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Satellite networks can provide a wider service range and lower delay than traditional terrestrial optical fiber networks. However,
due to the bursty characteristic of the Internet traffic and the distributive feature of satellite links, traffic-intensive areas often suffer
from link congestion while links in other areas are underutilized, i.e., the traffic imbalance problem in LEO satellite networks. In
this paper, an ant colony optimization routing algorithm with window reduction for LEO satellite networks, ACORA-WR, is
proposed to achieve load balancing. ACORA-WR limits the movement of the ant colony to a specific range and
comprehensively considers the path distance, transmission direction, and link load to find a path with low delay and overhead.
Simulation results verify that the proposed ACORA-WR scheme demonstrates high data delivery ratio and network
throughput, while ensuring low average delay and network transmission overhead.

1. Introduction

With the development of on-board processing and intersa-
tellite link technology, satellite communication networks
have become a reality and attracted great attention. Low
Earth Orbit (LEO) satellites are often used to form satellite
networks, due to the relatively low operational height, low
communication delay with ground, low link loss, and low
transmission power. Iridium, Globalstar, Teledesic, Starlink,
and other satellite networks are all built on LEO satellites.

Compared with terrestrial 4G/5G cellular networks, the
biggest advantage of LEO satellite networks is the ability of
providing seamless Internet services to the whole world
[1–5]. LEO satellites can cover remote areas that are not
covered by 4G/5G cellular networks and are of great value
in ocean operations, scientific and technological broadband,

aeronautical broadband, and disaster emergency communi-
cation. As shown in Figure 1, LEO satellites extend 4G/5G
cellular networks to oceans, air, and other remote areas,
which allows people to transfer data from urban areas to air-
planes, cruises, and other vehicles in remote areas. However,
because the land area accounts for less than 30% of the total
area of the earth and the population is concentrated in large
cities, the satellite data volume regarding populated areas is
significantly greater than other places, so the distribution of
data flow is unbalanced, i.e., the traffic imbalance problem.

The routing algorithms in LEO networks must be carefully
designed to meet high-quality and large-capacity business
under limited satellite resources and imbalanced traffic distri-
bution. Compared with traditional terrestrial networks [6–8],
the load balancing design for satellite communication net-
works is more complex. Terrestrial wired networks have
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relatively fixed topology, while the topology of the satellite
communication networks is highly dynamic. The continuous
movement of satellites leads to frequent change of the connec-
tions between satellites, which poses a great challenge to balan-
cing the traffic load in such satellite networks.

Existing centralized load balancing routing schemes need
to obtain path information for the entire network before calcu-
lating the optimal path, which consumes great network
resources [9–11]. In contrast, distributed load balancing
schemes can provide fast reaction to traffic changes [12–17].
In such category, the ant colony algorithm is a class of simu-
lated evolutionary algorithms good at finding the optimal path
under dynamic network environments [18]. Therefore, in this
paper, we aim at the traffic imbalance problem in LEO satellite
networks and propose an ant colony optimization routing
algorithm with window reduction (ACORA-WR). Our contri-
butions are summarized as follows.

(i) First, we have proposed an ant colony-based routing
algorithm to tackle the load balancing problem in
LEO satellite networks. We design congestion-
avoiding heuristic information and combine it with
pheromone to improve the ability of ants to enhance
the local search ability and avoid stagnation. The
pheromone update rule is also optimized based on
path length and buffer status to improve the conver-
gence speed to the global optimal solution

(ii) Second, we design a window-reduction mechanism
to restrict the explore range of ants, which helps
improve search efficiency and reduce the complexity

(iii) Last but not the least important, we implement
ACORA-WR on NS2 and conduct extensive simu-
lations to evaluate its performance. The results show
that ACORA-WR achieves desirable performance
on data delivery ratio and network throughput,
while keeping the delay and overhead low

The remainder of this paper is organized as follows. We
review the related works in Section 2. In Section 3, we
explain the satellite network architecture. In Section 4, we
describe the new routing algorithm. Section 5 presents the

performance results of our ACORA-WR algorithm, and Sec-
tion 6 summarizes the paper.

2. Related Works

Existing load-balancing routing strategies for LEO satellite
networks can be mainly classified into two categories: cen-
tralized and distributed strategies.

Centralized strategies usually use a global optimization
algorithm to optimize the system traffic allocation and com-
pute the routing table. Li et al. proposed a mechanism to
quantitatively estimate the link state and dynamically
adjusted the weight of queuing delay [9]. The occupancy rate
of each queue was divided into multiple levels, and the queu-
ing delay was determined according to the corresponding
level. HGL [10] proposed by Liu et al. combined the global
and local strategy to optimally allocate IoT traffic flows.
Wang et al. proposed a load balancing scheme based on
Stackelberg game algorithm to make more effective use of
the satellite storage space [11].

