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Unsupervised domain adaptation endeavors to learn a desirable classifier for a target domain by transferring knowledge learned
from a related (source) domain. Existing approaches focus on deriving domain-invariant feature representations by aligning the
domain distributions. However, those works often require an extra classifier. In contrast, this paper proposes a classifier
adaptation method based on modified label propagation (CAMLP) for unsupervised domain adaptation. Inspired by
pseudolabeling, CAMLP proposes a simple but effective measurement for relationships among cross-domain samples. Thus,
samples from distinct domains are constructed in a same graph. The true labels can then propagate from the source domain to
the target one along the graph. We also propose a consistency-aware pseudolabel annotation to alleviate the problem of
negative transfer caused by unreliable pseudo labels. Extensive experiments on several benchmark datasets confirm that the

proposed method performs favorably against the state-of-the-art approaches.

1. Introduction

Domain adaptation [1-3] transfers knowledge from a label-
well source domain to the label-scarce target domain, and
there is usually a certain degree of data distribution discrep-
ancy between the source and target domains. Domain adap-
tation has a wide range of applications in medical diagnosis
[4, 5], intelligent traffic [6-8], and other IOT (Internet of
Things) fields [9, 10]. For example, domain adaptation is
widely used in image semantic segmentation tasks to allevi-
ate the huge cost of dense annotation [11-14]. And it is also
applied to strengthen the generalization of person reidentifi-
cation models [6, 15-17]. In fact, machine learning has
made a amazing progress in these fields recently, but this
relies on vast amounts of label-accurate training data and
requires same distribution of training data (source domain)
and test data (target domain). In real world scenarios, how-
ever, annotating samples for every scenario is uneconomical
or even impossible. Domain adaptation tackles this problem

by applying the source-domain-learned ability to the target
domain. Experience on riding a bike, for example, is helpful
for riding a motorcycle. Due to the distribution shift (dis-
crepancy), the model performance will deteriorate when
applied directly from one domain (source domain) to
another (target domain). Domain adaptation mitigates this
effect through bridging the gaps between domains. In
general, domain adaptation is mainly classified into semi-
supervised domain adaptation (SSDA) [18-20] with a few
labels of target samples being available, unsupervised
domain adaptation (UDA) [21] without any target label.
The SSDA uses the limited labeled target samples to facilitate
the model training with the label-rich source data. There-
fore, the SSDA-learned classifier usually has a more easily
distinguishable classification boundary in the target domain
than the UDA-learned one [22].

In this study, we focus mainly on the UDA, which is
more challenging and practical. The key of UDA is how
to exploit common knowledge across domains. Existing
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approaches generally aligned distinct domains by projection
or transformation, such as searching common latent feature
representations in Hilbert space [23-25]. Maximum mean
discrepancy (MMD) is a classic and efficient one of these
strategies. The structural (geometric) information of sam-
ples has recently attracted the interest of researchers, which
can efficiently characterize the relationship between sam-
ples, according to certain relevant research [26-28]. By
investigating the underlying structure across all (source
and target) samples, the graph-based technique offers a
high-efficiency way to develop a classifier [26]. All
approaches above align the domain distribution but require
an additional classifier. In contrast, this paper learns a
domain-invariant classifier directly.

To this end, a novel UDA method, classifier adaptation
based on modified label propagation (CAMLP), is proposed
by exploiting cross-domain and within-domain structural
information. Samples from different domains are con-
structed into a k-nearest neighbor graph. The nodes of the
graph represent the observations in the source or target
domain. The edges of the graph indicate the relationships
between these observations, which are used to be measured
in traditional ways, such as cosine similarity. However, the
traditional similarity metrics may fail to accurately reflect
the affinity relationships between cross-domain samples
due to domain discrepancy. Our modified label propagation
(MLP) proposes to measure these relationship by pseudo
labeling, simply yet effectively. Then, the true labels transfer
from the source domain to the target one along the graph. In
addition, we propose a consistency-aware pseudolabel anno-
tation (CPLA) to alleviate the negative transfers caused by
incorrect labels. In conclusion, the contributions of this
study are as follows:

(i) A unsupervised domain adaptation method, classi-
fier adaptation based on modified label propagation
(CAMLP), is proposed through exploiting structural
information and pseudo labeling

(ii) A simple yet effective approach is proposed to
measure the relationship between cross-domain
samples. Thus, samples of different domains can
be constructed into the same graph

