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With the development of various vehicle applications, such as vehicle social networking, pattern recognition, and augmented
reality, diverse and complex tasks have to be executed by the vehicle terminals. To extend the computing capability, the nearest
roadside-unit (RSU) is used to offload the tasks. Nevertheless, for intensive tasks, excessive load not only leads to poor
communication links but also results to ultrahigh latency and computational delay. To overcome these problems, this paper
proposes a joint optimization approach on offloading and resource allocation for Internet of Vehicles (IoV). Specifically,
assuming particle tasks assigned for vehicles in the system model are offloaded to RSUs and executed in parallel. Moreover, the
software-defined networking (SDN) assisted routing and controlling protocol is introduced to divide the IoV system into two
independent layers: data transmission layer and control layer. A joint approach optimized offloading decision, offloading ratio,
and resource allocation (ODRR) is proposed to minimize system average delay, on the premise of satisfying the demand of the
quality of service (QoS). By comparing with conventional offloading strategies, the proposed approach is proved to be optimal
and effective for SDN-enabled IoV.

1. Introduction

The Internet of Vehicles (IoV) is one of the most promising
application for Internet of Things (IoT) technology. Cur-
rently, it is fuelled by advances in related technology and
industries, such as the decline in sensor costs, the wide-
spread wireless connections, the improvement of computing
capabilities, the development of cloud computing, and
wireless transmission and positioning. In IoV, large amounts
of heterogeneous data (such as voice, program code, and
video) need to be transmitted in various links, e.g., vehicles
to vehicles, vehicles to roadside equipment, and vehicles to
the cloud [1–4]. These requirements are challenging for
cloud infrastructure and wireless access networks. Upgraded
service such as ultralow latency, continuity of user experi-
ence, and high reliability have been proposed to highly pro-
mote the local services at the edge of the network close to the
terminals. The basic idea of Mobile Edge Computing (MEC)
is to migrate the cloud-computing platform to the edge of

the mobile access network. The traditional cellular network
is deeply integrated with Internet services, to reduce the
end-to-end delay of mobile service delivery and improve
the user experience. With the development of MEC, mobile
devices with limited resources can implement various new
applications by offloading computing tasks to the MEC
server, such as autonomous driving, augmented reality, and
image processing [5–7]. The MEC server is owned by the
network operator and is directly implemented in cellular
base stations (BSs) or local wireless access points (APs) as
a general-purpose computing platform [8, 9]. On the one
hand, higher requirements on computing resources and
storage capacity and capabilities consumption are put
forward to carry the various vehicular applications. On the
other hand, the computing power of in-vehicle devices is
limited by the size and portability. Therefore, MEC with dis-
tributed computing capabilities, rich computing resources,
and flexible wireless accessibility is promising for IoV. For
instance, the selected part of the in-vehicle task can be
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offloaded to the appropriate MEC for parallel processing and
feedback the execution result to the vehicle-mounted termi-
nal through the neighboring BSs or APs.

Although the MEC server has richer resources than local
equipment, excessive load has a great impact on the trans-
mission link. Considering the transmission delay on the link
[10], this is detrimental to delay-sensitive tasks. As the
number of vehicles increases, and the communication envi-
ronment becomes worse, resulting in high transmission
delays. In addition, the heterogeneous nature of vehicle-
mounted tasks places higher requirements on the entire
system. There are two types of separable task offloading:
(1) One is a bit-type task, which can be arbitrarily divided
into several independent parts [11, 12], and these parts can
be processed in parallel on different platforms. (2) The other
is a code-oriented task, which is composed of various
components [13, 14]. There are dependencies between task
components and need to be executed in an orderly or con-
tinuous manner. Therefore, a reliable computing offloading
solution is needed to support low-latency, highly reliable
IoV services.

The edge computing capabilities of nearby RSUs have
been leveraged to meet the task-intensive requests and strict
latency requirements, i.e., part or all of the divisible bit-type
tasks with high delay requirements are selected to be off-
loaded to nearby RSUs; then, the computing delay can be
greatly reduced by parallel computing. Nevertheless, the
unified task intensity is not often, some RSUs may have to
handle extra requests beyond their capabilities, while other
RSUs are relatively idle. Benefiting from the software-
defined network (SDN) architecture, SDN controllers with
global information are able to coordinate edge computing
resources [15, 16]. Combined with the current global situa-
tion, the requested tasks are controlled and forwarded to
the corresponding target nodes through the SDN controller,
which can effectively integrate global resources.

A lot of research work has focused on task offloading in
IoV [17–20], majorly considering one part of offloading
strategy, offloading ratio or resource allocation, and lack of
the utilization of SDN to efficiently solve the load balancing
problem. In this paper, we jointly optimize the offloading
strategy, offloading ratio, and resource allocation, in order
to minimize the system delay of SDN enabled IoV. More-
over, the effects of different task complexity on transmission
and execution are also considered. The main contributions
of this paper are as follows:

(i) A tasks-divisible system model with a software-
defined network is proposed based on two-layer
transmission

(ii) A Particle Swarm Optimization- (PSO-) based
heuristic approach for the overall optimization is
proposed, which can effectively solve the offloading
strategy problem of multiuser and multiobjective
nodes. This approach works by decomposing the
problem into three subproblems: (1) offloading
decision of vehicles; (2) resource allocation by
RSUs; and (3) offload ratio of vehicles. It greatly

reduces the complexity of the problem and is very
effective for solving the multivehicle and multimec
offloading scenario

(iii) The offloading decisions, local offloading ratios,
and resource allocation (ODRR) are jointly opti-
mized in a complete way, to maximize the system
performance

By comparing with the conventional offloading strate-
gies, simulation results show the proposed ODRR approach
achieves the best performance.