Distributed schemes are also developed because central-
ized strategies are difficult to implement on satellites. Na
et al. proposed a distributed routing strategy for LEO satel-
lite networks based on machine learning [12]. Taleb et al.
proposed the Explicit Load Balancing (ELB) scheme which
predicted the current transmission congestion by explicitly
exchanging the queue usage on adjacent satellites [13]. Song
et al. extended the idea of ELB and brought forward the traf-
fic light-based routing (TLR) mechanism [14]. Papapetrou
et al. proposed Location-Assisted On-demand Routing
(LAOR) [15], where the satellite actively searched for a path
to the destination satellite after receiving a user communica-
tion request. Karapantazis et al. extended the idea of LAOR
and proposed Multiservice On demand Routing (MOR)
[16]. Rao and Wang proposed Agent-based Load Balancing
Routing (ALBR) [17], which used mobile agents to explore
link states to randomly selected destinations.

Currently, ant colony algorithms are widely used in net-
works, such as avoiding the interflow and intraflow interfer-
ence or balancing the loads in backbone networks [19],
calculating the best route for vehicles in vehicle networks
[20, 21], designing dynamic source routing algorithm

Figure 1: Application of LEO satellite networks in the global Internet.
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meeting high QoS requirements in ad hoc networks [22],
balancing energy efficiency for WSNs and IPv6 networks
[23, 24], and solving the scheduling (SBS) problem of satel-
lite broadcasting between satellites and ground stations [25].
Wang et al. proposed a load balancing scheme based on the
ant colony algorithm (LBRA-CP) [18]. In LBRA-CP, the sat-
ellites sought out the congestion areas and shared the infor-
mation of their positions to predict congestion, and the ant
colony algorithm was used to find an optimal path for every
connection request. However, ant colony algorithms still
need to tackle two challenges. First, they may result in local
optimal solutions. Second, the search range may be too wide,
making the search efficiency lower with the increase of the
number of satellites.

In this paper, we consider the total cost of the path and
the size of satellite buffer and also set the upper limit of
pheromone to avoid the ant colony algorithm to get the local
optimal solution. Meanwhile, we propose a window reduc-
tion mechanism to increase the search speed of the ant col-
ony, which can make full use of intersatellite links to
improve data delivery ratio and throughput, while keeping
a low transmission overhead and delay.

3. System Model

3.1. Satellite Networks. We model a LEO satellite network as
a graph G = ðV , EÞ, where V and E represent the set of satel-
lite nodes and directed ISLs (intersatellite links), respec-
tively. In the context of such network, we use the term
“node” and “satellite” interchangeably. The types of ISLs
include intraplane ISLs and interplane ISLs. Intraplane ISLs
refer to the links between satellites in the same orbit, and
interplane ISLs refer to those between satellites in different
orbits. The intraplane ISLs remain constant with fixed
length. Satellites move predictably and regularly with a con-
stant period. The topology of satellite networks is treated as
constant at an instant or within a small time duration fol-
lowing [26]. As shown in Figure 2, each satellite typically
has two intraplane ISLs and two interplane ISLs. An intra-
plane ISL is used to connect a satellite with its predecessor
or successor satellites in the same orbit, and interplane ISLs
are used to connect two adjacent satellites in two adjacent
orbits. We represent the logical address of a satellite using
Ni,j, where i is the orbit number and j is satellite number
within its orbit.

3.2. End-to-End Path Cost. The ISL link cost is based on the
end-to-end delay, which is the summation of queuing delay
and propagation delay [17]. The cost of the link between
satellite i and j, i.e., on transmission link ði, jÞ, is thus calcu-
lated as

Cost i, jð Þt = PDelay i, jð Þt + QDelay i, jð Þt , ð1Þ

where the propagation delay PDelayði, jÞt is calculated as

PDelay i, jð Þt =
d i, jð Þt

c
: ð2Þ

The propagation delay PDelayði, jÞt is the physical dis-
tance dði, jÞ of satellite link ði, jÞ at time t divided by veloc-
ity c, the optical transmission speed in vacuum, i.e., 3 × 108
m/s. The queuing delay QDelayði, jÞt is calculated using
the same method in [17]. Assuming that both the packet
arrival and service pattern are Poisson processes, then the
arrival and service intervals follow exponential distribu-
tions. We adopt the M/M/1 queuing model proposed in
reference [27] and estimate the average number of packets
in a queue using

Numq =
μ

1 − μ
, ð3Þ

where μ represents the mean ISL utilization following the
calculation in [28].

