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The ballbeam control system is one of the most perfect and classic experimental equipment for the research and analysis of
automatic control theory. Other nonlinear and unstable systems have important dynamic performance, but because the ball
bar system is nonlinear and unstable, it is necessary to design a controller to correct it. In this paper, the root locus and
the state space theory are used for correction. In the root locus correction, the curve of the root locus is changed by adding
open-loop zeros and poles to make the system stable; in the state space, a state feedback observer is designed by using the
principle of pole assignment, and the state feedback matrix K is obtained to make the system stable. Using the visual tool
Simulink in MATLAB to simulate, we can see the specific control effect of the controller intuitively. The real-time control was
carried out on gbb2004, and the results were observed.

1. Introduction

Ballbeam control system is designed for the basic control
courses (such as automatic control principles) of the class-
room learning practice is an experimental facility. This ball-
beam system involves many principles and methods of
automatic control principle. The ballbeam system has a very
important characteristic; that is, it is not a closed-loop or a
stable system. The problem of controlling unstable systems
has become an important problem in most control systems,
and it is very necessary to analyze and study this problem in
the laboratory [1]. But because of these unstable control sys-
tems, there are safety risks and very dangerous. As a result,
the ball club system has become the best experimental
equipment to solve the unstable system. The ball club system
is convenient to operate, has no security risks, and basically
has the important dynamic characteristics of the unstable
control system. But its critical stability has always been a
difficult problem in the field of control. There is still a need
for further research and design of some controllers to better
the problem of the critical stability of the ballbeam system

[2]. The club control system includes many aspects of theory
and knowledge: electromechanical, kinematics, mechanics,
control theory, etc. It is precisely because the system covers
a full range of knowledge; it can meet the requirements of
automatic control experiment teaching. Many abstract con-
trol concepts such as system stability, reliability, observabil-
ity, and system defensiveness can be expressed intuitively
through the ball club control system. So it has some practical
significance in the control research of the ballbeam sys-
tem [3].

Therefore, with the development of modern science and
technology and the more and more complicated control
objects, the control performance and control precision
requirements are more and more strict; these requirements
make the traditional control methods and theories have been
unable to meet, so it is necessary to research more advanced
control methods [4]. Recently, the control methods used in
club system mainly include state feedback control, switching
control, dynamic surface control, sliding mode control, fuzzy
control, predictive control, and so on. But in the actual labo-
ratory study, the ballbeam system is an ideal experimental
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model and has very many difficulties, so it is important to
first basic and theoretical research in the laboratory, while
the ballbeam system is a typical lose and multioutput cou-
pling system; the system basically includes all instability of
dynamic characteristics [5]. Therefore, the analysis and
research of the club control system has become one of the
important means to test the control methods and theories
in the principle of automatic control. It has a very profound
meaning for exploring and studying the control methods of
the higher-order system and dealing with and solving the
problems such as the robustness and stability of the system
encountered in the control process. In the control theory,
the ballbeam system is a nonlinear system, which contains a
lot of nonlinear characteristics, such as saturation and dead
zone characteristics in the input quantity [6]. There are
significant differences in the rated speed of DC servo motors.
The rotary angle of the motor is converted into the inclina-
tion angle of the horizontal bar of the ball club system
through the rotary table and connecting rod, so as to control
the position of the ball; the measurement is discontinuous.
The above nonlinear factors have a huge impact on the
control analysis, design, signal measurement, and modeling
of the system. Another important problem is how to design
a ball position control system based on these nonlinear
control systems (on the basis of applying linear system theory
and methods) [7].