2. Related Work

The offloading strategy has been a hot research topic for IoV,
and various offloading models have been proposed in differ-
ent application scenarios. Considering the standby time of
mobile devices and the latency sensitivity of tasks, most
work in edge computing or fog computing focuses on the
optimization of energy consumption or latency. Therefore,
we survey the related work according to the optimization
goals, as shown in Table 1.

2.1. Optimizing the Energy Consumption. For mobile users,
processing various application tasks consumes a lot of
energy, so improving the standby time of the device has
always been a concern. Some work is devoted to reducing
local computing power consumption to improve standby
time. The energy cost of task calculation and file transmis-
sion has been studied in [21]. Combining the multiaccess
characteristics of 5G heterogeneous networks, jointly opti-
mizing offloading and wireless resource allocation to
minimum energy consumption within delay constraints. A
multiuser MEC system with wireless power supply has been
modeled in [22], in order to solve a practical scenario that
requires delay limit and reduces the total energy consump-
tion of the AP, jointly optimizing the energy transmission
beamforming of the access point, the frequency of the cen-
tral processing unit, the number of bits offloaded by users,
and the time allocation among users. [23] has proposed an
energy-optimal dynamic computation offloading scheme
algorithm to minimize system energy consumption under
energy overhead and other resource constraints.

2.2. Optimizing the Delay of the System. For latency-sensitive
tasks, researchers are devoted to reducing system latency
and improving user experience by optimizing local comput-
ing resources and edge node resources. [10] aim to minimize
the maximum delay among users by joint optimization of
offloading decision, computing resource allocation and
resource block and power. [17] investigate the calculation
rate maximization problem in the MEC wireless power
supply system enabled by UAV, which is subject to the
energy harvesting causal constraints and the UAV speed
constraints. A new device-to-device multiassistant MEC
system that requests local users to nearby auxiliary devices
for collaborative computing has been designed in [18]. By
optimizing task allocation and resource allocation to mini-
mize the execution delay, a collaborative method has been
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proposed in [20] for parallel computing and transmission of
virtual reality. The task is divided into two subtasks and off-
loaded to the MEC server and the vehicle side in order to
shorten the completion time of the virtual reality applica-
tion. Moreover, an offloading scheme has been proposed
with efficient privacy protection based on fog-assisted
computing and solved by a joint optimization algorithm to
minimize the completion delay in [24].

2.3. Optimizing Both System Delay and Energy Consumption.
The user experience and the standby time of the device have
been optimized together by the weight parameter, i.e., when
the power is low, the weight of the energy consumption is set
larger; when the power is sufficient, a larger delay weight is
set. [19] consider a multicell wireless network that supports
MEC, which assists mobile users perform computationally
intensive tasks through task offloading. A heuristic algo-
rithm is proposed to combine task offloading and resource
allocation to maximize system utility, which is measured
by the weighted sum of task completion time and energy
consumption reduction. The system latency has been mini-
mized with energy consumption constraints by jointly opti-
mizing offloading decisions, local computing power, and fog
node computing resources in [25]. The cloudlet overload
risk has been alleviated by offloading user tasks to vehicle
nodes, and a heuristic algorithm has been proposed to
balance energy and delay to minimize system overhead in
[26]. In order to solve the problem of high power consump-
tion and delay sensitivity of portable devices, a reinforce-

ment learning scheme has been proposed in [27] to search
for optimal available resource nodes to minimize delay and
energy consumption. In addition, the fog computing and
cloud computing have been discussed in [24–27]. Since
cloud servers are located in areas far away from cities, there
is a large transmission delay, and tasks that are not sensitive
to delay are offloaded to the cloud for computing, while
intensive and delay-sensitive tasks are computed locally or
offloaded to the fog to improve system performance.

In this paper, we mainly focus on delay-sensitive and
task-intensive scenarios, considering that the computing
resources of edge nodes and the number of tasks received
in each period are limited. In order to prevent some edge
computing nodes from being overloaded and some edge
nodes relatively idle, we use the SDN-enabled IoV to control
the task offloading decision-making by monitoring the
global situation, which effectively improves the utilization
of resources and reduce system latency.

3. System Model

In this section, the system transmission model, execution
model, and optimization problem formulation are pre-
sented. As shown in Figure 1, we assume a vehicular net-
work system is composed of N vehicles and M RSUs. Each
RSU is equipped with a MEC server, which has the comput-
ing ability to process offloading tasks. Generally, the MEC
can be a physical device or a virtual machine provided by
the operator. Taking into account the complexity of the

Table 1: Summary and comparison of the most relevant references.

