p

1 1 ⋯ 1

1 W1
N ⋯ WN−1

N

1 W2
N ⋯ W2 N−1ð Þ

N

⋮ ⋮   ⋮

1 WN−1
N ⋯ W N−1ð Þ N−1ð Þ

N

2666666664

3777777775
N×N

, ð12Þ

where WN = eðð−j2πÞ/NÞ.
In order to solve Eq. (11), we improve the SAMP [20].

Firstly, the target area is divided into four parts, which are
numbered as α ∈ ½1, 2, 3, 4�, and a certain number of sensing
nodes are randomly deployed in four subareas, respectively.
The number of sensing nodes in each subarea is same. Then,
the algorithm reconstructs ED of each part parallelly or seri-
ally, and then they are integrated into a set of complete ED.
Finally, the obtained complete ED are filtered by a median
filter. The improved algorithm is summarized as follows.

Needed parameter: the sensing matrix A, sampling ED y
of the subarea, the step size s = 4, which is the number of
subareas, and the observation matrix that being changed
into the column vector format K .

Step 1. Initialize parameters, the residual error r0 = y, index
matrix H0 =∅, the element number L = s, t = 1, t is the iter-
ation, aj is the jth column of A, stage index std = 1, bθ = 0N×1.

Step 2. Y = absðATrt−1Þ is calculated, and the algorithm
chooses L maximum values, and obtains a union set ϱk con-
taining the column codes of chosen values in A.

Step 3. Ck =Ht−1
S

ϱk, At = ½aj�, j ∈ Ck.

Step 4. Least squares solution bθ t = ðAT
t AtÞ−1AT

t y.
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Step 5. The L elements with the biggest absolute values are
chosen from bθ t , and the corresponding column vectors of
the chosen values in At make up At/L, the corresponding col-
umn codes of the chosen values areHt/L.

Step 6. The new residual error rtc is updated. bθ t =
ðAT

t/LAt/LÞ−1AT
t/Ly, rtc = y − ðAt/L

bθ tÞ.

Step 7. If krtck2 < 0:001 which is krtck2 = 0 in the original
algorithm, Ht =Ht/L, and do Step 8 directly. If krtck2 ≥
krt−1k2, std = std + 1, L = std × s, rt = rt−1,t = t + 1, and
return Step 2; at the same time, if the algorithm reaches
the maximum iterations, Ht =Ht/L and do Step 8. Or Ht =
Ht/L, rt = rtc, t = t + 1 and return Step 2.

Step 8. Update bθ , the values whose positions are Ht in bθ isbθ t .

Step 9. The corresponding ED of the sub area are Ψbθ × ðI
−KÞ + y, I is the column vector made up of 1.

Step 10. A set of complete ED are obtained by data fusion,
which are described as ŷo = UnionðΨα

bθα × ðI −KαÞ + yαÞ,
α ∈ ½1, 2, 3, 4�. The complete ED obtained by the FSSAMP
are PED = FilterðŷoÞ, where Union means the union of the

data, Ψα
bθα × ðI − KαÞ + yα is the ED of the corresponding

subarea, k·k2 calculates the 2-norm of a matrix, and Filter
is the median filter.

The median filtering is a kind of nonlinear filtering, and
its principle is like

e1 e2 e3

e4 e5 e6

e7 e8 e9

2664
3775
3×3

, ð13Þ

where e5 is set as the median value of e1, e2, e3, e4, e5, e6, e7,
e8, and e9; the values of e1~e9 are known.

The median filtering can protect the edge information of
ED and reduce the influence of isolating outliers, which can
help to obtain more accurate results.

3.3. Fast Gradient Projection. The FGP is a good method
using the data correlation to increase the precision of data.
After the data obtained by Eq. (1) being processed by the
FGP, more precise data can be obtained. The accuracy
improvement of the FGP is described as a minimum optimi-
zation problem, which satisfies

min
E

J Eð Þ = 1
2

E −Gk k22 + ςTV Eð Þ, ð14Þ

k·k2 represents calculating the 2-norm of the matrix, G is
the ED obtained by weight allocation, E is more precise ED
which is the final result, and TVðEÞ is the total variation reg-

ularizer of E, ς is the regularization parameter. The dimen-
sions of G and E are both ii × jj.

In order to solve Eq. (14), we adopt the FGP, which is
proposed in [21]. The procedure is given as follows.

First of all, parameters are initialized as ðD1, B1Þ = ðc0,
m0Þ = ð0ðii−1Þ×jj, 0ii×ðjj−1ÞÞ, and t1 = 1.

Then, it is an iterative procedure, in the step p ∈ ½1,N ′�,
the algorithm calculates

cp,mp

� �
=Uÿ Dp, Bp

� �
+

1
8ς

RT UO G − ςR Dp, Bp

� �� �� �� 
,

tp+1 =
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4t2p

q
2

,

Dp+1, Bp+1
� �

= cp,mp

� �
+

tp − 1
tp+1

 !
cp − cp−1,mp −mp−1
� �

,

ð15Þ

where N ′ represents the total number of iterations; cp repre-
sents the c in the pth iteration; mp represents the m in the p
th iteration; Dp represents the D in the pth iteration; and Bp
represents the B in the pth iteration.