In 1948, W.R. Evans proposed a graphical method to
obtain the characteristic roots of closed-loop systems in his
Graphic Analysis of Control Systems, which has been widely
used in control engineering [8]. This method, which is
widely used in control engineering, is called root locus
method. By studying the change of one or some control
system parameters based on the known distribution of
open-loop zeros and poles of the system, the performance
of the system can be further analyzed and judged through
the change of the distribution of the closed-loop poles [9].
When using the root locus method, it is only necessary to
take some simple calculations to get one or some parameter
changes of the system, so that the influence trend of the
closed-loop poles can be obtained. This qualitative analysis
and research can have profound significance in improving
system performance, studying system performance, and
correcting control system [10]. But it must, in the era when
science and technology are not very developed and com-
puters are not popular, usually only the rough shape of the
root locus can be obtained, so in the era when the use of
computers is very common, especially now that there are
supercomputers to draw root locus graphics and get the root
locus becomes to a very simple thing. This makes the root
locus very common [11]. In the design of the control system,
Bode diagram and Nyquist diagram can also be drawn
according to Nyquist stability criterion and the transfer
function of the system, so as to correct the original system
and achieve the desired and satisfactory control effect [12].

Under the impetus of aerospace technology and artificial
intelligence technology in 1950s, modern control theory
began to transition from classical control theory and got
rapid development in 1960s. In modern control theory, the
concept of state space is introduced into the control method

by Kalman system [13]. The state mode method is used to
describe the causal relationship between the input and out-
put states and other variables. It not only describes the exter-
nal attributes of the input and output but also shows the
internal structural attributes of the system. Modern control
theory can be applied to both univariate and multivariate
control systems. It can be applied to linear time-varying sys-
tems, linear time-invariant systems, and complex nonlinear
systems [14]. The beginning of description of state space
marked the beginning of modern control theory. Because
of the instability and nonlinearity of the ballbeam control
system, it is necessary to design some control actions and
controllers to make the ballbeam system in a stable state that
meets the design requirements. Some control functions and
controllers added to the club system are not only useful to
some principles of classical and modern control theories
but also some widely popular modern theories, such as intel-
ligent control theory [15]. In recent years, in the aspect of
the control system of the ballbeam, the main research direc-
tions are as follows: PID control, the control of the design of
the state observer using the principle of state feedback, the
control of the pole zero of the root trajectory, and modern
control methods mainly include robust control, neural net-
work control, and fuzzy control [16]. Peng Jiangang from
Harbin University of Science and Technology used the
BW500 ballbeam system, designed a fuzzy controller using
fuzzy control, using double closed-loop fuzzy control,
designed a nonlinear model of the ballbeam system in the
MATLAB/Simulink environment clock, and showed in the
simulation results of his paper. The design of nonlinear
model based on double closed-loop fuzzy control theory
has good control effect and fast output response [17].

2. Establishment of Mathematical Model of
Ballbeam System

For the ball and the bar, the ball is placed on the bar, and the
bar is connected to the motor through the connecting rod
and through the transmission mechanism to control the
connecting rod that can tilt up, according to the change of
the rotation angle of the motor to control the height of the
connecting rod and the tilt angle of the bar and then control
the position of the ball, so that the club system can maintain
stability.

As shown in Figure 1, the mechanical part of the club
system includes base, ball, bar, reduction pulley, transmis-
sion part, motor, etc. [9]. The ball rolls freely on the horizon-
tal bar. The left end of the bar is fixed on the base by an
upright column. The right end can be moved up and down
around the fixed point by a rotating shaft to make the ball
move. The basic control idea of the club is as follows: the
DC servo motor rotates, the belt pulley rotates through the
belt, and the inclination angle of the cross bar is controlled
through the transmission mechanism, so as to realize the
purpose of controlling the position of the small ball by con-
trolling the rotation position of the DC servo motor. The
inclination angle of the horizontal bar is controlled by the
included angle between the driving rod of the supporting
part and the base, which satisfies a certain relationship.
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The ball moves on the bar in the ball club system. From
the rigid body kinematics, it can be seen that the ball club
system is a classical moving rigid body system, and the
dynamic equation of the system can be established by using
the classical mechanics theory in the inertial coordinate sys-
tem. In this paper, Newton-Euler method is used to establish
the mathematical model of the ballbeam system which is
shown in Figure 2.