Work MEC/fog User
Load

balancing
Partial

offloading
Resource allocation
by computing nodes

Optimizing goals

Du et al. [10] Multiple Multiple Yes — Yes
Minimize the total energy consumption of the

system with delay constraints.

Zhang et al. [21] Multiple Multiple — — —
Minimize the total energy consumption of the

system with delay constraints.

Wang et al. [22] Single Multiple — — Yes Minimize the total energy consumption

Zhou et al. [17] Single Multiple — — Yes Maximize the calculation rate.

Xing et al. [18] Multiple Single — — —
Minimize the total delay of the system with

energy constraints.

Tran and Pompili [19] Multiple Multiple — — Yes
Minimize the total energy consumption and

the delay of the system.

Zhou et al. [20] Single Multiple — Yes Yes Minimize the maximal task completion time.

Chen et al. [23] Multiple Multiple — Yes —
Minimize the total energy consumption of the
system with delay and energy consumption

constraints.

Chen et al. [24] Multiple Multiple Yes Yes —
Minimize the competition latency of the task

with maximum delay

Wang and Chen [25] Multiple Multiple Yes — Yes
Minimize the competition latency with energy

consumption constraints.

Yadav et al. [26] Multiple Multiple Yes — Yes
Minimize the energy consumption and delay in

vehicular fog computing.

Yadav et al. [27] Multiple Multiple Yes — —
Minimize the total energy consumption of the

system with delay constraints.

This work Multiple Multiple Yes Yes Yes
Minimize the average delay for SDN-enabled

IoV system.
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vehicular network, this system is a software-defined IoV that
supports edge computing and the configuration of edge
computing nodes. The edge nodes are coordinated and con-
trolled by the software-defined network (SDN), which aims
to reduce system delay and improve overall performance.
As a coordinator, SDN divides the IoV system into two inde-
pendent layers through software definition and virtualiza-
tion technology: the data layer and the control layer. The
edge nodes uniformly obey SDN scheduling and follow the
OpenFlow protocol [28]. These edge nodes transmit and
process information according to SDN control instructions.
The control and processing are separated by the network
entities, to effectively integrate resources and improve utili-
zation. The edge computing node equipped on RSU con-
nects the edge node cluster and the SDN controller
through broadband connection. The physical communica-
tion on the control layer is independent of the physical com-
munication channel on the data layer. The data layer is
composed of an OpenFlow-based SDN controller and net-
work nodes, refers to [29, 30]. The SDN controller broadcast
global status, including Channel Status Information (CSI),
available resources, and task priority. When SDN receives
the vehicle’s offloading request, it looks for the best solution
(including offloading decision and resource allocation) at the
control layer and then sends control instructions. The data
layer performs data transmission according to the received
control layer. Each vehicle generates a task in a period of
time, taking the heterogeneity of vehicle tasks into account
(data volume, delay sensitivity, and difference in computa-
tional complexity). In the case of real-time tasks require
minimal delay and/or have a large amount of data, local
offloading cannot meet the requirements. Otherwise, tasks

are not sensitive to delay response and can be processed
locally. If all of them are executed locally or offloaded to
the RSUs, it can cause timeout failure, waste of local
resources, and a very poor communication environment
due to interference. Therefore, different offloading strategies
need to be set for different task types. Let V = f1, 2,⋯,Ng
and R = f1, 2,⋯,Mg represent the set of vehicles and the
set of RSUs, respectively. For ease of reference, the key sym-
bols used in this article are summarized in Table 2.

3.1. Communication Model. We assume that each vehicle
terminal n∈V has an executed task at a time and denoted
as Vn. Each task has three parameters, hdn, cn, tmax

n i, in
which dn defines the size of the input data of the task Vn
of the vehicle terminal n (usually in bits), and cn defines
the computing resources required by the task of the terminal
n, which refer to CPU cycles. Parameters dn and cn can be
obtained from task analysis. tmax

n is the maximum allowable
delay for task transmission execution, i.e., if tmax

n is exceeded
by the time of result received, and the task is failed by time-
out. Since the vehicles receive the offloading decision, the
tasks are not allowed to be interrupted before the execution
is completed. Typically, the speed of cars on conventional
road is 5 to 16 meters per second; thus, we assume the radio
channel is not radical varying to interrupt the execution of
the tasks, due to the severe fading. When the vehicle gener-
ates a task, it sends an offloading request to the nearby RSU
first; then, the RSU routes the request command to the SDN
controller. SDN synthesizes the current global information
and provides the optimal offloading decision. Finally, the
decision plan is sent to the targeted node through the control
layer.