Finally, the more precise result E can be obtained.

E =UO G − ςR cN ′ ,mN ′ð Þ½ �, ð16Þ

where cN ′ and mN ′ are obtained in the final iteration.
As a set of matrix pairs, ÿ consists of ðc,mÞ. The dimen-

sion of c is ðii − 1Þ × jj, m is ii × ðjj − 1Þ, and they satisfy

c2l,n +m2
l,n ≤ 1, l = 1,⋯, ii − 1 ; n = 1,⋯, jj − 1,

cl,jj
�� �� ≤ 1, l = 1,⋯, ii − 1,

mii,n
�� �� ≤ 1,  n = 1,⋯, jj − 1,

ð17Þ

where R is an operation that satisfies Rðc,mÞl,n = cl,n +
ml,n − cl−1,n −ml,n−1, l = 1,⋯, ii ; n = 1,⋯, jj, and c0,n =ml,0

= cii,n =ml,jj ≡ 0. RT is an operation that satisfies RTðEÞ =
ðc,mÞ, where cl,n = El,n − El+1,n, l = 1,⋯, ii − 1, n = 1,⋯, jj,
ml,n = El,n − El,n+1, l = 1,⋯, ii, n = 1,⋯, jj − 1.

Uy means doing an orthogonal operation on the set y,
and the meaning of UO is similar to Uy. For example, if y
=Qn1,n2 , the calculation is

UQn1,n2
Eð Þl,n =

n1 El,n < n1

El,n n1 ≤ El,n ≤ n2

n2 El,n > n2,

8>><>>: , ð18Þ

Table 1: The average running time results of the proposed
improved SAMP (FSSAMP) and SAMP.

Type FSSAMP SAMP

Time/s 87.9546 1242.3315
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where Qn1,n2 is defined as

Qn1,n2 Eð Þ = n1 ≤ El,n ≤ n2,∀l, n½ �: ð19Þ

4. Simulation Results

4.1. Indicator Description. We use four indicators to demon-
strate advantages of the proposed method, which are the
root mean square error (RMSE), determination coefficient
ðR2Þ, robustness, and quality of the reconstructed EM
(QoM).

RMSE represents the average error between the recon-
structed ED and real ED. If the RMSE is small, the result is
accurate. Equation (20) shows the calculating procedure of
RMSE. R2 represents the similarity of the data distribution
between the reconstructed ED and real ED. If the value is
high, the data distribution of the reconstructed ED is similar
to that of the real ED. That is, the reconstructed EMs are
realistic. Equation (21) shows the calculating procedure of
R2. What we study is the EM reconstruction with a small
number of sensing nodes. Therefore, if the available sensing
nodes decrease, the effect of the method should not decrease
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Figure 3: The reconstruction EM results of the proposed method and other five algorithms in the scenario of the Okumura-Hata model.
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too much. That is, the method needs a good robustness. The
robustness is defined as the changing range of the RMSE
when the ratio of sensing nodes to the total number of ED
decreases from 10% to 2%. QoM is mainly judged according
to the bull’s eye, the similarity of isomagnetic lines between
the reconstructed result and the real EM. The RMSE and
R2 are given by

RMSE =
1

ii × jj
〠
ii

l=1,n
〠
jj

l,n=1

dEl,n − El,n

� �2
, ð20Þ

�E =
1

ii × jj
〠
ii

l=1,n
〠
jj

l,n=1
El,n,

Ptot = 〠
ii

l=1,n
〠
jj

l,n=1
El,n − �E
� �2,

Pres = 〠
ii

l=1,n
〠
jj

l,n=1

dEl,n − �E
� �2

,

R2 = 1 −
Pres
Ptot

,

ð21Þ

Figure 4: The reconstruction EM results of the proposed method
and other five algorithms in the scenario of the Longley-Rice
model.
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where �E is the average value of the real ED, El,n is the ðl, nÞth
real electromagnetic datum,dEl,n is the corresponding recon-
structed electromagnetic datum, Pres is the residual sum of
squares, and Ptot is the total sum of squares.