Attachment (connecting rod and the rotary intersection
point and the center of the rotary attachment) and an angle
of theta wheel horizon (theta angle has certain limitation,
between the minimum and maximum range), connecting
rod and the rotary intersection and the wheel center distance
d, rail as its starting point and the node to the end of the
cross bar on the left side of the length of L, thus, the approx-
imate mathematical relation between the inclination angles
of the bar A and θ is as follows:

α = d
L
θ: ð1Þ

A reduction ratio between angle and the motor shaft
synchronous belt [13] (n = 4) (i.e., ignore the friction in the
system, when the motor is the rotation ϕ radian, the corre-
sponding wheel rotation is the ð1/4Þφ radian, and at this
point, the rotary table drive link and the balance beam angle
radian and ball movement, the purpose of a controller is
designed by adjusting the angle of the wheel) makes the ball
stay in the desired position. According to the dynamic anal-
ysis of the motion of the small ball, the following relation-
ships exist among its gravity, inertia, rotation angle a, and
displacement. Through the application of dynamics to ana-
lyze the movement of the ball, its gravity, inertia, rotation
angle α, and displacement r exist as follows:

J

R2 +m
� �

€r +mg sin α −m_r _αð Þ2 = 0: ð2Þ

g is the gravity acceleration, -9.8m/s2;m is the mass of
small ball, 0.11 kg; R is the radius of small ball; J is the
moment of inertia of the ball, two mr2; and R is the position
of the ball on the cross bar. M will affect the model param-
eters. Assuming that the movement of the ball on the bar

is not translation but rolling, considering the inertia of the
ball and the friction force is negligible, α is very small, then

sin αð Þ ≈ α: ð3Þ

Then, equation (3) can be simplified as _α ≈ 0

€r = mg

J/R2� �
+m

� � α: ð4Þ

α Substitute equation (4) to obtain

€r = −
mgd

L J/R2� �
+m

� � θ = gd × 5
L × 7 θ = 1:853θ, ð5Þ

where the system output r is the position of the ball on
the bar and the length of the right end of the bar. The input
θ is the angle between the line (the intersection point of the
connecting rod and the turntable and the center point of the
turntable) and the horizontal line on the turntable. Formula
(6) is derived from formulas (2), (3), (4), and (5), and the
parameter values are as follows: g is the gravity accelera-
tion, -9.8m/s2; m is the mass of small ball, 0.11 kg; R is the
radius of small ball; J is the moment of inertia of the ball,
two mr2; and R is the position of the ball on the cross bar.
The mathematical model of the ballbeam system can be
obtained

G sð Þ = r sð Þ
θ sð Þ = 1:853

s2
: ð6Þ

Since the tilt angle of the bar is _α ≈ 0 in the calculation
process, but α cannot be ignored in the actual process, it will
cause a certain error in the modeling process. In the actual
operation process, by observing the movement of the bar,
it can be seen that the motor has a small rotation speed
and a short time, and the turntable stops after turning an
almost negligible angle. However, by observing the position
of the ball on the bar at this time, it is found that the ball
is still at the zero scale position, and the ball does not move.
After reference, a large number of relevant literature found
that this is because in Simulink simulation step response in
the module is a set of performance indicators, at zero initial
conditions and simulation in real time, and found that at the
time of launch control can observe that the system did not
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Figure 1: Ballbeam device.
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Figure 2: Model of the ballbeam system.
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reach zero (that is, the bar do not reach level). A bar is an
angle below the horizontal line. In view of the above reasons,
we can improve the ballbeam control system: in Simulink at
the beginning of the simulation, the angle of the bar below
the horizontal position is compensated, and the control of
the ballbeam system begins after the bar reaches the hori-
zontal position.

The input of the ballbeam system is the tilt angle of the
bar, and the zero initial response of the ballbeam system is
measured in the simulation experiment.

In the beginning, the ball is located at the zero scale posi-
tion of the bar. Since the angle of the bar is lower than the
horizontal position, the inclination angle of the bar is
marked as the negative angle.