SDN

SDN

RSU

RSU RSU

Figure 1: Sketch of communication and offloading framework for SDN-enabled IoV System.
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We introduce a binary variable of task offloading
selection Cm

n . If Cm
n =1, it defines that the RSU m is

selected by vehicle n to perform task offloading. On the
contrary, Cm

n =0 means the vehicle n do not select the
RSU m. Therefore, the constraint of Cm

n is defined as

〠
m∈R

Cm
n = 1, ∀n ∈V : ð1Þ

Equation (1) means that each vehicle can offload tasks
to a unique RSU for execution. We define the coordinates

of the RSUs set in two-dimensional plane as fðX1, Y1Þ,
ðX2, Y2Þ,⋯, ðXM , YMÞg, the coordinates of the vehicle n
are defined as ðxn, ynÞ, and the coordinates of nearest RSU s
are denoted by ðXs, YsÞ. Then the distance between the
vehicle n and the nearest RSU s is given by

Ξm
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn − Xsð Þ2 + yn − Ysð Þ2

q
: ð2Þ

The transmission rates of vehicle n to routing RSU s
channel and routing RSU s to target RSU m channel are
described as [31]

rsn = BRV log2 1 + hsn Ξs
nð Þ−ℵ h0j j2
σ2

 !
,

rms = BRR log2 1 + hms Ξm
sð Þ−ℵ h0j j2
σ2

 !
,

8>>>>><
>>>>>:

ð3Þ

where BRV and BRR represent the bandwidth allocations of
vehicle n to routing RSU s channel and routing RSU s to
target RSU m, respectively. σ2 represents additive white
Gaussian noise of the channel. hsn represents the
transmission power from routing RSU s to vehicle n. h0 is
the complex Gaussian channel coefficient [31] following the
complex normal distribution CN (0,1). ℵ is the path loss
index.

We introduce bn to represent the local execution ratio of
the vehicle; thus, ð1 − bnÞ denotes the offload ratio. Since the
execution result is usually relatively small, the delay from
targeted node to the routing node and the delay from the
targeted node can be ignored. We define the binary param-
eter ζmn , where ζ

m
n is 1 means the vehicle needs to be routed

to the targeted node, otherwise, vice versa. Assuming the
routing node is RSU s, based on the above formulas, the
transmission time for the uploading ð1 − bnÞdn data from
vehicle to the targeted RSU m is divided into two parts:
(1) the delay of uploading from the vehicle to the routing
node and (2) the delay of uploading from the routing
node to the targeted node, which are expressed as

Ts
n =

1 − bnð Þdn
rsn

, ∀n ∈V ,

Tm
s = 1 − bnð Þdn

rmn
, ∀n ∈V :

8>>><
>>>:

ð4Þ

Considering that the routing node can be the candidate of
targeted node, the uploading time Tm,up

n is defined as

Tm,up
n = ζmn Ts

n + Tm
sð Þ + 1 − ζmn

� �
Ts
n,∀n ∈V : ð5Þ

3.2. Computing Model. In this section, we introduce the
computing model of the vehicle. Considering the parallel
offloading mode, the computing model is mainly divided into
two parts: (1) the local computing model and (2) RSU com-
puting model.

Table 2: Parameter notations.

Symbol Definition

dn The input data size of task Vt generated by vehicle n.

BRV The bandwidth of vehicle to RSU channel.

BRR The bandwidth of RSU to RSU.

cn The computing resources required by the vehicle’s task.

Cm
n Indicator of the selection on RSU m by the vehicle n.

tmax
n The maximum allowable delay for task execution.

hsn
The uplink gain of the user n to routing

RSU m channel.

ln The computing resource of the vehicle’s task.

bn The proportion of local execution in the task.

rsn The transmission rate from vehicle to routing RSU.

rms
The transmission rate from routing RSU to

targeted RSU.

T loc
n The local task execution time.

f m The computing resource of the RSU server m.

f mn
The computing resources allocated by the RSU m to

vehicle n.

Tm,up
n The transmission time for the vehicle n to upload.

Ts
n

The transmission time from the vehicle n to routing
RSU s.

Tm
s

The transmission time from routing RSU s to targeted
RSU m.

Tm,comp
n The execution time.

Tn The delay of vehicle n completing task.

ϕ The computing resources (CPU cycles) for
1 bit processing.

ζmn
Indicator of routing decision from the vehicle n to the

targeted RSU m.

ℵ The path loss index.

h0 The complex Gaussian channel coefficient.

xi The position of particle.

xn, ynð Þ The coordinates of vehicle.

Xm, Ymð Þ The coordinates of RSU.

Ξm
n The distance of vehicle and RSU.

σ2 The additive white Gaussian noise of the channel.
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3.2.1. Local Computing Model. Let ln denotes the computing
capabilities of vehicle n; then, the local task execution time
Tloc
n on bn data can be defined as

Tloc
n = bncn

ln
, ∀n ∈V : ð6Þ

3.2.2. RSU Computing Model. Besides the local computing,
the rest part of the tasks are offloaded to the RSU for further
computing. It requires (1 - bn) cn computing resources from
RSU. Note that a RSU can be selected by multiple vehicles,
and a vehicle can only select one RSU for execution. Since
RSU has limited computing resources, it is necessary to
allocate RSU resources to different vehicles in a reasonable
manner to improve resource utilization and reduce system
delay. Define f m as the computing resource of RSU m, and
f mn denotes the computing resources allocated by the RSU
server m to vehicle n. The sum of the resources allocated
by the RSU to each vehicle cannot exceed its own comput-
ing resources, thus constrained by Equations (7) and (8),
and the execution time of vehicle n on RSU m is defined
by Equation (9).