(iii) A consistency-aware pseudolabel annotation method
is presented, which significantly alleviates the impact
of incorrect labels

(iv) Extensive experiments on four benchmark datasets
demonstrate that our method outperforms the
mainstream domain adaptation methods

The rest of this paper is organized as follows. Section 2
introduces relevant topics of unsupervised domain adapta-
tion and some basics of this work. Section 3 delves into the
specifics of our proposed method. Sections 4 and 5 provide
extensive experiments and discussion. Finally, our work is
concluded in Section 6.
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2. Related Work

2.1. Unsupervised Domain Adaptation. Mainstream unsuper-
vised domain adaptation methods learn a domain-invariant
feature representation by narrowing the domain discrepancy.
These methods can align the domain distribution well but
may damage the category discrimination within the target
domain. Accordingly, there are two important challenges in
UDA: aligning the domain distribution at the class level and
maintaining the category differentiability within the domain.
To this end, two important tools are proposed: the pseudola-
beling and structural exploitation for UDA.

The pseudolabeling was commonly utilized to reduce
domain discrepancy at the category level, which helped to
efficiently apply classifiers learned from the source domain
to the target one [29]. Pseudolabels were often generated
by a source-domain-trained classifier [25, 30]. Due to
domain shift, however, these pseudolabels may contain
incorrect ones, which would cause the negative transfer
problem. Pei et al. [31] alleviated the problem by the
soft labeling method. Refs. [28, 32, 33] proposed the
confidence-aware label filtering method, which only allowed
the high-confidence pseudolabels to narrow domain discrep-
ancy. PACET [34] effectively reduced the uncertainty in
pseudo labels by filtering the target samples progressively
and describing relations among samples with class confi-
dence scores.

UDA differs from unsupervised learning mainly in
the availability of unlabeled test (target) data. The data
can be regarded as coming from a distribution supported
by a low-dimensional manifold embedded in a high-
dimensional space in terms of geometric structure [35]. In a
sense, closed samples intend to belong to the same class.
The underlying structure within the target domain helps dis-
tinguish the different categories, so that it is often used as an
auxiliary knowledge to enhance domain adaptive methods.
For example, GTL [27] managed UDA by optimizing the
empirical likelihood while maintaining the geometric struc-
ture at the same time. JDA [23], LSC [36] and GAKT [26]
exploited the structure in the target domain to increase the
confidence of pseudolabels. For better aligning the condi-
tional distribution between two domains, CCSL [29] used
both the label and structural information within and across
domains.

In contrast, this paper proposes a classifier adaptive
method-based modified label propagation (CAMLP) for
unsupervised domain adaptation. GTL [27] and SPL [28]
are the most similar to our method. In several ways, CAMLP
differs significantly from them. To begin with, GTL opti-
mizes both empirical likelihood and geometric structure
concurrently to tackle domain adaptation tasks, but CAMLP
keeps the geometric structure while aligning the conditional
distribution. Both CAMLP and SPL employ pseudolabeling
to reduce the conditional distribution discrepancy. CAMLP
immediately learns a domain-invariant classifier, whereas
SPL tries to learn a domain-invariant feature representation.

2.2. Label Propagation. Graphs are widely used to model
structured and relational data. The label propagation is a
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Input: X, cluster number C.
Output: VG

4 Normalize Laplacian matrix: L,
5 V = eigenvector(L,

norm)

1 Construct the affinity matrix W from X;
2 Calculate the degree matrix: D = diag (d,, d,, -

3 Calculate Laplacian matrix: L=D - W;

norm
, Ve ]RnxC ;
6 Cluster V into C categories by k-means clustering;

7 Obtain clustering labels T € R™!;

dy)s di:z;‘ﬂ{w}ij;

=D7IL;

ArLcoriTHM 1: spectralCluster.

classifying function that is sufficiently smooth to inherent
the structure disclosed by available labeled and unlabeled
graph nodes. Given a graph G = (X, W), where X represents
the graph nodes and W indicates graph edges. X = [X"; XY]
and the labels of X! are available (Y') whereas the labels of
XU are not. W represents the affinity matrix of X, whose ele-
ment w;; represents the relationship between nodes x; and x;
. Label propagation is able to propagate the labels from X" to
XU by learning the indicated matrix F. Specifically, F is com-
puted by minimizing the following cost function:

I+u

Q) =12 ) w,

ij=1

2 )
1/dF, - 1\/21.1:].(’ + 12,4; B - Y%
(1)

where [=|X"| and u=|XY| are the corresponding node
numbers. The first element on the right causes neighboring
samples to have similar indicated vectors F,, whereas the
second guarantees the prediction close to their ground truth
labels. The trade-off between these two constraints is cap-
tured by the hyper-parameter y. Y, indicates the one-hot
vector of the corresponding ground truth label. Proved by
[37], the optimal F is computed by the following equations:

F=(1-a)(I-aS)'Y,

S = D_I/ZWD_UZ,

D =diag (d,,d,, -+, d,), d; = Z wij,

=

where o =11+, S is the propagating matrix, and D is the
degree matrix of W. Y is the one-hot matrix with Y;; =1 if

X; is labeled as y; = j and Y;; = 0 otherwise. Then, x; can be
predicted by the following:

y(x;) = argmaxF:j. (3)

1<j<c

In summary, the affinity matrix W and matrix Y may
identify the labels of nodes uniquely.

2.3. Spectral Clustering. Spectral clustering (SC) [38] is a
classical unsupervised learning method that can split unla-
beled data into several groups. SC firstly projects the train-
ing data into a low-dimensional space, then groups them
by K-means or K-medoids. The dimension of the low-
dimensional space is based on the eigenvectors of the
Laplacian matrix about W. And W is the affinity matrix
describing the relation between samples. The specific
implementation process of spectral clustering is shown in
Algorithm 1. W is constructed by calculating the similarity
between samples. Note that Laplacian matrix L is normal-
ized by the Shi-Malik method [39] in Line 4.

3. Methodology

In this section, we offer the problem formulation first and
then introduce the suggested method: classifier adaptation
based on modified label propagation (CAMLP) for unsuper-
vised domain adaptation in detail.

3.1. Problem Formulation. This work focuses on UDA with
label-well source domain () and label-scarce target
domain (9,). Specifically, the labeled data {X*’,Y’} € 9,
unlabeled data {X'} € @,. &, and ¥, (2, and ¥,) represent
the feature space and label space of the source (target)
domain, respectively. Our work focuses the scenario: label
space Y, =Y,, whereas the marginal probability P,(Z,) # P,
(Z,) and conditional probability Q (2| ¥%,) # Q. (X ,|¥,).
The purpose of UDA is to learn a classifier f to accurately

predict the target samples, ie., f(X*, Y5, X!) — Y'. Table 1
shows the primary notations and descriptions used in this
study.

3.2. The Overall Framework. In this paper, we proposed a
classifier adaptation-based modified label propagation
(CAMLP) for unsupervised domain adaptation, as illus-
trated in Figure 1. To begin with, a k-nearest neighbor
(knn) graph is constructed for two distinct domains. The
labels are then transferred from the source domain to the
target one via the modified label propagation. When con-
structing graphs, it is difficult to accurately measure the
affinity relationship between cross-domain data only by con-
ventional methods, due to domain discrepancy. Inspired by
the pseudolabeling technique, our modified label propaga-
tion presents a novel way for solving this challenge. In this
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TaBLE 1: Notations and descriptions.
Notation Description

Source/target domain

X*/x! Source/target sample matrix
Yy Source/target label matrix
ngn, Number of source/target samples
p/p, Nearest neighbor number in LP/SC
did, Feature dimension before/after PCA
w Affinity matrix

method, the accuracy of pseudolabels is crucial, because
misclassified samples frequently degrade performance. To
this end, this work presents a consistency-aware pseudola-
bel annotation method. The idea is that samples in the
same cluster are more likely to belong to the same class,
according to the clustering assumption. The structure
within the target domain helps to obtain more accurate
predicted labels. Our approach is outlined in depth in
the following subsections.

3.3. Graph Construction. Let X= [XS;Xt]T eR™4 Y=
[Y*;0]" e R™ where n=n, +n, n=|X’|, n,=|X‘|. In
high-dimensional data, there is information redundancy
increasing the computational cost. We use principal compo-
nent analysis (PCA) to reduce the dimension of data, similar
to many other UDA approaches [23, 28], i.e., PCA(X) — X.
The feature vector in X is then subjected to L2 normalization,
which compels samples from the two domains to be dis-
persed on the surface of same hypersphere. During the
domain adaptation technique, we retain the inherent data
distributions of the two domains by preserving the geometric
structure. To properly depict the structural relationship in
feature space, we construct a knn graph G = (X, W) with n
vertexes, where W is the affinity matrix of X and its entries
on the diagonal are 0.