At the beginning of zero setting, the inclined angle of the
bar increases. When the inclined angle of the bar slowly
passes through the horizontal position, the ball will roll to
the other end of the bar under the influence of gravity. At

this point, the motor stops rotating, and the tilt angle of
the bar stops increasing. The pulse position of the motor at
this time is recorded as P1. When the ball comes to rest at
the other end (i.e., the position where the scale of the bar
is 40), make the motor turn in the opposite direction, that
is, slowly reduce the tilt angle of the bar until the ball begins
to roll to the zero scale position and record the motor pulse
position at this time, which is recorded as P2.

For manual zero marking, at the beginning of each
Simulink simulation, the position of the ball is detected
before the pulse of the step response is input. When the posi-
tion of the ball is detected at the zero scale, the computer
controls the rotation of the motor to make it turn to ðP2 −
P1Þ/2 position, to complete dynamic zero marking.

Before the experiment of the club system, through
repeated measurement of the simulation run of Simulink,
in Figure 3, the “comangle” module in the figure above is
the zero compensation angle input by the system, slowly
increase the value of “comangle” and visually check the posi-
tion of the club to find the compensation angle value of its
horizontal position. The compensation value is related to
the initial position and visual angle of the stabilizer bar. Visu-
ally, when the input compensation angle value is 1.81, the
club reaches the horizontal position, i.e., comangle = 1:81.

3. Design of Root Locus Controller

For the dynamic parameter change of the system, every time
the gain changes, we have to resolve the characteristic equa-
tion, which is very troublesome. The root locus is generated
to solve this problem. To design the root locus controller, it
is usually used to add an open-loop zero to make the root
locus shift to the left. Open-loop poles are added to shift
the root locus to the right, and the closer the poles or zeros
are to the imaginary axis, the greater the influence on the
original system will be. Or you can add more dipoles near
the origin, which affects the stability of the system as shown
in Figure 4.

Increasing the effective open-loop zero will generally
make the root locus bend or move to the left of the complex
plane, increase the system damping, and increase the relative
stability of the system. At the same time, it will also increase
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Figure 3: Angle compensation.
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dynamic performance and oscillation, that is, reduce rise
time, increase overshoot, and reduce adjustment time.

C sð Þ
R sð Þ = 2K

s2 + 2s + 2K : ð7Þ

The open-loop transfer function of the ballbeam system is

G0 sð Þ = 1:853
S2

: ð8Þ

The system is a second order integral, and the integral of
output and input is directly proportional, so it has the function
ofmemory and obvious function of later. Draw the root trajec-
tory diagram of the ballbeam system as shown in Figure 5.

Due to the high order (the third order above), the deter-
mination of system dynamic performance index is extremely
complex, all in order to facilitate the analysis of the ballbeam
control system, when designing the controller should not
increase the order time closed-loop control system, through
the system to increase the open-loop zero pole move root
locus, and transform the original shape of the root locus.
The system with controller can meet the requirement of
performance index. When an open-loop zero is added at
the position -1, namely, s + 1, the root locus of the system
is shown in Figure 6.

When the open-loop gain of the root locus is 2, the over-
shoot is σ ≈ 0%, and the adjustment time is ts = 2:14 at sec-
ond, which meets the requirements.

In order not to increase the order of the closed-loop
system, the shape of the root locus is changed by adding
the open-loop zero to make the corrected system meet
the performance index requirements. When adding an
open-loop zero at -1 and the root locus gain is 2, the over-
shoot is σ ≈ 0%, and the adjustment time is t = 2:14 seconds.
The simplified closed-loop transfer function of the system is
formula (9). In Figure 7, the closed-loop transfer function of
the ballbeam system can be simplified as follows:

ϕ0 sð Þ = 2 × 1:853s + 1:853
s2 + 3:706s + 3:706 : ð9Þ

4. Design of Root Locus Controller

In both the classical control theory and the modern control
theory, feedback principle is very important; feedback is the
main way of control system design. The existence of feed-
back link can improve the steady-state and dynamic control
performance of the system. In modern control theory,
besides the application of output feedback, the application
state as feedback is also very important to solve the inte-
grated problem of control system.