〠
n∈V

f mn ≤ f m, ∀m ∈R, ð7Þ

f mn
f m

≤ Cm
n , ∀m ∈R, ð8Þ

Tm,comp
n = Cm

n 1 − bnð Þcn
f mn

, ∀n ∈V : ð9Þ

Assuming there exist M RSUs in the network, then the
execution time for vehicle n is defined as

TRSU
n = 〠

M

m=1

Cm
n 1 − bnð Þcn

f mn
, ∀n ∈V : ð10Þ

For vehicle n, the task is divided into two subtasks,
which are processed in parallel by local unit and by edge
RSU node. The task completion time is accordingly
divided into two parts: local processing time and edge
RSU node processing time. The edge RSU node processing
also results transmission delay Tm,up

n and execution delay
Tm,comp
n . Therefore, the time for completing task generated

by vehicle n is determined by the maximum delay, which
is defined by

Tn =max Tloc
n , 〠

M

m=1
Tm,comp
n + Tm,up

nð Þ
( )

, ∀n ∈V :

ð11Þ

3.3. Problem Formulation. For delay-sensitive applications,
delay is a problem that must be considered. Therefore, it is
vital to formulate the most suitable offloading strategy
based on the global status. For intensive tasks, meeting
the performance requirements of the vehicle and making

full use of effective resources are of importance. In addition,
considering the transmission and execution delay caused
by offloading, the system delay is defined by Equation
(12). Therefore, offloading decision-making and resource
allocation must be jointly optimized to improve system
performance. The goal is to provide all vehicle optimized
offloading strategies χ, computing resource allocation F ,
and offloading ratio B, aiming to reduce average delay.
Finally, the optimization problem is described as follows:

P1 : Dn = min
B,χ,F

1
N
〠
N

n=1
Tn ð12Þ

s:t:Tn ≤ tmax
n , ∀n ∈V ð13aÞ

〠
m∈R

Cm
n = 1, ∀n ∈V ð13bÞ

0 ≤ bn ≤ 1, ∀n ∈V ð13cÞ
Cm
n ∈ 0, 1f g, ∀n ∈V ,∀m ∈R ð13dÞ

0 ≤ 〠
N

n=1
Cm
n f

m
n ≤ f m, ∀m ∈R ð13eÞ

ζmn ∈ 0, 1f g, ∀n ∈V ,∀m ∈R: ð13fÞ
The above constraints are explained as follows: con-

straint (13a) is to ensure that the total delay of the task
does not exceed the maximum allowable delay; constraints
(13b) and (13d) mean that each vehicle can only transmit
the task to only one RSU, and the offloading decision is a
binary variable; constraint (13c) is the offloading ratio
constraint, which is a decimal between 0 and 1; and to
ensure that the resources allocated by the RSU to the
vehicle does not exceed its own capacity, the constraint
(13e) must be met. Finally, there is a binary constraint,
which represents whether the vehicle to the targeted RSU
needs to be routed.

4. Problem Solving

The fact that the offloading decision is a binary variable
brings problem P1 as a mixed integer programming prob-
lem, which is nonconvex NP-hard. In order to reduce the
complexity of the problem, we divide the problem into three
subproblems, i.e., offloading decisions of various vehicles,
proportional distribution of tasks performed locally, and
different resource allocation for vehicles by RSUs.

4.1. Offloading Strategy Making and Load Balance. Given the
local computing ratioB and resource allocation F , problem
P1 is transformed into P1:1 as follows:

P1:1 : Dn =min
χ

1
N
〠
N

n=1
Tn ð14Þ

s:t: 12að Þ, 12bð Þ, 12dð Þ, 12eð Þ, 12fð Þ: ð15Þ
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Obviously, P1:1 is still an NP-hard problem. For such
problems, heuristic algorithm is a rational solution. The
Particle Swarm Optimization algorithm (PSO) originated
from the study of bird predation behavior is a evolutionary
heuristic algorithm, which has efficient global search capa-
bilities. It has achieved great success in image processing
and neural network training. Hence, we propose a offloading
decision-making algorithm based on PSO. The basic idea of
PSO is to find the optimal solution through collaboration
and information sharing between individuals in the group.
In the paper, particles have only two attributes: speed and
position. Speed represents the speed of movement, and
position represents the direction of particles. Each particle
searches for the optimal solution separately in the search
space and records the current individual extreme value, then
sharing the individual extreme value with other particles. All
particles in the particle swarm adjust their speed and
position according to the current individual extreme value
they find and the current global optimal solution shared
by others. Therefore, through iteration, the particles of
the entire population eventually converge to the optimal
solution.

According to the speed update formula proposed by
Clerc and Kennedy [32], we introduced a compression fac-
tor x. The update formula for speed and position is pre-
sented as

Vi I + 1ð Þ = ρ wVi Ið Þ + c1r1 Pbest − Xi Ið Þð Þð
+ c2r2 Gbest − Xi Ið Þð ÞÞ, ð16Þ

Xi I + 1ð Þ = Xi Ið Þ + Vi Ið Þ, ð17Þ
where i = 1, 2,⋯Nc max:, Nc max is the number of parti-
cles. w is the coefficient of inertia. The larger w, the stron-
ger the global optimization ability, and the weaker the
local optimization ability. c1, c2 are the learning factors,
ViðIÞ is the velocity of particle i at the I − th iteration,
and XiðIÞ is the current position of particle i at the I − t
h iteration. Vmax denotes the maximum velocity.