3.4. Transfer Labels via Modified Label Propagation. Calcu-
lating the affinity matrix W is critical for labeling propaga-
tion, according to Section 2.2. W is represented as a
partitioned matrix in the following way for convenience:

Wss Wst
w=| * , (4)
Wst th

where W, and W,, denote the relationships within the
source and target domains, respectively; W, denotes the
relationships between cross-domain samples. Surely, W, is
difficult to measure precisely by the traditional way because
of domain discrepancy. To tackle this issue, we propose a
label-aware representation of relationship between cross-
domain samples. Specifically, we firstly annotate target sam-
ples. Then, the relationship between two samples is 1 if their
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labels are the same, and 0 otherwise. In a nutshell, W, and
W, are calculated by the following equation:

o { L () =3(x)) N 6%
1 0, otherwise , (5)

st(l<isn,l+n,<j<n)U(L<i,j<n)

where 7(*) and y(*) denote the pseudolabel and the ground
truth label, respectively. W,, is calculated through the
Euclidean distance, as demonstrated in the following:

dist < x;, x;>,
Dist;; =

0, otherwise

x; € N,y (%)), x;p € N yp(x;)

w, = ef(Disti])z

stng+1<i,j<n
6)

where /,(x;), #,(x;) are the p nearest neighbor set of x;

and x;, respectively. According to Section 2.2, the target
labels Y' are obtained via the original label propagation, as
shown as Algorithm 2. It is worth noting that the incorrect
ones of pseudo labels may damage the model (result in neg-
ative transfer problem). To solve this problem, we propose a
consistency-aware strategy to correct these wrong labels.

3.5. Consistency-Aware Pseudolabel Annotating. The existing
pseudolabel initialization schemes are entirely dependent on
the source domain. In contrast, our method exploits the
knowledge of the source domain and the target-domain
structural information together to predict target samples.
We construct a new knn graph for the target sample and
then split the graph into C subgraphs through spectral clus-
tering. In other words, the target samples are grouped into C
clusters. A ballot-aware alignment method is proposed to
match these cluster labels with the known categories. Specif-
ically, a source-domain-learned classifier predicts the initial

target-domain pseudolabels Y. The drop points of Y on
each target cluster are calculated. We define that i is the cat-
egory label for a certain cluster, if there are the most points
belonging to i in the cluster according to the calculated
drop-points. Therefore, the new pseudolabels Y* are

obtained. At this point, Y contains the source-domain
knowledge, and Y* contains target-domain underlying
structure. Based on this, we propose a consistency-aware

strategy: only reserving the same elements in 7" and Y°
as pseudo labels.

The specific implementation process of the method is
shown in Algorithm 3. In Lines 1-2, a source-domain-
learned classifier predicts the target samples. In Line 3, the
spectral clustering groups target samples into C clusters. In
Lines 4-9, the target clusters are matched with the known
categories, where n;; interprets the number of pseudolabels
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Source domain .

Target domain

J Q
Qo

. . . : Labeled (source) samples

J : Unlabeled (target) samples

. . . : Predicted samples

=

[ A

Ficurek 1: Illustration of the proposed approach (best viewed in color). The distinct domain samples are constructed into the same graph.
The ground truth labels then transfer from source domain to target one along the graph.

Output: Y.

6y,= argmax(F])

1<]<

Input: XS, Y, X

, ', class num C, hyperparameter o

1 Construct the affinity matrix: W via equations (5) and (6);
2 Construct one-hot-label matrix: Y = [Y*; 0]

3 Calculate D =diag (d,, dy, . d,,), d; = Y} jwy;

4S= Dfl/ZWDfl/Z;

5F=(1-a)I-aS)™"

7 Return the predicted labels: ¥’ = {7} i<icn-

ALGORITHM 2: Prediction via MLP.

Input: Xs, Y, Xt.
Output: pseudolabels v
1 Learn a classifier f :f(f(S,Ys,f(t) — Y,
2 ?t” <—f()~(t),
3 ?du<—spectralC1uster()~(t);
4 YSC [ }n ><1

5fori=1:C do
6 Calculate {"ij}1<j ¥

7 y=argmax(n;);
1<j<c
8 Ysc( clu i):y;
9 end.
A

ot 4! 4l
0Y = {)’t i}lgignt’ }’f =4 0, otherwise

ArcoriTHM 3: Consistency-aware pseudolabel annotation.

equaling i in the jth cluster. Line 10 shows the consistency-
aware label filtering strategy. It is worth noting that an iter-
ative framework is utilized. Specifically, during each training
session, the prediction of target samples are used as the
pseudo labels for the next iteration. An incremental training
strategy is used where the pseudo labels with high confi-
dence are fixed in each iteration, and only the remaining
pseudo labels are updated in subsequent iterations.