The purpose of assigning the poles of A linear system is
to make the poles of the closed-loop system (A‐BK , B, C),
i.e., the eigenvalues of A‐BK , exactly at the desired set of
poles, by selecting an appropriate state feedback gain matrix
K . The reference index of pole assignment mainly includes
the following two aspects: from the perspective of stability,
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pole assignment of linear system almost completely domi-
nates the stability of the system, and from the methods
and theories that consider response analysis, it can be known
that the poles of a linear system almost control the reaction
rate of the system.

For linear time-invariant systems

_x = Ax + Bu,
y = Cx:

(
ð10Þ

Set the control quantity u = −Fx + r and substitute it into
the original system

_x = A − BFð Þx + Br,
y = Cx:

(
ð11Þ

It can be seen that through state feedback, the system
matrix of the closed-loop system is changed to ðA‐BFÞ. In
order to make the system meet certain design requirements,
the feedback matrix F is obtained by selecting the eigen-
values of the matrix ðA‐BFÞ, so as to realize arbitrary pole
assignment of the linear system.

Note that not all linear systems are capable of arbitrary
pole placement through state feedback or output feedback.
Only when the system can be fully controlled, can the arbi-
trary placement of poles be realized.

For n-order linear time-invariant discrete systems

x k + 1ð ÞTð Þ = Ax kTð Þ + Bu kTð Þ: ð12Þ

It is necessary and sufficient for the state to be fully con-
trollable

rank B AB A2B ⋯ An−1B
� �

= n, ð13Þ

where A is the system matrix and is a nonsingular matrix
of order n × n and B is the control matrix, which is a con-
stant matrix of ordern × r.

The n × nr matrix ½B AB A2B ⋯ An−1B� is called
the controllability matrix of n-order linear time-invariant
discrete systems.

Select the output displacement of the ballbeam system
(the position of the ball on the bar) as the state variable x1
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and the rolling speed of the ball as the state variable x2.
Write the state equation:

x1s = x2,
x2s = 1:853R:

(
ð14Þ

By simplifying Equation (14), we can get:

_x1 = x2,
_x2 = 1:853R:

(
ð15Þ

According to the state equations (14) and (15), the state
equation of the ballbeam system can be obtained as follows:

_x1

_x2

" #
=

0
0

"
1
0

#
x1

x2

" #
+

0
1:853

" #
R,

x1 = 1 0½ �
x1

x2

" #
+ 0½ �R:

ð16Þ

To sum up, the closed-loop pole of the ballbeam system
is ½+1:36i ‐1:36i�.
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The ballbeam system is a second-order integration sys-
tem with single input and single output; the input is the
rotation angle of the turntable which can change the tilt
angle of the bar, and the output is the displacement length
of the ball on the bar. The system has two state variables,
which are the displacement length of the ball and the roll-
ing speed of the ball. The two closed-loop characteristic
roots of the system are ½+1:36i ‐1:36i�. Because the char-
acteristic roots move on the imaginary axis, the closed-
loop club system is oscillating.

The concept of controllability of the system was first put
forward by Kalman in the 1960s, which is used to extend the
new concept of state space to describe the system. It plays a
very important role in modern control theory. A system is
said to be fully controllable if all the internal states of the sys-
tem can be completely controlled by the inputs to the sys-
tem. According to the method and theory of linear control
system, controllability is defined as:

For a continuous time linear time-invariant system, its
state equation is

〠 : _x = A tð Þx + B tð Þu tð Þ, ð17Þ

where into the state vector x is n-dimensional (with n
independent variables), the control function uðtÞ is p-
dimensional input vector (with p independent variables),
and AðtÞ and BðtÞ are, respectively, n × n and n × p part
coefficient matrices.