μh is the mean ISL utilization when the h-th packet
reaches the interface queue, calculated as

μh = LinkState+e−Δth × μh−1 − LinkStateð Þ, ð4Þ

where LinkState is set to 0 if there are no packets in the
interface queue or in transmission, and 1, otherwise. e−Δth
represents the forgetting rate, and Δth is the time interval
between the arrival of the h-th and ðh − 1Þth packets in the
queue. Therefore, the queuing delay can be estimated as

QDelay = Numq ×
Savg
B

, ð5Þ

where Savg is the average packet size in the queue and B is the
link bandwidth.

Hðs, dÞ represents the set of all links from the source
node s to the destination node d. The total cost from the
source to the destination is
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Figure 2: LEO satellite network topology.
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Cost s, dð Þt = 〠
i∈H s,dð Þ
j∈H s,dð Þ

Cost i, jð Þt: ð6Þ

We set Cð0 < C < 1Þ as the threshold and let ϱijðtÞ repre-
sent the waiting queue occupancy rate of link ði, jÞ at time t.
If ϱijðtÞ > C, LinkAvailableði, jÞ = 0 indicates that link ði, jÞ is
congested and the ISL cannot be used. Otherwise,
LinkAvailableði, jÞ = 1 indicates that ISL is used normally.

LinkAvailable i, jð Þ =
0 ϱij tð Þ > C

1 otherwise
 :

(
ð7Þ

The goal of the end-to-end path cost model is to find the
optimal path with the smallest cost for each packet from the
source to destination under the above constraints. Therefore,
the optimization model is formulated as

Minimize : Cost s, dð Þt
s:t:∀link i, jð ÞLinkAvailable i, jð Þ = 1

i, jð Þ ∈H s, dð Þ
ð8Þ

Our goal is to find the path with the lowest total cost
from source to destination. Moreover, to ensure reliable data
transmission, ði, jÞ ∈Hðs, dÞ represents each ISL on Hðs, dÞ
should be usable.

4. Ant Colony Optimization Routing
Algorithm with Window Reduction

Ant colony algorithm is a probabilistic algorithm used to
find the optimal path [29]. It has the characteristics of dis-
tributed calculation, positive information feedback, and heu-
ristic search. Ant colony algorithm uses a control message
(also known as ant) to collect path information for routing.
The packet selects the next hop according to the probability
formula. However, in the LEO satellite network environ-
ment, the ant colony algorithm may stagnate for a period
of time, which makes the traffic congestion more serious.
Therefore, we propose the congestion-avoiding heuristic
information to alleviate this problem. On the other hand,
due to the long distance and global coverage of satellite links
(ISLs), in order to make the ant colony more efficient, we
propose the window reduction mechanism to limit the
search range of ants. In this section, we explain how we
design an ant colony algorithm to fit the LEO scenarios.

4.1. Ant Colony Algorithm-Based Routing. We use data
packets to simulate ants, which are divided into two kinds:
forward ants and backward ants. The forward ants represent
the messages from the source node to the destination node,
which collect the path information from the source node
to the destination node including end-to-end delay and
number of hops. The backward ants represent the messages
returned from the destination node to the source node,
which change the routing information of each satellite node.

Pheromone is the information left by ants when they
pass through nodes. The forward ant calculates and deter-
mines the next hop using pheromone. When the backward
ant passes through a node, it will update the pheromone of
the node. With a larger number of ants passing through
the node, the pheromone density will be greater. Intuitively,
ants prefer to choose those nodes with greater pheromone
density. The routing table of each node in the network is
represented by a probability table, and the probability value
is related to the pheromone density. Table 1 shows the struc-
ture of the probability table of node i, which includes three
kinds of information: flow, adjacent node, and probability.
The flow number is determined by source-destination pairs,
and the adjacent node is the node directly adjacent to node i.
When a data packet of flow f reaches satellite node i, the
probability of selecting the next node j is Pijf .

In the initial state, the pheromones on all paths are
evenly distributed. As shown in Figure 3, a group of forward
ants are sent from source S, and the forward ants are for-
warded in the networks according to the pheromone. If the
pheromone density is 0, it is forwarded randomly. The ants
can remember the information of the path, including hops
and delay, and finally reach the destination node receiver
D. Obviously, the ant passing through the shortest path will
reach the destination node at the fastest speed. If there are
multiple identical ants, the destination node only receives
the first arriving ant. When the ant arriving at the destina-
tion first reaches receiver D, receiver D will send the back-
ward ant to the source point S, and the backward ant will
return to S following the original path of the forward ant
and modify the pheromone when passing through the node.
The backward ant determines whether to increase or
decrease the pheromone according to the communication
quality of the whole path and the increment value of the
pheromone according to the congestion degree of the node.
As denoted by the yellow links in Figure 3, when the path is
busy, the backward ant will reduce the pheromone of the
node on the yellow path and thus reduce the probability of
the forward ant choosing this path. At the same time, the
backward ant passing through the blue path will increase
the pheromone of this path and allow more data to be for-
warded through the blue path. In addition, we set the red
link as a congested link, which is temporarily unavailable.
In this way, the iterative operation is carried out continu-
ously to select the best path for the data packets.