4. Experiments

Firstly, we elaborate the benchmark datasets and the exper-
imental setup in this part. The results of comparisons with
baseline domain adaptation techniques are then provided
and analyzed. Finally, we test the sensitivity of various
parameters and give the visualization of the confusion
matrix.

4.1. Datasets and Evaluation Criteria. Office-Caltech10 [40]
is a popular dataset in the object recognition area, which
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Office-caltech

F1GURE 2: Objects in different domain for four datasets.

contains 2533 samples across four domains: Amazon (A),
Caltech (C), Webcam (W), and DSLR (D). Each domain
contains 10 object classes, such as backpacks, bicycles, and
calculators.

ImageCLEF-DA is a benchmark dataset for ImageCLEF
2014 Domain Adaptation Challenge https://www.imageclef
.org/2014/adaptation, which are composed of 1800 samples
across three domains: Caltech (C), Imagenet (I), and PAS-
CAL (P). Each domain provides 12 classes of objects, includ-
ing airplane, bike, and people.

Office31 [41] is a medium-size dataset for the object
recognition, which has 4110 images in 31 categories. These
images are divided into three domains: Amazon (A), DSLR
(B), and Webcam (W) according to their source. Specifi-
cally, A contains 2817 images with clean background and
unified scale; B has 498 low-noise high-resolution pictures
(4288 x 2848); W are composed of 795 low-resolution
images with flaws, such as significant noise, color, and white
balance artifacts.

Office-Home [42] is a larger dataset than Office31 in
object recognition area, which includes 15588 images in 65
categories. There are four domains: Art (A), Clipart (C),
Product (P), and Real-word (R). Specifically, A has 2427
images in the form of sketches, paintings, etc.; C contains
4365 clipart-images; P consists of the set with 4439 clean-
background pictures of products; R includes 15500 images
in real world.

These four benchmark datasets are widely utilized in
UDA and some samples of them are shown in Figure 2.
Decaf6 features [43] of Office-Caltech10 and Resnet50 fea-
tures [44] of others datasets are utilized in our experiments.
The information of four datasets is shown in Table 2. In
terms of every dataset, subtasks are performed by training
in one domain and testing in another. For example, C —
I indicates training on the domain Caltech while testing on
the domain Imagenet. Similar to works [27, 28, 45], the pre-
dicted accuracy of target samples is utilized as the assess-

TABLE 2: Statistics of datasets.

Dataset #Feature ~ #Domain  #Object  #Sample
Office-caltech10 4096 4 10 2533
ImageCLEF-DA 2048 3 12 2391
Office31 2048 3 31 4110
Office-Home 2048 4 65 15500

ment criteria. The accuracy is computed by the following
equation:

Accurary = |{x : x € DA((¥) =y(x))} [{x : x€ DY}, (7)

where f(%) and y(x) represent predicted label and the
ground truth label, respectively.

4.2. Environment. All our experiments ran on a same
desktop-computer with a single CPU (Intel(R) Core(TM)
i7-4790 CPU @ 3.60 GHz), 16.0 GB RAM, and 256 G SSD.
The programming language is MATLAB.

4.3. Experimental Setting. The label propagation and spectral
clustering both employ the k-nearest neighbor graph, how-
ever, the neighbor-node number differs between them,
p; =15 for the former, p, =20 for the latter. The dimen-
sion of PCA space is d; =256. And the label propagation
parameter « is empirically set as 0.9 [37]. In the succeed-
ing subsections, the impact of these hyperparameters on
model will be examined in detail.