If, in the complete phase space of the system, for any ini-
tial state xðt0Þ ≠ 0, at least one control action can be found
within a limited time, t0 ≤ t ≤ t f regular uðtÞ, such that the
state xðtÞ can reach any position in the phase space within
a certain time; the state of the system is said to be fully con-
trollable. It can simply be called system-controllable. Even if
only one state variable in an infinite system is uncontrolla-
ble, then the state of the system is not fully controllable,
which can be simply called the system uncontrollable. For
linear time-invariant discrete systems

x k + 1ð Þ =Gx kð Þ +Hu kð Þ: ð18Þ

If there is a controlling action sequence uðkÞ, uðk + 1Þ
,…,uðl − 1Þ can transfer the system from any initial state
xðkÞ ≠ 0 to the final state xðlÞ = 0, where l is a finite num-
ber greater than k; then, the state of the system is said to
be fully controllable. Even if only one state variable in an
infinite system is uncontrollable, then the state of the sys-
tem is not fully controllable, which can be simply called
the system uncontrollable.

The basic criterion of controllability is set as the state
equation of a linear time-invariant continuous system of
order n

_x = Ax + Bu, 
x 0ð Þ = xp, 

t ≥ 0,
ð19Þ

where into the state vector x is n-dimensional (with n
independent variables), the control function uðtÞ is p-
dimensional input vector (with p independent variables),
and AðtÞ and BðtÞ are, respectively, n × n and n × r part coef-
ficient matrices.
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For the linear time-invariant continuous system of order
n expressed in the equation above, the matrix to judge con-
trollability can be written:

Qc = B ABj j⋯ An−1B����
: ð20Þ

Then, the necessary and sufficient conditions for the sys-
tem to be fully controllable are

rank Qc = rank B ABj j⋯ An−1B� = n
���

: ð21Þ

If rank Qc < n, then the controllability judgment matrix
Qc of the ballbeam control system can be constructed
according to the above two state equation (20) and equation
(21), and its rank can be known from the above formula as 2;
then, the ballbeam control system is fully controllable. It can
be seen from Figure 8.

A good state feedback controller design is to use a
series of formulas and calculations to make the system
can be implemented at the desired position; that is, the
closed-loop poles can be located at the desired position;
the eigenvalues can be freely configured to obtain the
desired dynamics. In the condition of state feedback, the
closed-loop poles and eigenvalues can be arbitrarily config-
ured if the controlled ballbeam system is controllable. In

general, x (displacement of the ball on the bar x), the state
vector of the ballbeam system, is obtained by encoding,
sampling, and quantifying the position sensor and can be
obtained through a series of calculations:

_x kð Þ = x kð Þ − x k − 1ð Þ
ts

: ð22Þ

Assuming that the state equation expression of the ball-
beam system has been obtained by the method described
above, the expected closed-loop pole of the ballbeam system
is assumed to be ½λ1, λ2�; then, the expected characteristic
equation of the ballbeam system can be obtained through
the formula and definition as follows:

a∗ sð Þ = s − λ1ð Þ s − λ2ð Þ: ð23Þ

Write the characteristic polynomial of the state feedback
equation of the ballbeam system:

det SI − A + BKð Þ: ð24Þ

If the corresponding coefficients in (24) and (25) are
equal, the feedback control gain K matrix can be solved.

Assuming that the expected closed-loop pole of the ball-
beam system is ½−1:5 + 0:5i − 1:5 − 0:5i�, the state feedback
control gain matrix of the ballbeam system can be solved
by applying the above formula as follows:

K = 1:3492 1:6190½ �: ð25Þ

It can be obtained from Figure 9 that the overshoot is
σ = 0:0%, and the adjustment time is ts = 3:32 seconds.

5. Conclusion

The simulation results are as follows. It can be seen from
Figure 10.

Build the system simulation block diagram Uncontrolsys
in MATLAB Simulink, add step signal, connect four mod-
ules according to the following Figure 11, and save the file
as “Uncontrolsys”; the default format is slx.