4.1.1. Forward Ants. We let the source node periodically
send out forward ants in the process of data transmission.
A forward ant uses unicast to select the next hop node
according to the state transition rules and records the travel

Table 1: The probability table structure of node i:

Flow Adjacent node Probability

f j Pijf

f k Pikf

g l Pilg
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path and connection information along the way as the pher-
omone, so that the data passing through the satellite node
can select the next hop node according to such pheromone.
When it finally reaches the destination node, the forward ant
dies and a backward ant is then generated. In addition, each
forward ant also maintains a routing table independently to
record the traversed satellite nodes, as to avoid loops in the
forwarding process.

The state transition rule is the core rule of all ant colony
algorithms; each ant selects the next node according to the
state transition rule. Through the state transition rules, the
algorithm can use the network link information to find the
optimal path from the source node to the destination node.

When the forward ant is at satellite node i, the probability
that the adjacent node j of node i is selected as the next hop is

Pijf =

pijf tð Þ
h iα

ηijf tð Þ
h iβ

∑k∈K pikf tð Þ
h iα

ηikf tð Þ
h iβ q < q0and LinkAvailable i, jð Þ = 1,

1
A

q ≥ q0 and LinkAvailable i, jð Þ = 1,

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð9Þ

where pijf ðtÞ and ηijf ðtÞ are the pheromone density and
congestion-avoiding heuristic information of link ði, jÞ with

data flow f at time t, respectively, and α and β are the control
parameters. q is a random number between 0 and 1. The value
of q0 determines the weights of exploring new paths and using
prior knowledge. A is the number of candidate nodes for the
next hop, and K is the set of adjacent nodes. If the link is
available, LinkAvailableði, jÞ = 1 and q < q0, we calculate the
probability according to the congestion-avoiding heuristic
information and pheromone. If the link is available and q ≥
q0, we randomly select the next hop. If the link is unavailable,
the probability value is set to 0, and the link is blocked.

The influence factors α and β represent the weights of the
pheromone and congestion-avoiding heuristic information,
respectively, where α + β = 1. In order to accelerate the con-
vergence speed in the initial stage and avoid rapid local con-
vergence, we design the influence factor α at moment t as

α tð Þ = e−σt
NumΔν∙Savg

Δν
> B 

ε 1 + e−σt
� �

otherwise

8><
>: ,

ð10Þ

where ε and σ are constants and ε, σϵð0, 1�. t is the searching
times. The larger the value of t is, the smaller the value of αðtÞ
is. The weight of the pheromones decreases with the increase
of the search times, while the congestion-avoiding heuristic
information value β increases. NumΔν indicates the number
of packets reaching the current node i in the past Δν time,

Congested path

S

D

ISL

GSL

Forward ant

Backward ant

Congested path of ISL

Busy path of ISL

Figure 3: Ant colony algorithm in LEO satellite networks.
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Savg is the average packet size in the queue, and NumΔν∙Savg
/Δν indicates the bandwidth required for successful forward-
ing of NumΔν packets per second.

When the intersatellite link bandwidth B cannot support
transmitting the data in time, we increase the weight of
congestion-avoiding heuristic information to forward
packets with idle ISLs to avoid adjacent links entering the
congestion state quickly. When the congestion pressure of
this node is light, we mainly make routing choices based
on pheromone density to dynamically find the global opti-
mal solution.

4.1.2. Congestion-Avoiding Heuristic Information. The pher-
omone only considers the transmission quality of the whole
path from the source to the destination node but fails to
handle local conditions in time. For example, after the ant
colony algorithm runs for a period, there will be a stagnation
phenomenon, i.e., all the individuals find the same solution
and the search space converge, and no better solutions can
be found. Stagnation may cause local node congestion. To
tackle this problem, we propose the congestion-avoiding
heuristic information, which estimates the busy degree of
the link by considering the cache occupancy of the link. As
the length of ISL changes from time to time, we also consider
the length of the communication link. We design the
congestion-avoiding heuristic information ηijf ðtÞ of link ði,
jÞ at moment t as

ηijf tð Þ = 1
μd i, jð Þt + 1 − μð Þϱij tð Þ

, ð11Þ

where dði, jÞt is the length of link ði, jÞ at moment t, ϱijðtÞ
represents the waiting queue occupancy rate of link ði, jÞ at
time t, and μ is the weight of the link length. If the length
of link ði, jÞ is shorter or the cache occupancy is lower, the
congestion-avoiding heuristic information value is greater.
ϱijðtÞ is calculated as

ϱij tð Þ =
δij tð Þ
Q

, ð12Þ

where Q is capacity of the buffer. δijðtÞ is the space occupied
by packets in the cache queue of current link ði, jÞ at time t.