4.4. Baseline Methods. Our strategy is compared to a
nonadaptation approach as well as several standard method-
ologies to assess performance. The follows are a brief
introduction of these comparative approaches: the 1NN
[46] is a baseline method without adaptation. Specifically, a
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TaBLE 3: Accuracy (%) on ImageCLEF-DA.
Method INN TCA JDA GFK MAFS JPDA CRCCB CAMLP
C—I 85.16 86.67 90.83 84.67 89.83 84.00 89.83 93.70 £0.07
C—P 69.16 72.08 73.43 70.39 72.83 73.60 71.91 76.35+1.06
I—C 91.16 93.33 93.67 93.00 93.17 86.83 94.16 94.67 £0.00
[I—P 73.16 75.63 76.48 76.14 76.83 76.31 78.84 77.70 £0.08
P—C 81.33 85.33 83.83 86.00 85.33 80.67 94.50 94.33 +0.00
P—I 74.50 79.17 78.50 80.00 80.83 79.17 90.83 92.30 £ 0.07
Aver 79.08 82.04 82.79 81.70 83.14 80.10 86.68 88.17 £ 0.20
TaBLE 4: Accuracy (%) on Office-Caltech10.
Method INN TCA JDA GFK MAFS JPDA CAMLP
A—C 70.34 84.33 84.68 79.52 87.36 73.82 89.49 +0.00
A—D 64.96 83.44 81.53 80.89 86.62 84.71 84.2+1.59
A—W 57.28 74.92 76.27 68.47 81.02 72.88 85.08 +1.44
C—A 85.69 89.35 90.40 87.79 90.81 84.76 92.17 £0.00
C—D 74.52 84.71 87.26 87.26 89.81 86.62 92.99+£0.78
C—W 66.10 82.03 86.44 80.34 87.46 81.02 88.34+1.11
D—A 62.73 88.62 91.02 86.43 90.40 86.53 91.96 = 0.00
D—C 52.09 80.50 84.59 77.56 85.75 81.75 87.44+0.00
D—W 89.15 99.32 99.32 98.64 98.98 100.00 91.80+0.15
W—A 62.52 80.58 88.52 75.89 91.34 85.39 92.38 £ 0.00
W—C 60.37 76.67 83.70 77.11 85.04 80.23 87.80 £ 0.00
W—D 98.72 100.00 100.00 100.00 99.36 100.00 93.50£2.79
Aver 70.37 85.37 87.81 83.33 89.50 84.81 89.76 + 0.40

k-nearest neighbor classifier (k = 1) learned from the source
domain directly predicts the target samples. Using MMD-
penalized kernel PCA, the transfer component analysis
(TCA) [24] found common latent features to reduce the
marginal distribution discrepancy. The latent characteristics
were then used to train a classifier. The joint distribution
adaptation (JDA) [23] attempted to construct a robust fea-
ture representation by simultaneously narrowing the shift
in both the marginal distribution and conditional distribu-
tion between domains. A classifier was then trained using
these features. By integrating an infinite number of sub-
spaces, the geodesic flow kernel (GFK) [40] learned a robust
feature representations. Then, a classifier was learned on
these representation. The modified o/-distance and sparse
filtering (MASF) [47] learned common sparse representa-
tions by minimizing the modified &/-distance between two
domains. Then, a classifier was learned from these represen-
tations. The joint probability distribution adaptation (JPDA)
[48] learned common latent features using modified-MMD
(DJP-MMD). Then, a classifier was learned on the latent
features. The collaborative representation with curriculum
classifier boosting (CRCCB) [49] is aimed at learning
directly an adaptive classifier by multistage inference and
instance rearranging.

4.5. Results and Analysis. Tables 3-6 show our classification
accuracy results as well as the comparable ones for all
subtasks (“source”— “target”) in the four datasets. The
average accuracy of several subtasks is also provided. For
statistical verification, we repeat our experiment 20 times
on each subtask and give the statistical results. The best
and second best results in each subtask are represented by
bold and underlined fonts, respectively.