The compression factor ρ is given by

ρ = 2
2 − φ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 − 4φ

p , ð18Þ

where φ = c1 + c2. The compression factor guarantees the
convergence of the particles and prevents the explosion of
velocity. The specific process of the improved PSO algorithm
is described in Algorithm 1. The f itness function refers to
Equation (12).

4.2. Resource Allocation Optimization. Assuming the local
computing ratio B and offloading decision χ are given, the
problem is transformed into the lowest vehicle delay to each
RSU. Defining the vehicle set N m of the task on RSU m, and
the number of vehicles is Nm: The variable f mn only has an

impact on the task execution of the objective function; thus,
the converted problem P1:2 can be presented as

P1:2 : min
F

〠
n∈N m

Tn

s:t: 12að Þ, 12eð Þ:
ð19Þ

Substituting formulas (4), (5), and (6) into P1:2, and per-
forming equivalent transformation, the overall optimization
problem is changed to the following form:

P1:3 : min
F

〠
n∈N m

Tn

s:t:Tn ≥
bndn
ln

Tn ≥
1 − bnð Þdn

rsn
+ ζmn 1 − bnð Þdn

rms
+ 1 − bnð Þcn

f mn

� �
12að Þ, 12eð Þ:

ð20Þ

As P1:3 shows, Tn is not differentiable subject to f mn .
Substituting formulas (5), (6), and (9) into P1:3, then the
Tn is approximated as

Tn ≤
bncn
ln

+ 1 − bnð Þdn
rsn

+ ζmn 1 − bnð Þdn
rmn

+ 1 − bnð Þcn
f mn

= 1 − bnð Þcn
f mn

+ bn
cn
ln

−
dn
rsn

−
ζmn dn
rmn

� �
+ Γm

n ,

ð21Þ

where Γm
n = dn/rsn + ζmn dn/rmn and ð1 − bnÞcn/f mn + bnððcn/lnÞ

− ðdn/rsnÞ − ðζmn dn/rmn ÞÞ + Γm
n is the upper bound of Tn. Sub-

stitute the upper bound into P1:3, then P1:3 can be bounded
with the worst case delay as

P1:4 : min
F

〠
n∈N m

1 − bnð Þcn
f mn

+ bn
cn
ln

−
dn
rsn

−
ζmn dn
rmn

� �
+ Γm

n

ð22Þ

s:t:
1 − bnð Þcn

f mn
+ bn

cn
ln

−
dn
rsn

−
ζmn dn
rmn

� �
+ Γm

n ≤ tmax
n ð23aÞ

12eð Þ: ð24Þ
P1:4 is a convex optimization problem, with linear

constraints (13e) and convex inequality constraints (23a).
Therefore, we use Lagrangian duality theory to solve this
problem. The Lagrangian function of P1:4 is given by

L f , λ, θð Þ = 〠
Nm

n=1

1 − bnð Þcn
f mn

+ bn
cn
ln

−
dn
rsn

−
ζmn dn
rmn

� �
+ Γm

n

� �

+ 〠
Nm

n=1
λn

1 − bnð Þcn
f mn

+ τ

� �
+ θm 〠

n∈N m

f mn − f m

 !
,

ð25Þ
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where τ = bnððcn/lnÞ − ðdn/rsnÞ − ðζmn dn/rmn ÞÞ + Γm
n − tmax

n ,
where λn and θm are the Lagrangian multipliers. According
to KKT conditions, we have

f mn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λnð Þ 1 − bnð Þcn

θm

s"" #+
: ð26Þ

The Lagrange dual function is then given by

D λ, θð Þ =min L f , λ, θð Þ: ð27Þ

Then, the dual problem of P1:4 is

max D λ, θð Þ
s:t:λn, θm ≥ 0:

ð28Þ

As the Lagrange function is differentiable, the gradients
of the Lagrange multipliers can be obtained by

∂D λ, θð Þ
∂λn

= 1 − bnð Þcn
f mn

+ τ,

∂D λ, θð Þ
∂θm

= 〠
n∈N m

f mn − f m,
ð29Þ

The Lagrange multiplier iterative formula is as follows by
using gradient descent.

λn t + 1ð Þ = λn tð Þ − η1
∂D
∂λn

� �+
, ð30Þ

θm t + 1ð Þ = θm tð Þ − η2
∂D
∂θm

� �+
, ð31Þ

where η1, η2 are the gradient steps, t represents gradient
number, and [.]+ represents max ð0, :Þ. We summarize the
procedure for solving problem P1:4 in Algorithm 3.

4.3. Offloading Radio Allocation. Given χ and F , the P1:4
problem can be transformed into a linear programming

Input:
Offloading decison: Cm

n :
Output:

Routing information: ζmn :
1: Initialize the location of the vehicles.
2: For each i ∈ ½1,N� do
3: Obtain the access RSU m of vehicle i, set ζmn = 0.
4: For j = 1 ; j < =M ; j + + do

5: If Cj
i = 1 and j! =m then

6: ζmn = 1.
7: End if
8: End for
9: End for
10: Return ζmn

Algorithm 2: Routing confirmation (RC).