4.1.3. Backward Ants. The backward ant returns to the
source node from the destination according to the path
recorded by the forward ant and updates the pheromone
value of each node along the way according to the link infor-
mation collected by the forward ant. With the increase of the
number of backward ants passing through, the more phero-
mones accumulated, and the forward ants tend to choose the
path with higher pheromone density. However, if the num-
ber of ant colonies is large and each individual ant starts to
find the path from the source to the destination, the phero-
mone difference on each path will be small, and it is possible
to obtain the stable solution after a certain number of itera-
tions. However, an ant colony system algorithm is prone to
stagnation, i.e., the stable solution is not the global optimal

solution, and ants lose the ability to explore new paths. To
solve these problems, we optimize the pheromone update
rules to tackle the problems of slow convergence and
untimely information update. We use p to represent the den-
sity of pheromones and design the pheromone update as

pijf t + 1ð Þ =
1 − ρð Þpijf tð Þ + 〠

m

k=1
Δτkijf tð Þ pijf t + 1ð Þ < Γ

Γ otherwise

8><
>: ,

ð13Þ

wherem is the number of ants at each iteration and ρ ∈ ð0, 1Þ
is the pheromone evaporation coefficient. The main purpose
of pheromone evaporation is to avoid stagnation. Each ant
will experience pheromone update, and the best ant will place
more pheromones on the node with the best solution. It will
lead ants to explore the optimal solution in subsequent itera-
tions. In order to prevent the infinite increment of phero-
mone, let Γ represent the upper limit of the pheromone
density of link ði, jÞ. The pheromone increment Δτ is related
to the total cost of the current path and the congestion of the
current link, and Δτ is calculated as

Δτkijf tð Þ = φ
1 − ϱij tð Þ
� �
Costsd f

Costsdf ≤ CostDf

0 otherwise

8><
>: , ð14Þ

where Costsd f is the total cost of the data flow f from the
source node s to the destination d and CostDf is the maxi-
mum tolerated cost. If the path length explored by the for-
ward ant exceeds CostDf , there will be a high delay in
transferring data on this path, so we set the pheromone
increment Δτ to 0. ϱ represents an immediate quantitative
value related to the queue waiting time, and the pheromone
increment Δτ is negatively correlated with the value of ϱ.
We use φ to correct pheromone increment Δτ, i.e., the rela-
tive relationship between the degree of link congestion and
the cost of link.

4.2. Window Reduction. Ant colony algorithms use forward
ants to explore new paths heuristically. A greater number
of forward ants can find more available paths but also
increase the transmission overhead. To reduce such over-
head, we thus propose a window reduction mechanism to
limit the routes to a specific range. It specifies a rectangular
range according to the current satellite and the logical
address of the destination satellite. With the movement of
the forward ant, the size of the restricted area, referred to
as the “window,” is shrinking, and this process resembles
reducing the size of the window. Each satellite node has a
unique number, and the logical address can be calculated
using this number. If there are m orbits in the constellation
system and n satellites in each orbit, we use <i, j > to repre-
sent the j-th satellite in the i-th orbit and Ni,j to represent
the logical address of the satellite, where i and j are calcu-
lated as

6 Wireless Communications and Mobile Computing



i =
Ni,j
n

j =Ni,j mod n

8><
>: : ð15Þ

In satellite networks, the four adjacent satellites of satel-
lite <ic, jc > are <ðic + 1Þ mod m, jc > , <ðic − 1Þ mod m, jc
> , <ðic, ðjc + 1Þ mod n > , and <ðic, ðjc − 1Þ mod n > . <ie,
je > is the destination when packets are forwarded to the
destination node:

ic = ie,
jc = je:

(
ð16Þ

Then, <ie, je > sends the data to the ground destination
node directly.