Step Gain
Kp

1.3492

Kv

1.6190 du/dt

Derivative

Transfer Fc Sn cope

1.3492 +
–
–

1.853
s2

Figure 17: State space simulation control model.
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Figure 18: State space simulation control curve.
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Double-click on Scope to get the system simulation
curve.

It can be seen from Figure 12, the simulation curve that
the uncorrected system is oscillating and unstable. This is
because the ballbeam system has two open-loop poles at
the origin of the figure, and the root trajectories of the ball-
beam system are on its imaginary axis. Therefore, when the
open-loop gain K of the ballbeam system changes from 0 to
infinity, the two closed-loop poles of the ballbeam system
will move up and down on the virtual axis, and the system
will always be in an unstable oscillating state. Therefore,
the controller must be designed to make the system stable.
It can be seen in Figure 13.

Connect the modules as shown below and save the file as
“RootLocus_Simulation.slx.”

Double-click the Scope module to get the system simula-
tion curve.

According to Figure 14, we can calculate the overshoot
of σ = 14:47% in the simulation of root trajectory correction;
the adjustment time is 2.76 seconds, and the steady-state
error is 0. Therefore, it meets the design requirements of
the controller of the ballbeam system.

Real-time control model of root trajectory is shown in
Figure 15.

(1) Open the power button on the electric control box of
the ballbeam system

(2) Open the file “rootlocus_control_modify. MDL” in
the MATLAB/current folder

When the ball is stationary, double-click to open the
oscilloscope “pos” and observe the response of the system.

According to Figure 16, we can calculate the overshoot
of σ = 27:47%, when the root trajectory correction is used
for real-time control on the ballbeam system, and the
adjustment time is 2.94 seconds. Therefore, it meets the
design requirements of the controller of the ballbeam
system.

However, comparing the overshoot and adjustment time
between simulation and real-time control, it is not difficult
to find that there are some errors, and there are still differ-
ences between simulation and real-time control. For exam-
ple, when the bar is higher than the horizontal position,
the ball will roll. However, if the angle is very small, the ball
will not roll. However, when the angle suddenly increases
greatly, the ball will roll far away due to gravity and inertia,
and other nonlinear factors have a great impact on the accu-
racy. The state space simulation control model is shown in
Figure 17.

According to Figure 18, we can calculate the overshoot
σ = 0% in the state space correction simulation, the adjust-
ment time is 2.23 seconds, and the steady-state error is 0.
Therefore, it meets the design requirements of the controller
of the ballbeam system.

Real-time control model of state space is shown in
Figure 19.

(1) Open the power button on the electric control box of
the ballbeam system

(2) Open the file “statefb_control_modify. MDL” in the
MATLAB/current folder

After the ball is stationary, double-click to open the
oscilloscope “POS” and observe the response of the system.

According to Figure 20, we can calculate the overshoot
amount σ = 28:17% and the adjustment time 2.96 seconds
when the state space correction is used for real-time control

Step Gain
SaturationAlpha_thet Tha eta_alpha Model

1
0.005s2+0.135s+1

Filter Scope

7
s2

f(u) f(u)-K- -K-

0

Constant

Gain1

Gain2

0.6429

0.4286 du/dt

Derivative1

Rate limiter

Angle_pluse Pluse_angle

+
+

0.6429 +
–
–

Figure 19: Real-time control model of state space.
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Figure 20: Simulation curve of real-time control in state space.
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on the ballbeam system. Therefore, it meets the design
requirements of the controller of the ballbeam system.

Compared with the state space method, the simulation
results show that the state space method can obtain less
overshoot and adjustment time.

However, comparing the overshoot and adjustment time
between simulation and real-time control, it is not difficult
to find that there are some errors, and there are still differ-
ences between simulation and real-time control. The main
reason affecting the performance of the control system is
that the mathematical model of the system is not accurate
enough. Many important factors are ignored when modeling
the system, which affects the performance of the system.
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