From Tables 3-6, it is concluded that our approach
achieves the highest average accuracy consistently on all
four datasets. Specifically, on the ImageCLEF-DA dataset
(Table 3), our method performs best on almost all sub-
tasks, only slightly worse than CRCCB on two subtasks
(1.14%: I — P, 0.17%: P— C). Our method accom-
plishes an average accuracy of 88.17%, which is increased
by 9.09% (INN), 6.14% (TCA), 5.38% (JDA), 6.47%
(GFK), 5.03% (MASF), 8.07% (JPDA), and 1.49%
(CRCCB). On the Office-Caltech10 dataset (Table 4), the
average accuracy of ours achieves the best performance.
With almost subtasks (9/12), the proposed method wins
the first place. Compared with the rest comparison
methods, our average accuracy is improved by 19.39%
(INN), 4.39% (TCA), 1.95% (JDA), 6.44% (GFK), 0.26%
(MASF), and 4.95% (JPDA).
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TaBLE 5: Accuracy (%) on Office31.
Method INN TCA JDA GFK MAFS JPDA CRCCB CAMLP
A—D 76.91 77.51 78.71 77.51 81.12 77.71 88.55 88.71+1.13
A—W 76.48 75.72 78.11 73.84 76.98 76.98 84.52 86.89 +0.96
D—A 65.32 67.16 68.62 65.25 62.66 68.19 70.82 75.04+1.18
D—W 97.99 96.86 97.11 96.86 92.08 97.23 96.85 91.62 £ 0.36
W—A 62.76 64.68 66.88 63.26 63.61 67.77 68.22 72.96 +1.08
W—D 99.40 99.20 99.00 98.59 95.78 99.00 99.39 94.54+£1.28
Aver 79.81 80.19 81.40 79.22 78.71 81.15 84.73 84.96 £ 0.56
TABLE 6: Accuracy (%) on Office-Home.
Method INN TCA JDA GFK MAFS JPDA CRCCB CAMLP
A—C 35.12 35.76 36.06 28.50 29.55 42.15 47.19 45.30 £ 0.00
A—P 56.79 58.08 58.66 50.48 47.08 56.88 65.71 71.57 £0.71
A—R 64.03 60.98 61.53 55.57 56.14 64.47 71.63 76.95 + 0.65
C—A 48.45 42.60 43.22 38.77 36.18 47.30 63.73 61.80+0.50
C—P 57.85 54.16 56.16 50.89 46.65 60.89 69.52 75.76 £ 0.51
C—R 59.49 55.34 57.10 51.62 47.49 58.30 70.57 76.60 £ 0.34
P—A 51.55 47.10 47.51 42.44 38.90 49.24 64.31 61.03+0.78
P—C 40.73 41.01 41.76 35.14 35.03 44.31 48.01 48.15+0.50
P—R 68.63 65.80 67.20 61.07 60.78 68.30 78.01 78.04 +0.34
R—A 58.92 55.58 56.12 49.53 49.40 55.58 70.04 62.66 £ 1.06
R—C 42.73 40.55 43.14 35.33 38.56 47.38 51.45 44.61 £0.42
R—P 73.08 70.06 71.48 66.88 67.52 71.68 80.13 81.11+1.19
Aver 54.78 52.25 53.33 47.19 46.11 55.54 65.03 65.30£0.11
TaBLE 7: Results of the ablation study. “v” indicates using the corresponding method, “x” otherwise.
0

CPLA MLP ImageCLEF-DA Oﬁice-Cz‘lJteeizilige securaey (9 Office31 Office-Home
X v 80.28 83.65 79.81 54.80

v X 75.79 77.59 70.95 42.29

v v 88.17 £ 0.20 89.76 £ 0.40 84.96 £ 0.56 65.3+0.11

In terms of Office31 dataset (Table 5), our method
performs the best in four out of six subtasks and ranks first
with the average accuracy of 84.96%. Compared with
remainder approaches, our average accuracy increases by
5.15% (INN), 4.77% (TCA), 3.56% (JDA), 5.74% (GFK),
6.26% (MASF), 3.81% (JPDA), and 0.23% (CRCCB). On
the Office-Home dataset (Table 6), the average accuracy of
ours is 65.30%, which improves by 10.52% (1NN), 13.05%
(TCA), 11.97% (JDA), 18.11% (GFK), 19.19% (MASF),
9.76% (JPDA), and 0.27% (CRCCB). In general, the CRCCB
and our method performs roughly the same on the two large
datasets (Office31, Office-Home), both far better than the
other methods. And our method performs best on two rela-
tively small datasets (ImageCLEF-DA, Office-Caltech10).

4.6. Ablation Study. An ablation research is designed to
determine how various aspects of our work contributes to
the ultimate result. To this goal, we look into various combi-
nations of components such as modified label propagation
(MLP) and consistency-aware pseudolabel annotation
(CPLA). Specifically, three groups of experiments are con-
ducted. To predict target samples, the first group exclusively
uses modified label propagation (MLP) and the initial pseu-
dolabels annotated through a source-domain-trained classi-
fier; the second group directly predicts target samples by
CPLA; and the third group combines the MLP and CPLA.
To be fair, the three groups use the same INN classifier
learned only from the source domain. Table 7 shows the
average accuracy for the four datasets. It is obvious that
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FIGURE 3: Sensitivity analysis of hyperparameters: (a) PCA dimension d,, (b) the number of nearest neighbors p, in label propagation,
(c) the maximum iteration T, and (d) the number of nearest neighbors p, in spectral clustering.