Input:
The input parameters of particle swarm:
c1, c2,w, r1, r2,Mcmax,Ncmax:

Output:
Gbest, ⊝Gbest

1: For j = 1 ; j < =Mcmax ; j + + do
2: For each i ∈ ½1,Ncmax� do
3: Initialize the velocity position of particles Við0Þ, Xið0Þ
4: End for
5: In Algorithm 2, we obtain ζmn then record the current position and fitness as particle’s

individual extreme option and value Pbest, ⊝Pbest.
6: Record the smallest fitness and the corresponding position as ⊝Gbest,Gbest.
7: While the number of iteration steps is not 0 do
8: For i = 1 ; i < =Ncmax ; i + + do
9: Update the velocity ViðjÞ of particles i using Equation (16)

Update the position XiðjÞ of i using Equation (17)
Evaluate fitness of particle i using Equation (14)

10: If f itnessðXiðjÞÞ < ⊝Pbest then
11: ⊝Pbest = f itnessðXiðjÞÞ
12: End if
13: If f itnessðXiðjÞÞ < ⊝Gbest then
14: ⊝Gbest = f itnessðXiðjÞÞ
15: End if
16: End for
17: End while
18: End for
19: Return Gbest, ⊝Gbest

Algorithm 1: A offloading decision making algorithm based on PSO.
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problem on bn. Therefore, the function value takes the
extreme value at the boundary or stagnation point, as shown
in P1:5

P1:5 : W =min
B

〠
n∈N m

1 − bnð Þcn
f mn

+ bn
cn
ln

−
dn
rsn

−
ζmn dn
rmn

� �

+ 〠
n∈N m

Γm
n

s:t: 12cð Þ, 20að Þ:
ð32Þ

Based on the above formula, ∂W /∂bn as a constant and
the minimum value can be obtained at the boundary.
According to the constraints (13c) and (23a), bn can be
obtained.

Taken together, we propose an approach combining
the whole process of offloading strategy, offloading ratio,
and resource allocation control (ODRR), as described in
Algorithm 4.

5. Numerical Results

In this section, simulation configurations and results are
presented and analyzed to verify the effectiveness of the
proposed algorithm.

5.1. Simulation Configurations. The scenario in this paper is
as follows: the system consists of 3 RSUs and N vehicles
ðN = 10,20,30⋯ Þ, which carry tasks with random parame-
ters, different data volumes, computing resources, and allow-

able delays. Assuming that the computing resources of
3 RSUs are ½15G, 15G, 15G�, the local resources of the
vehicle are 1G. Vehicles’ task data volume, computing
complexity, and maximum allowable delay are random
ð100KB, 300KBÞ, random ð1000, 9000Þ, random ð1s, 2sÞ.
Referring to [31, 33, 34], communication parameter settings
are shown in Table 3. The settings of the parameters in
Algorithm 1 are as follows: the number of particles is 100,
the maximum number of iterations is 50, the learning factors
c1 and c2 are both equal to 2, because the learning factors are
parameters for adjusting the step size. If the setting is too
large, the particle moves fast and fly over the optimal point.
If set small, the optimization speed will be slow. Larger inertia
weight has stronger global search ability and slower conver-
gence speed. In order to avoid falling into the local optimal
solution and have a faster convergence speed, it is most
appropriate to set ω to 0.9. In order to verify the effectiveness

Input:
λn, θm

Output:
f mn

1: Repeat
2: Calculate resource allocation f mn based on Equation (26)
3: Update the λnðtÞ, θmðtÞ using Equation (30)
4: Until convergence
5: Return f mn

Algorithm 3: Resource allocation (RA).

1: Set offloading decision X0, resource allocation F0, and local executing ratio B0

2: t = 0
3: While t<T do
4: Obtain the offloading decision by Algorithm 1 based on Ft−1, Bt−1

5: Calculate resource allocation by Algorithm 3 based on Bt−1, Xt

6: Update the Bt by using Equation (13c), (23a) based on Ft , Xt

7: t = t + 1
8: End while
9: ReturnBt , Xt , Ft

Algorithm 4: Joint approach for offloading decision, resource allocation and ratio (ODRR).

Table 3: Simulation configurations.

Parameter Value

The bandwidth BRV ,BRR 1MHZ

The path loss index ℵð Þ 4

The additive white Gaussian noise σ2
� �

-100 dBm

hsn 20 dBm

hms 46 dBm

The learning factors c1, c2 2

The inertia weight ω 0.9

9Wireless Communications and Mobile Computing



of the proposed offloading strategy on the proposed Internet
of Vehicles architecture, we compare it with other offloading
strategies.

(i) Offload-Whole-to-RSUs: offload the whole task to
edge nodes including access node and remote nodes

(ii) Execute-Locally: the vehicle terminal directly exe-
cutes the task locally

(iii) Offload-proportion-by-ODRR: joint optimization
of offloading decision, local calculation ratio, and
resource allocation (ODRR) is based on the pro-
posed algorithm

(iv) Offload-proportion-by-SA: offload proportion of task
to RSUs using simulated annealing algorithm (SA).