If the current satellite node is not the destination satel-
lite, we define DirectionX as the x-axis relative distance
between the specified node and the destination satellite.
The x-axis relative distance is calculated using the orbit
number of the logical address as

DirectionX ie − ið Þ =
m − ie − ij j ie − ij j > m

2
ie − ij j otherwise

8<
: : ð17Þ

In the data forwarding process, the window reduction
mechanism requires that the next-hop satellite node K must
meet the following conditions:

DirectionX ie − ikð Þ ≤DirectionX ie − icð Þ: ð18Þ

The orbits of the current satellite and the destination sat-
ellite divide the satellite networks into two ranges. Equations
(17) and (18) mean that the search area of an ant colony is
restricted to the smaller one between two ranges. If
DirectionXðie − iÞ = 0, it means that the current satellite
and the destination satellite are in one orbit, and the packet
will only be forwarded on that orbit.

The purpose of the window reduction mechanism is to
limit the routing to the range formed by the current node
and the destination satellite. As shown in Figure 4(a), a
group of data is forwarded from satellite S to satellite D.
The window reduction mechanism allows ants to be for-
warded to all blue nodes. The adjacent satellites of S are 2,
6, 7, and 11, and satellite nodes 2, 7, and 11 meet the condi-
tions of the window reduction mechanism, so nodes 2, 7,
and 11 are added to the candidate set, K . When a packet is
about to be forwarded, only the nodes in set K can be
selected. Similarly, as shown in Figure 4(b), when the data
reaches satellite 7, satellites 3, 8, and 12 are added to set K
according to the above rules. Figure 4(c) shows that when

19 20 21 22 23

15 16 17 D 18

10 11 12 13 14

6 S 7 8 9

1 2 3 4 5

(a)

19 20 21 22 23

15 16 17 D 18

10 11 12 13 14

6 S 7 8 9

1 2 3 4 5

(b)

19 20 21 22 23

15 16 17 D 18

10 11 12 13 14

6 S 7 8 9

1 2 3 4 5

(c)

19 20 21 22 23

15 16 17 D 18

10 11 12 13 14

6 S 7 8 9

1 2 3 4 5

Congestion

(d)

Figure 4: Example of path selection for window reduction mechanism.
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the data reaches satellite 8, a satellite from satellites 4 and 13
will be selected as the next hop since satellite 8 is in the same
orbit as the destination satellite D. Passing satellite 13 will
make it faster to reach destination satellite D, so more ants
will choose node 13 to forward. With the increase of packets
passing through link ð8, 13Þ, according to Equation (7),
when ϱijðtÞ > C, linkð8, 13Þ is not available. Satellite 4 is
selected to forward the data. As shown in Figure 4(d), then
the data of satellite 4 is forwarded to satellite 22 and finally
to the destination satellite. The window reduction mecha-
nism uses the x-axis coordinates of the satellite nodes to
limit the range of forward ants. The size of this range is
determined by the x-axis coordinates of the current and des-
tination satellite nodes. We combine the optimized ant col-
ony algorithm with the window reduction mechanism
above to reduce the additional overhead caused by ants
exploring new paths.

ACORA-WR is a distributed algorithm in which each
satellite node updates its routing table independently
according to Equation (13). The computational complexity
at node is proportional to the number of neighbors. For
example, in Iridium, there are no more than 4 satellite nodes
adjacent to each satellite. In Starlink, there are about 4 adja-
cent satellite nodes, and in other LEO networks, there are
usually no more than 8 neighbors. In addition, ground nodes
are not counted in ACORA-WR. If the ground node is the
destination, the satellite will forward the data to it directly.
Therefore, the number of the neighbors of each node is a
constant, so the computational complexity is O(1). Each sat-
ellite node stores only the pheromones, cache occupancy,
and distance of its neighbors, so the storage complexity is
O(1), too.

5. Results and Discussion

5.1. Simulation Setup. We use the NS2 simulation platform
to simulate an Iridium-like system and evaluate the perfor-
mance of our proposed ACORA-WR routing algorithm.
The Iridium satellite network consists of 66 satellites with
11 satellites in each orbit. Each satellite has four intersatellite

ISLs, including intraplane ISLs and interplane ISLs. We set
the bandwidth of each ISL to 2Mbps. The uplink and down-
link bandwidth of the satellite is 2Mbps. Other parameters
of Iridium networks are as follows: altitude = 780 km and
inclination = 86:4°. We use constant traffic with a fixed
packet size of 512 B. The simulation time is 100 s. There
are seven flows distributed among the cities shown in
Figure 5, which are distributed between 50 degrees north
and 50 degrees south latitudes. The flows, i.e., source-
destination pairs, are shown in Table 2. We compare our
ACORA-WR with three popular routing protocols, LBRA-
CP [18], SPR, and LCRA [30].