4.2. Results and Analyses. Three base stations are arranged in
an area of 4000m × 4000m, and the reference signal receiving
power data of the long-term evolution (LTE) mobile commu-
nication network in this area are used as the experimental
data. The data are generated by the currently highly recog-
nized software Atoll, and the landform of Brussels are taken
into account. The Okumura-Hata model, Longley-Ricemodel,

and Erceg-Greenstein model are adopted as the propagation
models. The frequency of electromagnetic signal is
2110MHz, and the bandwidth is 10MHz. The equivalent
antenna height of base stations is set to 30m, and that of detec-
tion equipments is 1.5m. The extended matrix of the Longley-
Rice model is set to 5500m, and that of other models is set to
7000m. All main matrices of three models are set to 4000m.
Other settings remain the original settings. The total number
of the ED is 40000. The area is divided into four parts, and
200 low-cost sensing nodes are randomly deployed in each
part, the ratio of sensing nodes to the total number of ED is
2%. The experimental platform is based on core i9, the soft-
ware used is MATLAB R2020b, Atoll 2.8.0, Surfer 14.
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Figure 6: The RMSE results of the reconstructed EMs when the ratio of sensing nodes to the total number of ED decreases from 10% to 2%.
IDW in [8], KG in [7], and MSM, NN, and LP in [22].

Table 2: R2 of reconstruction EM results when the ratio of sensing nodes to the total number of ED is 2%.

Type CEMRM KG IDW MSM LP NN

Okumura-Hata 0.9539 0.9512 0.8198 0.0776 0.8097 0.9183

Longley-Rice 0.8398 0.8264 0.7040 0.7002 0.6330 0.7713

Erceg-Greenstein 0.9748 0.9739 0.8499 0.9671 0.8512 0.9433
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If the terrain of the target area doesn't change drastically,
the Okumura-Hata model is applicable. If the terrain of the
target area changes drastically, the Longley-Rice model is
applicable; the Erceg-Greenstein model is applicable for sce-
narios with shadowing. To obtain convincing results and
decrease the redundant work, the abovementioned models
are used.

Table 1 gives the average running time of the proposed
FSSAMP and SAMP. It is seen that the average running time
of FSSAMP is 7.08% accounting for that of SAMP, the pro-
posed FSSAMP is faster than SAMP.

In order to prove the advantages of the proposed
CEMRM, we adopt the modified shepard’s method (MSM),
KG, IDW, LP, and NN to reconstruct the EMs. What we
study is the EM reconstruction in the noncooperation envi-
ronment, the information of electromagnetic environment,
especially the propagation models, cannot be obtained, so
the indirect methods are not achievable.

Figures 3–5 show the reconstruction EM results in the
different scenarios of three typical propagation models.
From the three figures, it is seen that the results of IDW have
lots of bull’s eyes, the isomagnetic lines are greatly different
from those of the real EMs; the results of MSM have fewer
bull’s eyes than those of IDW, there are two big white holes
in the result; the results of NN have few bull’s eyes, but the
results are not continuous, which are different from the real
EMs; the results of LP have few bull’s eyes, but the results
contain little changing information of electromagnetic wave,
which are different from the real EMs; the results of KG have
few bull’s eyes, but the results cannot express the informa-
tion at the locations close to base stations; the results of
CEMRM have few bull’s eyes, the results can express the
information at the locations close to base stations, the results
of CEMRM are more similar to real EMs than KG. To sum
up, the QoM of CEMRM is better than that of any other
algorithm mentioned above.

Figure 6 shows the changing situation in RMSE when the
ratio of sensing nodes to the total number of ED decreases
from 10% to 2%. It is obviously that the proposed CEMRM
has the lowest RMSE in all situations. The average changing
range in RMSE of the proposed CEMRM is 0.4264, the sec-
ond smallest. The average changing range in RMSE of KG is
0.3887, which is the smallest. Compared with KG, the
change of the proposed CEMRM in RMSE is more stable
than that of KG. After comprehensive consideration, the
proposed CEMRM has the better robustness than any other
five algorithms.

Table 2 gives the result of R2 between the reconstructed
ED and real ED, and the ratio of sensing nodes to the total
number of ED is 2%. From Table 2, it can be clearly seen that
the R2 of the results obtained by CEMRM is the largest, so
the distribution of the reconstructed ED obtained by
CEMRM is the most similar to the real ED.

From the comprehensive consideration of RMSE, R2,
robustness, QoM, it can be concluded that the effect of
CEMRM is better than those of the existing KG, IDW,
NN, LP, and MSM. The proposed CEMRM is promising to
achieve the efficient application of spectrum resources and
green communications in various fields [23, 24].

5. Conclusions

In order to obtain the complete and accurate ED with lim-
ited sensing nodes in the noncooperation situation, we pro-
posed a new and practical scheme using EMs and a small
number of sensing nodes, and an accurate EM reconstruc-
tion method, called CEMRM. After obtaining the incom-
plete sampled ED from sensing nodes, the proposed
CEMRM can reconstruct the complete and accurate ED
and build realistic EMs. The required minimum number of
sensing nodes accounting for the total number of ED is just
2%. Compared to the existing methods of reconstructing the
EMs, the proposed CEMRM remains better robustness
against the decreasing of sensing nodes and obtains more
accurate ED and EMs. The proposed scheme makes a good
trade-off between the number of sensing nodes and accuracy
of the obtained ED, and the obtained EMs can provide great
support for assessing spectrum resources utilization. What
we studied is helpful for green communications, high-
efficiency spectrum resources utilization, and so on.
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