5.2. Simulation Results. In this section, we present the per-
formance of the proposed ODRR algorithm and compare
with other conventional offloading strategies.

Figure 2 plots the average execution time of vehicles as
the number of connected vehicles increases. It can be seen
that the performance of the proposed ODDR partial offload-
ing algorithm is the best and can keep the average calcula-
tion delay to a minimum, and the partial offloading SA
algorithm is behind it. When the number of vehicles is less
than 35, the effect of offloading whole to RSUs is better than
executing locally. Because RSUs have more computing
resources than the vehicles, the computing capability of
RSU is dozens of times that of executing locally. Therefore,

computing performance of executing locally is worse than
offloading whole to RSUs. But when the number exceeds
the limit, the situation becomes different. On the one hand,
this is because the resources of RSUs are limited. When the
number of offloading vehicles exceeds a certain number,
the load capacity of RSUs is exceeded, resulting in great per-
formance decrease. On the other hand, more vehicles means
a worse communication environment, which leads to more
communication delays. Compared with the other three
conventional strategies, the latency of the proposed ODRR
algorithm is always the smallest, as the number of vehicles
increases. Compared with the Offload-Whole-to-RSUs
scheme, the ODRR can be reduced by 42.7% in the best case,
and 17.5% in the worst case; compared with the Execute-
Locally scheme, the ODRR can be reduced by 52.6% in the
best case, and 24% in the worst case; compared with Offload
-proportion-by-SA scheme, the highest can be reduced by
16.7%, and the lowest by 7.8%. It can be concluded that
compared with other two conventional strategies, ODRR
can reduce the delay by up to nearly half. Compared to the
Offload -proportion-by-SA scheme, the reduction is also
up to 10%.

Figure 3 plots the impact of different executing complex-
ities (ϕ = cn/dn) on system delay. The number of connected
vehicles is set to 30, and it is found that the average delay
of the four offloading strategies increases linearly with the
increase of task complexity. The performance of the ODRR
algorithm given in this paper is obviously the best compared
with other strategies. The partial offloading by SA algorithm
is the second, the whole offloading to RSUs is the third, and
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Figure 2: The system delay of the cases with different vehicle numbers (N = 10, 20, 30,⋯50).
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executing locally has the worst performance. The higher the
task complexity, the more CPU resources are needed to
process each byte of data. The local computing resources
are much smaller than RSUs, so executing locally gets the

highest latency. However, offloading whole to RSUs causes
uneven distribution and local resource waste. The partial off-
loading ODRR algorithm takes into account both resource
allocation and offloading ratio, which greatly improves
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Figure 3: The average delay of the cases with different execution complexities.
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system performance. Compared with the Offload-Whole-to-
RSUs scheme, the ODRR can be reduced ranging from 14%
to 29%; compared with the Execute-Locally scheme, the
ODRR can be reduced ranging from 14% to 49.7%, and
when the computational complexity is greater, the reduction
effect is better. Compared with the Offload-proportion-by-
SA scheme, the reduction is between 7% and 9%.

When N = 30, ϕ = 2000, Figure 4 shows the change of
average delay with the amount of input data increasing.
The average execution delay of the vehicles increases linearly
with the size of the input data increasing. The proposed
ODRR algorithm obtains the minimum delay, after the SA
algorithm, whole offloading to RSUs is the third, and only
executing locally is final. The larger the input data, the more
transmission delay is caused. The algorithm proposed in this
paper jointly optimizes the offloading ratio, offloading
decision-making, and resource allocation, thus greatly
improving the system performance. With the larger
amount of input data, the ODRR proposed in this paper
has a better effect on reducing the delay. Compared with
Execute-Locally scheme, the reduction is between 36.6%
and 47.5%. Compared with Offload-Whole-to-RSUs
scheme, it can reduce the delay by 30.4% to 42%; com-
pared with the Offload-proportion-by-SA scheme, the
decline rate is nearly 10%.

6. Conclusion

In this paper, we propose a multiuser and multi-RSU system
architecture based on SDN-enabled IoV. The loads of RSUs
are effectively balanced by using the characteristics of SDN.
In order to reduce the delay of task offloading in IoV, a joint
approach is proposed to optimize the offloading ratio, off-
loading decision-making, and resource allocation. Com-
pared with the conventional work that executing locally,
the system performance increases 36:6% − 47:5%. Com-
pared with the decision by fully offloading to RSUs, the
performance increases 30:4% − 42%; compared with the
offloading strategy by SA, the performance increases about
10%. The simulation results have greatly proved that the
joint optimization approach proposed in this paper is more
effective than conventional strategies in dealing with the
delay problem of multiuser and multi-RSU system and can
effectively solve the multidimensional problem. Although
greatly improving system performance, there is still room
for improvement. For instance, the possibility of task failure
caused by transmission link or edge node failure has not
considered in this work. Therefore, the reinforcement
learning-based approach is of interest to solve the optimiza-
tion goal considering the failure retransmission mechanism
of the task.
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