(1) LBRA-CP is a load-balanced routing algorithm
based on congestion prediction for LEO satellite net-
works. LBRA-CP sets up hot spot areas to avoid con-
gestion by transferring traffic from hot spot areas to
nonhot spot areas

(2) SPR is the shortest path routing protocol based on
Dijkstra

(3) LCRA is the cost-balanced routing protocol in LEO
satellite networks. It selects the shortest path to the
destination and uses the congestion information of
neighboring nodes to alleviate the network conges-
tion. It has low computational complexity and can
effectively reduce network overhead

Perth

Brisbane

Shanghai

Sulawesi

Istanbul

Urumqi

Cairo

Madrid

Mumbai

Johannesburg

Figure 5: Distribution of ground destination cities.

Table 2: Sending and receiving cities of simulated data flow.

Source Destination

Madrid Brisbane

Istanbul Sulawesi

Mumbai Perth

Urumqi Johannesburg

Shanghai Cairo

Johannesburg Shanghai

Perth Istanbul
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The performance is evaluated using following metrics:

(1) Data Delivery Ratio. The ratio of the number of mes-
sages arrived at destinations to the number of mes-
sages expected to arrive at destinations

(2) Average Delay. The average time spent by all mes-
sages from the sources to the destinations

(3) Transmission Overhead Ratio. The total number of
relayed messages divided by the number of messages
arriving at the destination

(4) Throughput. The total successful message delivery
rates on the destinations

5.2. The Performance of ACORA-WR with Varying CBR
Rate. To evaluate the effects of the transmission rate of
CBR (constant bit rate) on ACORA-WR performance, we
increase the total CBR generation rate in the networks from
0.8Mbps to 2Mbps. The buffer size of the node is 50

packets. The total simulation time is 100 s. For comparison
fairness, we set the q0 of ACORA-WR and LBRA-CP to be
the same.

In Figure 6(a), as the CBR rate increases, the data deliv-
ery ratio in all protocols decreases due to the heavy trans-
mission load. ACORA-WR shows the highest data delivery
ratio and traffic balancing capability in the range of 0.8Mbps
to 2Mbps of CBR rate. The shortest path algorithm SPR has
the worst performance, and the average data delivery ratio of
ACORA-WR is nearly twice as high as that of SPR. The
LCRA algorithm considers the congestion information of
adjacent nodes and chooses the shortest congestion path to
the destination. However, LCRA only considers the conges-
tion situation of adjacent nodes in routing, so it cannot opti-
mize the routes from the global perspective. Due to the
limitation of the transmission range, LCRA cannot provide
enough paths to dynamically adapt to the traffic load. In
contrast, ACORA-WR considers both global and local
aspects through the ant colony algorithm. Compared with
LCRA, the average data delivery ratio of ACORA-WR
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Figure 6: The performance of ACORA-WR with varying CBR rate.
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increases by about 10%, and the LCRA performance
decreases significantly when the CBR rate is at 2Mbps. The
data delivery ratio of ACORA-WR is nearly 50% higher than
LCRA when the CBR rate is at 2Mbps. LBRA-CP is also
based on ant colony algorithms and combines congestion
prediction to find the best route; however, its overhead is
higher. ACORA-WR can speed up ant colony search and
modify routing table in time. The experimental results show
that the data delivery ratio of ACORA-WR is about 10%
higher than LBRA-CP.

From Figure 6(b), we can see that the performance of
our ACORA-WR is between LCRA and LBRA-CP in terms
of the average delay. LCRA has the best average delay
because the length of the path chosen by LCRA is generally
smaller than ACORA-WR and LBRA-CP. However, a large
amount of data is discarded while waiting in queues, and
the percentage of packets discarded increases with the
increase of the CBR rate. Similarly, SPR has a good average
delay, but they always choose the shortest path. When the
load is heavy, many packets will be discarded. LBRA-CP
and ACORA-WR require higher average delay to ensure
data delivery. The results show that the average delay of

ACORA-WR is better than that of LBRA-CP in the range
of 0.8Mbps to 2Mbps CBR rate.

In terms of transmission overhead ratio, as shown in
Figure 6(c), LCRA has the lowest transmission overhead ratio,
and ACORA-WR is slightly higher than LCRA because both
LCRA and ACORA-WR limit the range of data transmission,
but ACORA-WR can choose more flexible paths than LCRA.
However, compared with LBRA-CP, the average transmission
overhead of ACORA-WR is about 40% lower than that of
LBRA-CP. This is because LBRA-CP has a broader ant search
range and a slower ant colony convergence rate than ACORA-
WR. Some data choose longer and longer paths, which results
in a higher transmission overhead ratio.