MLP and CPLA are ineffective on their own. However, com-
bining them significantly improves their performance.

4.7. Parameter Sensitivity Analysis. Our approach has four
hyperparameters: d,—dimension of PCA space, p,—
number of the nearest neighbors in label propagation,
p,—number of the nearest neighbors in spectral clustering,
and T—the maximum iteration. Setting each hyperpara-
meter to a series of different values while fixing others allows
us to see how it affects performance. Figure 3 shows the aver-
age accuracy across all subtasks, with the parameters used in
this paper marked by a red dotted circle. A larger d, is obvi-
ously necessary for datasets with more categories (Office31,
Office-Home), whereas d, has little influence on model per-
formance for tasks with few categories (ImageCLEF-DA,
Office-Caltech), as shown in Figure 3(a). This is owing to
the fact that as the number of categories grows, more features

are required. When p, is miniscule, the performance drops
dramatically on Office31, but less on others datasets. Differ-
ent p, has the greatest influence on the performance of
Office-Home (Figure 3(d)). For the four datasets, different
T has little effect on the performance, implying that the
spectral clustering pseudo labels are nearly the same in each
iteration (Figure 3(c)). Our approach swiftly converges
after employing the consistent strategy (only one or two
iterations).

4.8. Confusion Matrix Visualization. In this part, the perfor-
mance of CAMLP is compared with that of INN (without
domain adaptation). Figure 4 illustrates the visualizations
of confusion matrix for the two methods on tasks P — I
and C— P from ImageCLEF-DA. Figures 4(a) and 4(b)
directly reflect the negative impact brought by domain
discrepancy. Clearly, the confusion for most classes is
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F1GURE 4: The confusion matrix visualization of INN and CAMLP (best viewed in color).

significantly reduced in CAMLP by comparing (a) and (b)
and (c) and (d) in Figure 4. For example, the confused boat,
bus, and horse are correctly identified by CAMLP in task
P —1, and the confusion of bike, boat, bottle, and people
also is reduced by CAMLP in task C — P. Unfortunately,
neither CAMLP nor INN can handle the problem of mis-
classifying boat as car on task C — P. These observations
further reveal that CAMLP has excellent discrimination in
the target domain.

5. Discussion

We propose a classifier adaptation method based on
modified label propagation. And this method builds differ-
ent domains in the same graph. We innovatively propose
determining relationships between cross-domain samples
through pseudolabeling. To alleviate the damage of wrong
labels to the model, a consistency-aware pseudolabel annota-

tion method is proposed to improve the accuracy of pseudo
labels. Therefore, our method is more suitable for structur-
ally obvious tasks.

According to the experimental results in Section 4, the
proposed method achieves better performance in most tasks
but has the problem of negative transfer in a few tasks,
e.g, D — W(Office31), W — D(Office31), and W — D
(Office-Caltech10). Clearly, the three tasks have one com-
mon character: very small domain discrepancy. We attribute
this to the fact that our method give more weight to the struc-
tural information in the target domain than the knowledge
from the source domain. In addition, our method is insensi-
tive to the number of iterations. This maybe be due to the
knowledge learned in each iteration is not well inherited.
For example, the relationships within the target domain are
not updated after each iteration. Addressing this problem
will give full play to the advantages of iterative optimization,
which is one of the key points of our next work.
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6. Conclusion

We propose a classifier adaptation method-based modified
label propagation (CAMLP) in this paper. The suggested
method consists of two parts: the modified label propagation
(MLP) and the consistency-aware pseudolabel annotation
(CPLA). MLP builds different-domain samples into a same
graph and then transfers the labels from the source domain
to the target domain. The CPLA coordinates the source-
domain knowledge and the target-domain underlying struc-
ture to correct pseudo labels. On the four real-world data-
sets, sufficient experiments show that the suggested method
is superior to state-of-the-art methods. The importance of
graph structure information in UDA is demonstrated in this
research. For future work, we will investigate the usage of
graph neural networks (GNN) in unsupervised domain
adaptation, considering that GNN can better extract and uti-
lize structural information among data.

Data Availability

All datasets in the paper are available at an open source
repository, https://github.com/jindongwang/transferlearning/
tree/master/data.
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