In Figure 6(d), throughput of all protocols increases
with the increase of CBR rate. ACORA-WR always main-
tains the highest throughput, SPR has the lowest through-
put, LCRA has slightly higher throughput than LBRA-CP
when CBR rate is 0.8Mbps to 1.4 Mbps, and LBRA-CP
overwhelms LCRA when CBR rate reaches 1.6Mbps. When
CBR rates range from 1.8Mbps to 2Mbps, the throughput
of ACORA-WR increases by about 25% compared with
LBRA-CP and 40% compared with LCRA.
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Figure 7: The performance of ACORA-WR with varying q0.
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In summary, the experimental results show that
ACORA-WR can maintain a high data delivery ratio and
network throughput. It can balance the traffic under heavy
network load while maintaining a small average delay and
overhead.

5.3. The Performance of ACORA-WR with Varying the Value
of q0. The value of q0 determines the relative importance of
exploring new paths and using prior knowledge. According
to Equation (7), the probability values are calculated using
congestion-avoiding heuristic information and pheromone
when q < q0. Routing forwarding is chosen randomly when
the link is available and q ≥ q0. q is a random number, q0
is a fixed value, and q0 determines the probability ratio of
the two rules to choose a route. The larger the value of q0
is, the smaller the probability of forward ants will explore
randomly, and the lower the ability of finding a new route.
The smaller the value of q0 is, the slower the convergence
speed of the ant colony algorithm will have, but it will result
in higher network overhead and delay. To evaluate the
impact of the value of q0 on the performance of two kinds
of ant colony algorithm ACORA-WR and LBRA-CP, we
change the value of q0 in the networks from 0.1 to 1 and
set the CBR generation rate to 1.8Mbps. The buffer size of
the node is 50 packets.

In Figure 7(a), both ACORA-WR and LBRA-CP have
significantly improved data delivery rates as the value of q0
increases, and both ACORA-WR and LBRA-CP show the
best performance when the value of q0 is 0.9. When the value
of q0 is low, most ants in ACORA-WR and LBRA-CP ran-
domly select routes in the networks, but due to the narrow-
ing of the window, ACORA-WR data is easier to find
destinations, so even when the value of q0 is low, it still
shows a significantly better data delivery rate. When the
value of q0 is in the range of 0.1 to 0.8, the data delivery rate
of ACORA-WR is about 90% higher than that of LBRA-CP.

In Figure 7(b), with the increase of q0, the average delay
of ACORA-WR differs slightly from that of LBRA-CP. This
is because we take into account the delay of the entire path
from the sources to the destinations of the data flows in
the pheromone overlay process and adjust the traffic alloca-
tion of the link locally with congestion-avoiding heuristic
information to ensure a lower average delay while increasing
the data delivery rate.

In Figure 7(c), LBRA-CP has a very high transmission
overhead ratio when the value of q0 is small, because most
of the data is searched randomly and unrestrictedly, result-
ing in longer paths being selected and higher transmission
overhead ratio. With the constraint of the window reduction
mechanism, even if most ants randomly select routes, they
can still successfully forward data to their destinations with
a low transmission overhead ratio.

Figure 7(d) shows the changes in network throughput of
ACORA-WR and LBRA-CP as the value of q0 increases.
Overall, the network throughput of ACORA-WR and
LBRA-CP increases with the value of q0. The networks
throughput of ACORA-WR is significantly better than that
of LBRA-CP when the value of q0 ranges from 0.1 to 0.8.

When q0 is 0.9, both algorithms have the best performance.
With faster convergence, LBRA-CP throughput tends to
approach ACORA-WR gradually, but overall, ACORA-WR
is still better than LBRA-CP.

6. Conclusions and Future Work

In this paper, we aimed at balancing traffic load in LEO sat-
ellite networks and proposed an improved ant colony rout-
ing algorithm with window reduction. When packets are
forwarded between intersatellite links, congestion-avoiding
heuristic information is added to the state transition rules,
and forward ants detect the route through our improved
state transition rules periodically, as to tackle the problem
that ant colony algorithms fail to adjust the local informa-
tion in time. Moreover, we proposed a window reduction
mechanism to limit the transmission direction of data and
remove redundant paths, which accelerates the convergence
speed of ant colony and reduce network transmission over-
head. Finally, the new routing algorithm is implemented
on the network simulation platform NS2. The experimental
results show that compared with other distributed algo-
rithms in LEO satellite networks, the proposed ACORA-
WR scheme demonstrates higher data delivery ratio and net-
work throughput. In conclusion, ACORA-WR can effec-
tively balance the network traffic load and improve the
data delivery ratio of satellite networks.

In our future work, we will consider energy consumption
in load balancing algorithms. Satellites mainly receive energy
from the sun, which is not guaranteed anywhere as they
move. Load balancing for LEO satellite networks under these
cases requires further study.
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